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Abstract
In biomarker discovery studies uncertainty associated with case and control labels are often
overlooked. By omitting to take into account label uncertainty, model parameters and the
predictive risk can become biased, sometimes severely. The most common situation is when the
control set contains an unknown number of undiagnosed, or future, cases. This has a marked
impact in situations where the model needs to be well calibrated, e.g. when the prediction
performance of a biomarker panel is evaluated. Failing to account for class label uncertainty may
lead to underestimation of classification performance and bias in parameter estimates. This can
further impact on meta-analysis for combining evidence from multiple studies. Using a simulation
study we outline how conventional statistical models can be modified to address class label
uncertainty leading to well-calibrated prediction performance estimates and reduced bias in meta-
analysis. We focus on the problem of mislabelled control subjects in case-control studies, i.e.
when some of the control subjects are undiagnosed cases although the procedures we report are
generic. The uncertainty in control status is a particular situation common in biomarker discovery
studies in the context of genomic and molecular epidemiology, where control subjects are
commonly sampled from the general population with an established expected disease incidence
rate.

Introduction
Case-control study designs1 provide a powerful approach to elicit predictive biomarkers. In
such studies, biomarkers2 are measured retrospectively within affected individuals (‘cases’)
and the patterns of measurements are compared to those obtained from a set of unaffected
individuals (‘controls’). It is well known that in order to maximise statistical power the
control set should be chosen to be as similar in key variables, such as age and gender, to that
of the case set.1 However, a widespread but often overlooked problem arise when there is
uncertainty present in the control labels, so that some of the subjects labelled as controls are
in fact cases.3 When there is a risk of mislabelling in a case-control study, fitting statistical
models without taking account of the uncertainty in control status will result in downward
bias in estimates of biomarker effect sizes and the resulting model will underestimate the
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true predictive risk for an ‘at risk’ individual. Both of these features are undesirable, the
latter undermining confidence in the true effectiveness of the biomarker panel to
discriminate those at risk.

A common cause for case-control mislabelling is when the sample of control subjects
contain undiagnosed cases.4 Ideally such mislabelling should not occur in case-control
studies, however, in reality mislabelling can occur for several reasons including, low
sensitivity of a diagnostic test, uncertainty in determining the trait defining disease, or if the
control set is based on a population sample with an intrinsic expected (undiagnosed) disease
incidence rate. Low sensitivity may be the result of a sub-optimal diagnostic test or when the
‘gold-standard’ test is too invasive to be utilized on control subjects, for example if a biopsy
is required for ‘gold-standard’ diagnosis. In such circumstances control subjects might
instead be diagnosed by an alternative less invasive test, with lower sensitivity. Uncertainty
in diagnosis may also arise due to subjective scoring of patients based on phenotypical
evidence or when case and control assignment are made by dichotomizing a continuous
trait.5 When a population based sample is used as the control set it is expected that a
proportion of mislabelled control subjects are present corresponding to the population based
incidence level for the disease, this is a type of study design common in genome-wide
association studies (GWAS),6 but also in biomarker studies based on samples from
biobanks.7

In studies where a ‘gold-standard’ diagnostic test is available and used, there will be no
uncertainty in the case-control labels except if there is a risk of future (prospective)
mislabelling. Prospective mislabelling should ideally be accounted for when developing a
model with aim to predict subjects at risk of future disease. However, in the case of
prospective cohort-based studies, where subjects are followed over time and a ‘gold-
standard’ diagnostic test is available, alternative analyses strategies to the case-control study
design can be used with benefit, such as time-to-event analysis.8

In this note we discuss how to formally account for uncertainty in the status of controls. The
outlined methodology is applicable to case-control studies in general, including studies
utilising ‘omics’ technologies such as proteomics,9 metabonomics10 and transcriptomics11

for biomarker discovery. Our recommendation reduces bias in estimates and improves
accurate assessment in the overall effectiveness and utility of the biomarker panel. We
demonstrate how such adjustments can be easily incorporated within standard statistical
model fitting algorithms. The general problem of class mislabelling within classification
models has a considerable literature.4,12 However, we are the first to concentrate specifically
on case-control study designs in the context of biomarker discovery and the issues relating
to contamination of cases within the control group. To our knowledge we are also the first to
assess the impact of label uncertainty on prediction performance as described by the
commonly used Receiver Operating Characteristic (ROC) curve, and the impact on meta-
analysis estimates when the level of label uncertainty varies between studies.

Throughout this note we show results from logistic regression although the procedures we
adopt are generic to other standard classification models. A software implementation for R13

of the logistic regression model accounting for label uncertainty is available for free under
GPL v3 license (https://sourceforge.net/projects/labelu/files/).

Methods
In this section vectors are indicated by lower-case bold font, matrices by upper-case bold
font and scalars in italic. We suppose that we have measured a set of k biomarkers on n
individuals and we use xij to denote the jth biomarker measurement on the ith individual, j =
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1,…,k, i = 1,…,n and we use xi = {xi1,…,xik} to denote the panel of biomarker
measurements on individual i. Each individual is assigned a class label yi = 1 or yi = 0
depending on their case or control status respectively. The problem can be formulized as
follows, let zi denote the true, possibly future, case status of individual i. Then Pr(zi = 1|yi =
1) = 1 whereas Pr(zi = 0|yi = 0) < 1, in words, the probability of being a true case given you
are labeled a case is 1 but the probability of being a true control (‘never case’) given you are
labeled a control is less than 1, equivalently Pr(zi = 1|yi = 0) > 0. Clearly in biomarker
discovery we wish to estimate Pr(zi = 1|xi), the true risk of disease given a biomarker
measurement, but if instead we use a model of Pr(yi = 1|xi) then the predictive risk will be
biased downwards. Intuitively this can be seen by imagining a situation where you take
some of your cases and artificially re-label them as controls and then re-fit your predictive
model. This will clearly underestimate risk. In a sense this is the situation we are dealing
with when the ascertainment of controls is uncertain.

Let P represent the re-labeling probability, for example the background prevalence of the
disease within the population. When P is known efficient model fitting procedures using the
Expectation-Maximization (EM) algorithm exist,14 and can be used within a variety of
standard statistical models such as logistic regression,15 naive Bayes,16 or Linear
Discriminant Analysis.17 The EM algorithm works by iteratively re-fitting the model to re-
weighted samples, where at each iteration each control individual is given a weight in
proportion to the evidence that they are in fact a case; defined as their predicted case-control
status times their prior case-control status, ∞ Pr(zi = 1|yi = 0,xi) × Pi. The probability status
of each sample is then used to re-weight the model fit. This process repeats until the weights

and estimates of effects converge after which we have an individual probability , the
posterior probability that the ith individual is a case given the information in the data and the
prior probability P. Note that when we have no uncertainty in the control label we have Pi =
0. In this paper we show results from the commonly used logistic regression model with
label uncertainty fitted by EM. The procedure for fitting the logistic regression model with
label uncertainty using EM is outlined in Algorithm 1. The labels are treated as the unknown
variables, where y is the vector of class labels of dimension [n × 1] and X is the matrix of
descriptor variables of dimension [n×k]. Here we initialize the coefficients β = 0, but β
could also be initialized using a preliminary estimate using e.g. conventional logistic
regression. We recommend choosing P based on available population incidence data, for
example if 5% of the population is expected to have the disease P would be set to 0.05.

Bias in predicted risk, Pr(yi = 1|xi), due to mislabelling will not directly impact the ROC
curve as it depends on the rank of the predictions. However, the estimated optimal
classification boundary will be miscalibrated. Such miscalibration of the decision boundary
will have an impact on future predictions and in evaluation of prediction performance using
an external test data set or crossvalidation, resulting in a negative bias in the ROC curve. In
both the case of cross-validation and evaluation of an external test data set we also expect
mislabelled observations in the test set, which will directly impact upon the classification
performance evaluation. To account for mislabelling in test set observations when
evaluating the prediction performance, the test set class labels can be updated by repeated

draws from the Bernoulli distribution using the posterior predictive risk, ,
and the ROC curved averaged over these samples. By updating the test set class label we
allow label uncertainty to be taken into account when evaluating the prediction performance,
thus reducing (downward) bias in the ROC curve that would otherwise be present.
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Results
Bias in predicted risk

The first scenario we consider is bias in predicted risk. Figure 1 show the effect on fitting a
logistic regression model under four modelling scenarios: (A) using the true (unobtainable)
labels to provide a reference benchmark; (B) if we was to simply ignore the mislabelling;
(C) if we account for mislabelling using a non-Bayesian approach; (D) if we use a Bayesian
approach incorporating a prior probability distribution on model coefficients. Data were
generated from two normal densities with a shift in mean and with the same variance (~ N(μ
= 0,σ2 = 1) (controls) and ~ N(μ = 2.56,σ2 = 1) (cases)) for the true cases and controls, and
where each control subject has a 10% probability of coming from the case conditional
distribution. In each one of 10000 simulation rounds 100 samples from the control
conditional distribution and 100 samples from the case conditional distribution was drawn.
The class separation corresponds to a 10% misclassification rate under the true model and
with no mislabelling. Figure 1 shows the true risk (x-axis) versus the predicted risk (y-axis)
with 95% confidence intervals obtained by repeated resampling, Figure 1A illustrate the
‘oracle’ situation with no mislabelling. If we simply ignore the mislabelling, we can observe
a clear downward bias in Figure 1B. For example, we can see that an individual who is at
80% risk of disease has an expected predicted risk of around 60% but could be as low as
50%.

It is underappreciated that standard statistical model fitting can address this problem and
accommodate control mislabelling so long as the prior probability of a control becoming a
case is known with reasonable precision. In many situations of biomarker discovery studies,
the proportion of controls that may be (future) cases is expected to be well known; for
example if controls are sampled from a normal human population (population-wide disease
risk being known), or in the case of matched controls (e.g. gender, age, body mass index) the
conditional disease risk is also likely to be well established. Figure 1C shows the same plot
as for the data in Figure 1B but when using the EM correction. We can clearly see that the
bias has been removed.

While the EM algorithm removes bias it can give rise to an increased variance of Pr(zi = 1|yi
= 1), which is partly due to instability in the EM algorithm under some conditions, resulting
in overly large (or small) estimates. By placing a suitable prior distribution on the logistic
regression coefficients, increased stability of the EM results can be achieved. In many
biomarker studies the range of realistic effect sizes is usually known, allowing us to specify
a suitable prior distribution on the model coefficients. For example, if the measurement x is
standardised to unit variance, it would be very rare for a biomarker to exhibit an effect
greater than 2 on the log-odds scale, i.e. a 7-fold change in risk for a unit change in x. Here
we place a Gaussian prior with μ = 0 and σ2 = 2 on the logistic regression coefficients (σ2 =
105 for the constant term). Figure 1D show how the bias is eliminated, while the overly wide
confidence intervals observed for the standard EM algorithm (Figure 1C) has also been
reduced. In corresponding simulations with N=20 and N=50 observations in each class (see
Supplementary Online Material) we also observed consistently tighter confidence intervals
for the Bayesian model compared to the EM model.

Model calibration and prediction performance estimates
The second scenario we consider is the evaluation of model prediction performance.
Receiver operating characteristic (ROC) curves are a common method to visualize and
characterize the performance of a classifier via the trade-off between sensitivity (true
positive rate) and specificity (true negative rate). In biomarker discovery studies,
classification performance of a biomarker panel in the discovery phase is often central to
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decision making regarding further investment in research and development of the biomarker
panel. In particular when the objective is to discover biomarker panels with clinical
applications, for example in clinical diagnostics, the classification performance of the model
needs to have sufficiently high sensitivity and specificity to be viable. Class label
uncertainty in data may, however, lead to underestimation of the classification performance,
and may therefore subsequently lead to a premature termination of research and
development efforts.

By allowing for label uncertainty also when evaluating the prediction performance we can
reduce (downward) bias in the ROC curve. Figure 2A shows that the estimated ROC curve
from the model incorporating label uncertainty and where the label uncertainty is also taken
into account in test data set when estimating the ROC curve. It is clear that ROC curve is
almost perfectly overlaid with the ‘oracle’ result (no label uncertainty and a conventional
logistic regression model), indicating that by accounting for label uncertainty in the model
and when estimating the ROC curve we can reduce downward bias in the ROC curve.
Figure 2B shows the estimated ROC curve when ignoring control mislabelling, clearly
indicating a substantially reduced estimate of prediction performance compare to the
‘oracle’ situation. This data set was simulated to provide 0.9 sensitivity and specificity in the
case of no mislabelling, and we note that the estimated sensitivity at 0.9 specificity, when
ignoring mislabelling, is here estimated as low as ~ 0.7. Corresponding results from
simulations with N=20 and N=50 observations in each class can be found in the
Supplementary Online Material.

Meta-analysis
The third scenario we consider for which label uncertainty may have adverse effects is meta-
analysis. Meta-analysis is increasingly applied in the area of genomic epidemiology and
genetics to aggregate information across multiple studies. The typical example, which we
consider, is meta-analysis of parameter estimates across two or more studies. Bias in
parameter estimates due to case-control mislabelling will bias meta-analysis estimates,
particularly if the levels of label uncertainty varies between the included studies. An
example of when this can occur is when results from a highly curated study with no
mislabelling is combined with a second study where samples are sourced from the general
population where a known proportion of mislabelled control individuals is expected, i.e.
undiagnosed disease cases. In this instance the latter model’s regression coefficients will be
biased towards zero, consequently meta-analysis estimates across the two studies will also
tend to a smaller estimate, leading one to falsely conclude that the biomarker has less of an
effect than it does. In Figure 3 results are shown from two simulated data sets (10000
simulation rounds) of the same size, simulated from the same distribution as in previous
sections, with the only difference that data set D1 has 10% mislabelled controls while D2
does not have any mislabelling. In the top panel (A) the parameter estimate is displayed for
the scenario where we know the true class labels (i.e. the unobtainable ‘oracle’ model),
using a conventional logistic regression model. In the middle panel (B) we observe that the
effect size estimate for D1 data set is negatively biased due to mislabelling, as is the meta-
analysis estimate. The lower panel (C) displays the results from a model allowing for label
uncertainty resulting in eliminating of downward bias.

Conclusions
To summarize we have shown that accounting for, possibly prospective, control mislabelling
in case-control studies can remove substantial downward bias in estimates of effect sizes and
hence predictive risk. We have demonstrated how accounting for label uncertainty in
prediction performance, particularly ROC curves, can reduce downward bias otherwise
observed under mislabelling. Accurate prediction performance estimates are of uttermost
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importance in many applications, including biomarker discovery studies using ‘omics’
platforms. Underestimation of prediction performance may lead to premature termination of
further validation and development of biomarker panels not passing predefined performance
thresholds required, for example in the case of clinical biomarker panels. We also note that
accurately taking into account label uncertainty is important in meta-analysis across studies
with potentially different levels of mislabelling.

Control mislabelling is a problem arising mainly under two conditions, when the control
subjects are sampled from the general population (e.g. biobanks and cohort studies) and
when there is uncertainty in diagnosis due to e.g. low sensitivity in available diagnostic
tests.18 Currently the capacity to profile large sets of samples using omics technologies is
increasing through technological developments while large sample collections are also
becoming increasingly available through biobank efforts.7,19 These general trends make us
believe that we will likely have an increase in population based biomarker studies over time,
where uncertainty in case-control labels should ideally be accounted for in order to
maximize the outcome of such studies.

Another interesting aspect not covered here but which can impact the mislabelling rate is
when the predictive interval of the model is greater than the age-profile of the sample. In this
situation the control set may contain future prospective cases. The ideal scenario would be to
follow the controls over time, in a prospective manner, or to revalidate the individual control
status at a series of intervals. In the instance of cohort based studies as well as biobank based
studies, where sample collections may be used in several different sub-studies, relabelling
which requires diagnostic tests may not be possible to carry out arbitrarily frequently for
practical reasons. In such instances it would be desirable to have a revalidation frequency
proportional to the the expected probability that a control was in fact a case, so that in the
studies of more common disease, the relabelling frequency is higher than for rare disease,
and for controls with higher predicted risk are re-validated more frequently than those of
predicted low risk.

A related problem to that of label uncertainty is addressed in the field of semi-supervised
learning, where data include labelled as well as unlabelled observations. Semi-supervised
learning has previously been applied for classification problems with DNA microarray
data20 as well as for learning biological networks.21 Detection of mislabelled observations
can also be handled in a separate step prior to the statistical analysis.22

As part of this study we also investigated the impact on statistical power to discover
predictive biomarkers. Interestingly, detecting which biomarkers have no predictive effect is
not impacted by mislabelling, due to a bias-variance trade off. But as we have shown, once a
biomarker has been flagged as having a non-zero effect, accurately estimating how
predictive it is can be strongly influenced by mislabelling.

We conclude that the benefits of accurately accounting for label uncertainty is substantial in
biomarker discovery studies, and include reduced bias in model coefficients, in predicted
risk, in prediction performance evaluation and in meta-analysis. As such we believe these
methods are important to researchers working in biomarker discovery and deserve to
become common best practice.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Synopsis

Uncertainty associated with case and control labels are often overlooked in biomarker
discovery studies. By omitting to take into account label uncertainty, model parameters
and the predictive risk can become biased. We focus on the problem of mislabelled
control subjects in case-control studies and outline how conventional statistical models
can be modified to address class label uncertainty, leading to well-calibrated prediction
performance estimates and reduced bias in meta-analysis.
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Figure 1.
Bias in predicted risk under 10% mislabelling. Each panel show the predicted risk (median
(black line) and 95% confidence interval (dashed line) from resampling (10000 samples))
plotted against the true risk. A) Conventional model and data with no mislabelling. B)
Conventional model and data with 10% mislabelling of controls. C) EM model with 10%
mislabelling of controls D) Bayesian model with 10% mislabelling of controls.
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Figure 2.
The impact of class label uncertainty on prediction performance evaluation. The ROC curve
represent the median across 10000 simulation rounds. A) ROC curve for a model
incorporating label uncertainty (blue) and ROC curve estimated from a data set with no
mislabelling (black). B) ROC curve for a conventional model (red) and ROC curve
estimated from a data set with no mislabelling (black).
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Figure 3.
The impact of class label uncertainty on meta-analysis. Parameter estimates for data set 1
(D1) with 10% mislabelling, data set 2 (D2) having no mislabelling, and a meta-analysis of
D1 and D2. In this example the Bayesian model (C) has a relatively flat prior distribution
(N(μ = 0,σ2 = 105) on the coefficients to allow for comparison with the other two models.
A) Estimates from a conventional logistic regression model for meta-analysis of D1 and D2
with no mislabelling in either data set. B) Parameter estimates and meta-analysis estimates
for a conventional logistic regression model with 10% mislabelled data in D1. C) Parameter
estimates and meta-analysis estimates for the Bayesian logistic regression model accounting
for control mislabelling and with 10% mislabelled data in D1. The circles indicate the
median parameter estimate from 10000 simulations and the error bars show the 95%
confidence interval.
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