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Abstract
We consider the semiparametric proportional hazards model for the cause-specific hazard function
in analysis of competing risks data with missing cause of failure. The inverse probability weighted
equation and augmented inverse probability weighted equation are proposed for estimating the
regression parameters in the model, and their theoretical properties are established for inference.
Simulation studies demonstrate that the augmented inverse probability weighted estimator is
doubly robust and the proposed method is appropriate for practical use. The simulations also
compare the proposed estimators with the multiple imputation estimator of Lu and Tsiatis (2001).
The application of the proposed method is illustrated using data from a bone marrow transplant
study.
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1. Introduction
Competing risks data are commonly encountered in medical studies. Typically the responses
to a treatment can be classified in terms of failure from disease of interest or from non-
disease-related causes. Hence, in the competing risks framework, each individual is exposed
to K distinct types of risks and the eventual failure can be attributed to precisely one of the
risks. Let T* denote the time to failure, Δ* the cause of failure, and Z a p-dimensional vector
of possibly time-dependent covariates. Then a principal estimable quantity in competing
risks data is the cause-specific hazard function of cause k, defined, in the absence of
censoring, by
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which is the instantaneous rate of experiencing the event of type k at time t, having not
experienced any of the K competing events until time t. Without loss of generality in our
study, we consider only two causes of failure, the cause of interest as cause 1 and the other
as cause 2 (i.e. Δ* = 1 or 2). In many applications involving follow-up studies, however,
individuals may be subject to censoring. Let C be a censoring time and ,
where  and  denote the latent failure times from causes 1 and 2, respectively. Then the
observed data consist of observations of (T, Δ, Z), where T = min(T*, C) and Δ = Δ*I(T* ≤
C). If the failure time T* is observed, Δ is the cause of failure and Δ = 0 otherwise. The
observable cause-specific hazard function of cause k in the presence of censoring is given by

Throughout the paper, we assume that Z is an external covariate process (Kalbfleish and
Prentice, 2002) and the censoring time C is conditionally independent of (T*, Δ*) given Z
(Lu and Tsiatis, 2001; Gao and Tsiatis, 2005; Lu and Liang, 2008). Under this assumption, it
can be shown that  if the distribution of C is continuous at t. A number of
statistical models for the relationship between the cause-specific hazard function of interest
and regression covariates have been studied, among others, by Benichou and Gail (1990);
Prentice et al. (1978); Cheng et al. (1998); Shen and Cheng (1999); Scheike and Zhang
(2003). In this article we study the proportional hazards model for describing the
relationship,

(1)

where λ0(·) is a nonnegative, but otherwise unspecified baseline hazard function and β0 is a
p-dimensional vector of regression parameters. The parameter β0 can be consistently
estimated by treating all the failure times with Δ ≠ 1 as censored observations and using the
partial likelihood score equation proposed by Cox (1972, 1975). The estimator will be called
the full-case estimator, denoted by β ̂F in the paper.

In practice, however, the information needed for the cause of failure may be lost, or it may
be difficult to determine the cause of disease or death for some individuals (Andersen et al.,
1996). When we have missing causes in data, a naive method for estimating the regression
parameter β0 is to simply ignore the missing data and use the partial likelihood score
equation to the complete data only. The so-called complete-case estimator, denoted by β ̂C, is
clearly inefficient and can lead to serious bias. Thus, analysis of competing risks data with
missing cause of failure has received considerable attention and a number of models have
been proposed. Dinse (1982, 1986) considered nonparametric estimation for incomplete
cause of death data with no covariate. Goetghebeur and Ryan (1990) proposed a modified
log-rank test to compare survival in two groups, Dewanji (1992) suggested a modification of
that approach, and Goetghebeur and Ryan (1995) extended the results of Goetghebeur and
Ryan (1990) to proportional hazards regression model. More recently, Lu and Tsiatis (2001)
proposed a parametric model to model the probability that the missing cause is the cause of
interest while allowing the inclusion of additional auxiliary covariates and then estimated
the regression parameters by using a multiple imputation method (Rubin, 1987, 1996). Gao
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and Tsiatis (2005) considered linear transformation models and Lu and Liang (2008)
considered the additive hazards model for analysis of competing risks data with missing
cause of failure.

For right-censored survival data in which the censoring indicator is missing, Lo (1991)
considered the problem of nonparametric maximum likelihood estimation of a survival
function in the absence of covariates, McKeague and Subramanian (1998) developed a
survival function estimator assuming that the censoring indicators are missing completely at
random. Subramanian (2000) considered further development of efficient estimation of the
regression parameters under proportionality assumptions of the conditional hazards, and
Gijbels et al. (2007) proposed a class of estimating functions for the regression parameters
of the Cox proportional hazard model, among others.

In this study of analysis of competing risks data with missing cause of failure, we derive two
different estimators for the regression parameters in model (1), namely the inverse
probability weighted estimator and augmented inverse probability weighted estimator, and
establish their theoretical properties. The first approach, following the idea of Horvitz and
Thompson (1952), uses the inverse probability weighted complete-case technique to
estimate the regression parameter. This approach uses only the complete cases and relies on
correct modeling for the probability of missing causes. It has been shown that the inverse
probability weighted estimator is inconsistent when the respective parametric model is
misspecified, and is inefficient (Gao and Tsiatis, 2005; Lu and Liang, 2008; Scharfstein et
al., 1999). It would be desirable, therefore, to obtain improved efficiency over the inverse
probability weighted estimator. The second approach, adapting the idea of Robins et al.
(1994), augments the inverse probability weighted complete-case estimating equation with a
consistent estimator of the conditional distribution of the cause of interest that incorporates
information available for individuals whose cause of failure is missing. See Subramanian
and Bandyopadhyay (2010) for homogeneous right censored data with missing censoring
indicators.

The paper is structured as follows. In Section 2, the inverse probability weighted estimator
and augmented inverse probability weighted estimator are developed. The asymptotic
properties of the corresponding estimators are established in Section 3. In Section 4, we
investigate the finite sample properties of the proposed estimators through simulations,
including comparisons with the multiple imputations estimator proposed by Lu and Tsiatis
(2001). A bone marrow transplant data set is analyzed in Section 4. Some conclusions and
discussions are given in Section 5. Technical derivations are detailed in Appendix.

2. Estimating equations
Since the cause of failure may not be observed for some individuals, we define the
missingness indicator R as follows. If an individual’s death is observed, then R = 1 when the
cause of failure information Δ* is observed and R = 0 otherwise. If an individual is censored,
we always define R = 1. We also introduce auxiliary covariates A which are not of interest
for modelling the cause-specific hazard function but may be used to describe the
missingness mechanism. The utilization of auxiliary information has been considered by Lu
and Tsiatis (2001), Gao and Tsiatis (2005), Lu and Liang (2008), Gilbert, McKeague, and
Sun (2008), among others. Then the observed data will consist of
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for i = 1, …, n. We assume that {Oi, i = 1, …, n} are independent identically distributed.
The possible choices are {Ti, Zi, Ai, 1, 0, 1, 0} for the individual who died from the cause 1,
{Ti, Zi, Ai, 1, 0, 0, 1} for the individual who died from the cause 2, {Ti, Zi, Ai, 0, 0, 0, 0} for
the individual who died with missing cause, and {Ti, Zi, Ai, 1, 1, 0, 0} for the censored
individual.

We also assume that the cause of failure is missing at random (MAR) (Rubin, 1976); that is,
the probability that the cause of failure is missing given Δ > 0 and W = (T, Z, A) depends
only on the observed W, but not on the unobserved Δ,

(2)

The assumption implies that

and likewise for the case involving Δ = 2. See also Lu and Tsiatis (2001), Gao and Tsiatis
(2005), and Lu and Liang (2008).

2.1. Inverse probability weighted estimator
Following the inverse selection probability idea of Horvitz and Thompson (1952), the
method of inversely weighting the probability of complete-case has been commonly used in
missing data problems. To do that, we need to estimate the probability of a complete case,
π(Q) ≡ P (R = 1|Q), where Q = (W, Δ). By the MAR assumption and R = 1 when Δ = 0, we
have

(3)

where r(W) = P (R = 1|W, Δ > 0). We consider that the probability of complete-case r(Wi)
may be specified as a parametric model r(Wi, ψ0), in terms of a few unknown parameters ψ0.
Accordingly, let π(Qi, ψ0) = r(Wi, ψ0)I(Δ > 0) + I(Δ = 0). Since R is binary, one can posit the
logistic model , though other parametric models can also be used. By
(2) and (3), the likelihood L regarding to π(Q, ψ0) is
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This implies that the maximum likelihood estimator ψ ̂ of ψ can be estimated by maximizing
the likelihood based on uncensored data

It is known that for a correctly specified model r(Wi, ψ), ψ ̂ consistently estimates ψ0, the true
value of the parametric component of r(Wi, ψ) (Haberman, 1974, 1977; Gourieroux and
Monfort, 1981).

We define the counting process Ni(t) = I(Δi = 1)I(Ti ≤ t) and at-risk process Yi(t) = I(Ti ≥ t).
Let a⊗0 = 1, a⊗1 = a, and a⊗2 = aa⊤ for a vector a. Let

for m = 0, 1, 2. Then we consider the following inverse probability weighted estimating
equation for β0:

(4)

where τ > 0 is the end of follow-up time. The inverse probability weighted estimator (IPW)
of β solves the above equation and is denoted by β ̂I. When there is no missing cause, the
equation (4) consequently becomes the partial likelihood score equation proposed by Cox

(1972, 1975). The cumulative baseline hazard function  can be estimated
by

2.2. Augmented inverse probability weighted estimator
The inverse probability weighted estimator β ̂I uses only complete cases. Thus, it is
inefficient. In addition, its consistency relies on correct modelling of the probability r(Wi,
ψ0). To improve the robustness and efficiency over β ̂I, we adapt the idea of Robins et al.
(1994) and propose to augment the inverse probability weighted estimating equation with a
consistent estimator of the conditional distribution of the cause of interest that utilizes
available information for individuals with missing cause of failure.

Consequently, we estimate the probability that the cause of failure is the cause of interest
ρ(W) ≡ P (Δ = 1| Δ > 0, W). Let f(t, Δ = 1| Δ > 0, z, a) be the conditional joint density of T
and Δ = 1 given (Δ > 0, Z = z, A = a). Then for w = (t, z, a),
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where λ̃k(t|z, a) is the conditional cause-specific hazard function of T at t due to cause Δ = k
given (Z, A) = (z, a) for k = 1, 2. Here, instead of directly estimating ρ(Wi) which requires
the estimation of two unknown cause-specific hazard functions, we posit a parametric model
ρ(Wi, γ0) for ρ(Wi) in terms of a few unknown parameters γ0. It is natural to use a logistic
regression model , but other parametric models can also be
accommodated.

There is, however, an issue with obtaining estimates for γ in the presence of missingness.
The MAR assumption implies that given Δ > 0 and W, R is independent of Δ; that is,

(5)

By (5), ρ(Wi) can be deduced from the complete cases with Ri = 1 and Δi > 0. This suggests
that the maximum likelihood estimator γ ̂ of γ can be obtained by maximizing the likelihood
based on complete-case data

Since γ ̂ is the maximum likelihood estimator, then for a correctly specified model ρ(Wi, γ), γ ̂
consistently estimates γ0, the true value of the parametric component model ρ(Wi, γ)
(Haberman, 1974, 1977; Gourieroux and Monfort, 1981).

Now, we define the counting process . Let

Then we propose the following augmented inverse probability weighted estimating equation

(6)

where ψ ̂ and γ ̂ are the maximum likelihood estimators defined earlier. The augmented
inverse probability weighted estimator (AIPW) of β solves the above equation (6) and is
denoted by β ̂A. The cumulative baseline hazard function can be estimated by
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3. Asymptotic results
When the model for r(Wi) is correctly specified, we let ψ0 be the true value of ψ such that

r(Wi) = r(Wi, ψ0). Under Condition (A.4) stated in the Appendix, . When the model
for ρ(Wi) is correctly specified, we let γ0 be the true value of γ such that ρ(Wi) = ρ(Wi, γ0). In

this case, . In general, under Condition (A.4), there exist ψ* and γ* such that 

and  (White, 1982). We have ψ* = ψ0 if r(Wi) is correctly specified, and γ* = γ0 if
ρ(Wi) is correctly specified.

Let s(m)(t, β) = E[Y1(t)eβ⊤Z1(t) Z1(t)⊗m], z ̄(t, β) = s(1)(t, β)/s(0)(t, β), and v(t, β) = s(2)(t, β)/
s(0)(t, β) − z ̄(t, β)⊗2.

Theorem 1
Assume Condition A given in the Appendix. If r(Wi, ψ0) is correctly specified for r(Wi),

then  and  converges in distribution to a zero-mean Gaussian random

vector with covariance matrix , where

, Vψ is given in (8), Iψ and Sψi are given in (11) in the
Appendix.

The asymptotic covariance matrix  can be consistently estimated by

where

and . Here V̂ψ, Îψ and Ŝψi are obtained by replacing with
their respective sample estimators and substituting (β ̂I, ψ ̂) for (β0, ψ0) in Vψ, Iψ, and Sψi.
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The following establishes the asymptotic properties of β ̂A.

Theorem 2
Assume Condition A given in the Appendix. If at least one of r(Wi, ψ0) and ρ(Wi, γ0) is

correctly specified for r(Wi) and ρ(Wi), then  and  converges in
distribution to a zero-mean Gaussian random vector with covariance matrix

, where

and

Here M*(t) is defined in (17), and Pψ, , Pγ,  and  are given in (15) and (19) in the
Appendix.

It is interesting to notice that if r(Wi, ψ0) = r(Wi), then Pγ = 0, and if ρ(Wi, γ0) = ρ(Wi), then
Pψ = 0. When both the models for r(Wi) and ρ(Wi) are correctly specified, we have Pψ = 0

and Pγ = 0 and hence, .

The asymptotic covariance matrix  can be consistently estimated by

where

and
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Here P̂ψ, , P̂γ,  and  are the empirical counterparts of Pψ, , Pγ,  and 
given in (15) and (19) in the Appendix, obtained by replacing with their respective sample
estimators and substituting (β ̂A, ρ̂, γ ̂) for (β0, ψ*, γ*).

4. Numerical results
4.1. Simulation studies

We present simulation studies conducted to evaluate the performance of our proposed
methods. We set τ = 2.0 and consider a univariate covariate Z, where Z follows a uniform
distribution on [0, 1]. Given Z, the latent failure time  of interest is generated from the
proportional hazards model , where λ = 1 and β = −0.5. The other latent failure
time  is generated from a Gompertz distribution with a hazard function ,
where θ = −0.5 and ν = 0.2. The censoring time C is generated from an exponential
distribution which yields about 20% censoring level. We consider a single auxiliary
covariate A which follows a Bernoulli distribution with success probability of 0.5. We also
consider a logistic regression model logit{r(W, ψ)} = ψ1 + ψ2T + ψ3Z + ψ4A for missing
cause of failure. We have about 20% missingness with ψ = (0.7, 1, −1, 1) and about 45%
missingness with ψ = (−0.8, 1, −1, 1). In the settings we consider here, the true model ρ(W)
is given by a logistic regression model logit{ρ(W)} = −θ − νT +βZ. To study the
performance of the estimators when r(W) is misspecified, we posit two different parametric
models of r(W, ψ), where one is a correctly specified logistic model and the other is a
misspecified constant model r0 ∈ (0, 1) independent of W. To study the behavior when ρ(W)
is misspecified, we consider various model specifications. We posit a correctly specified
logistic model logit{ρ(W, γ)} = γ1 + γ2T + γ3Z (Model 1), a misspecified logistic model
logit{ρ(W, γ)} = γ1 + γ2Z (Model 2), a misspecified logistic model logit{ρ(W, γ)} = γ1 + γ2T
(Model 3) and a misspecified constant model ρ0 ∈ (0, 1) independent of W (Model 4). The
simulation studies consist of 1000 runs with the sample size n = 200 and n = 400. We also
conduct comparison with the multiple imputation estimators, studied by Lu and Tsiatis
(2001), with the number of imputation m = 1 and m = 5.

The results from Table 1 and Table 2 show that the complete-case estimator β ̂C shows large
biases in all the settings. When the parametric model for r(W) is correctly specified, both the
IPW estimator β ̂I and AIPW estimator β ̂A show small biases, but the AIPW estimator has
smaller standard errors than the corresponding IPW estimator. When the parametric model
for ρ(W) is correctly specified, the multiple imputation estimator has small biases, but the
multiple imputation estimator tends to have larger biases when ρ(W) is misspecified. As
expected, the AIPW estimator is clearly not sensitive to the misspecification if one of the
parametric models for r(W) and ρ(W) is misspecified. In fact, the AIPW estimator performs
quite well even when both the parametric models r(W) and ρ(W) are misspecified. The
standard errors of the multiple imputation estimator decrease as the number of imputation
increases. The standard errors of the multiple imputation estimator and the AIPW estimator
are comparable when ρ(W) is correctly specified. However, the multiple imputation
estimator seems to have small standard errors than the AIPW estimator under misspecified
ρ(W). The estimated standard errors of the AIPW estimator are close to the sample standard
errors, and the 95% confidence intervals have reasonable coverage probabilities.

To further study robustness of parameter estimates against misspecification of the
parametric models for r(W) and ρ(W), we consider the same model for  as described
above, but here instead we generate  from a Weibull distribution, log logistic distribution,
exponential power distribution and gamma distribution. None of these distributions will
induce a simple linear logistic regression model for ρ(W). For example, when  is generated
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from a log logistic distribution with a hazard function , the true
logistic model for ρ(W) is logit{ρ(W)} = −log(α) − log(λ) + βZ + log ((1 + λTα)/Tα−1). In all
cases we misspecify ρ(W) by Model 1 to Model 4 described above. Although not presented
here, the findings from these simulations are similar to those from Table 1 and Table 2.

In conclusion, the multiple imputation estimator of Lu and Tsiatis (2001) and the AIPW
estimator have similar performance when the parametric models for r(W) and ρ(W) are
correctly specified. The AIPW estimator has the advantage of double robustness such that
the biases of the AIPW estimator remain small when the parametric model for r(W) or ρ(W)
is misspecified. The bias of the multiple imputation estimator can be larger under
misspecified ρ(W).

4.2. Bone marrow transplant data
Sierra et al. (2002) described the characteristics and outcomes of 452 patients with primary
myelodysplasia (MDS) who received transplants from HLA-identical siblings and were
registered with the International Bone Marrow Transplant Registry (IBMTR). The study has
two competing risks; treatment related death defined as death in complete remission and
relapse defined as recurrence of myelodysplasia. In this example, we consider 408 patients
with complete covariate information obtained from the timereg package for R. Among these
408 patients, 161 patients died in complete remission, 87 patients relapsed, and 160 patients
were censored. The covariates considered in our study are age of patient standardized at
mean of 35 years old and platelet before transplantation (1 for more than 100 × 109 per L, or
0 for less). In the data set, the causes of failure are all known. For illustration purposes, we
delete some failure causes by the three following missing mechanisms; missing completely
at random (MCAR), missing at random (MAR), and not missing at random (NMAR).

For the MCAR, the causes of failure are randomly selected for missing with probability
23%. For the MAR, the logistic model is chosen as logit{r(W)} = 0.5 + 1.0 * T − 1.0 * age
which yields about 23% missing causes, where T is the failure time. For the NMAR, the
logistic model is chosen as logit{r(W)} = 0.5+1.0*T −1.0*age−0.5*I(Δ = 1) which yields
about 26% missing causes, where Δ = 1 corresponds to the death in complete remission and
Δ = 2 does to relapse. We posit the logistic models for both r(W) and ρ(W) with logit{r(W,
ψ)} = ψ1 + ψ2 * T + ψ3 * age + ψ4 * platelet and logit{ρ(W, γ)} = γ1 + γ2 * log T + γ3 * age +
γ4 * platelet.

The results of the estimation of β based on the AIPW estimator, the complete-case estimator
and the multiple imputation estimator with the number of imputation m = 5 are summarized
in Table 3. For comparison, Table 3 also includes the estimation of β based on the original
data without artificial missing, namely, the full-case estimator. The results from the AIPW
estimator and the multiple imputation estimator are very close under all the missingness
mechanisms and they are closer to the full-case estimator than the complete-case estimator.
The analyses using the AIPW estimator and the multiple imputation estimator are consistent
with the findings from the earlier study; that is, patients with high platelet counts have a
lower risk of treatment related mortality than those with low platelet counts, and a higher
risk rate is seen among the older patients.

5. Conclusion
We propose the inverse probability weighted estimator and augmented inverse probability
weighted estimator for analysis of competing risks data with missing cause of failure, where
the Cox proportional hazard model is utilized to examine the covariate effects on the cause-
specific hazard function for the failure type of interest. The augmented inverse probability
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weighted estimator posses the double robust property such that it is unbiased as long as one
of the parametric models for r(W) and ρ(W) is correctly specified. The inverse probability
weighted estimator is unbiased only when the parametric model for r(W) is correctly
specified. Under the correctly specified models for r(W) and ρ(W), the augmented inverse
probability weighted estimator is more efficient than the inverse probability weighted
estimator.

The proposed estimators are compared with the multiple imputation estimator of Lu and
Tsiatis (2001) through simulations. The multiple imputation estimator and augmented
inverse probability weighted estimator have similar performance when the parametric
models for r(W) and ρ(W) are correctly specified. The augmented inverse probability
weighted estimator has the advantage of the double robustness over the multiple imputation
estimator.

In the competing risks problem, another useful quantity is the cumulative incidence function
which is the probability of occurrence by time t for a particular type of failure in the
presence of other risks. It is known that the covariate effect on the cause-specific hazard for
a particular type of failure can be quite different from its effect on the cumulative incidence
function of that type of failure (Gray, 1988; Gaynor et al., 1993). Fine and Gray (1999)
developed a direct Cox regression approach for the cumulative incidence curve based on
earlier work by Gray (1988) and Pepe (1991). Recently, Andersen et al. (2003) and Klein
and Andersen (2005) suggested pseudo-observation approach for direct modeling for
cumulative incidence probabilities. It would be interesting to study models that relate the
covariates directly to the cumulative incidence function for the failure type of interest in
competing risks data with missing cause of failure.
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Appendix

Condition A
(A.1) λ0(t) is continuous on [0, τ]. The distribution of C is continuous on [0, τ] and P

(C > τ) > 0. The covariate processes Zi(t) have paths that are left continuous and
of bounded variation, and satisfy the moment condition E[||Zi(t)||4 exp(2M||
Zi(t)||)] < ∞, where M is a constant such that β ∈ [−M, M]p and ||A|| = maxk,l |akl|
for a matrix A = (akl).

(A.2) Each component of s(j)(t, β) is continuous on [0, τ] × [−M, M]p for M > 0, j = 0,
1, 2 and s(0)(t, β) > 0 on [0, τ] × [−M, M]p. supt∈[0,τ],β∈[−M,M]p ||S(j)(t, β) − s(j)(t,
β)|| = Op(n−1/2), and supψ∈[−L,L]q supt∈[0, τ],β∈[−M,M]p ||S̃(j)(t, β, ψ) − s(j)(t, β)|| =
Op(n−1/2) for j = 0, 1, 2.

(A.3)
The matrix  is positive definite.

(A.4) There is a σ > 0 such that r(Wi) ≥ σ for all i with Δi > 0. Both r(Wi, ψ) and ρ(Wi,
γ) are twice continuously differentiable with respect to ψ and γ, respectively.
There exist ψ* and γ* satisfying the equations  and , respectively,
where  and  are the corresponding score functions for r(Wi, ψ) and ρ(Wi, γ)
given in (19). The information matrices  and  also given in (19) are positive
definite.

Proof of Theorem 1
Consistency of β ̂I

Let ψ0 be the true value of ψ such that r(Wi) = r(Wi, ψ0) under the correctly specified model

for r(Wi). Then . Let

When r(Wi, ψ0) is the correct model for r(Wi), z̃(t, β, ψ0) = z ̄(t, β), where z̃(t, β, ψ0) is the
limit of Z ̃(t, β, ψ0). Under the conditions of Theorem 1, n−1 UI (β, ψ ̂) = ξn(β, ψ0) + Op(n−1/2)
uniformly in β ∈ [−M, M]p for M > 0.

By application of the Glivenko–Cantelli and Donsker theorems, ξn(β, ψ0) = ξ(β, ψ0) +
Op(n−1/2) uniformly in β ∈ [−M, M]p, where
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When r(Wi, ψ0) is the correct model for  by the
double expectation formula E[·] = E{E[·|Wi, Δi, Δi > 0]} and the missing at random
assumption (2). Hence

uniformly in β ∈ [−M, M]p for M > 0.

Let  = σ{Ni(s), Yi(s), Zi(s), 0 ≤ s ≤ t, i = 1, …, n} be the σ-field generated by the observed
information on the failure/censoring times and covariates up to time t. Then the intensity of
the counting process Ni(t) is given by E{Ni(dt)| } = λ1(t|Zi(t))Yi(t)dt. Under the
independent censoring assumption stated in the introduction, . Hence

 is a martin-gale with

respect to . Since , it follows that

. By Condition (A.3), β0 is the unique solution to

ξ(β, ψ0) = 0. We have  by Theorem 5.9 of van der Vaart (1998).

Asymptotic Normality of β ̂I

Since UI (β ̂I, ψ ̂) = 0, , where β̃ is on the line
segment between β ̂I and β0. We have

By (A.4),  under correctly specified model for r(Wi). By Condition (A.2) and the

consistency of β ̂I,  uniformly in t ∈ (0, τ]. We have

Thus

(7)
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Let π̇(·, ψ) = ∂π(·, ψ)/∂ψ, ṙ(·, ψ) = ∂r(·,ψ)/∂ψ, r ̈(·,ψ) = ∂ṙ(·, ψ)/∂ψ⊤, and

By the Taylor expansion of UI (β0, ψ ̂) around ψ0,

Note that

where

(8)

It follows that

(9)

Since

we have

Under correctly specified r(Wi), E[Ri{π(Qi, ψ0)}−1Mi(t)] = 0. By Glivenko–Cantelli and

Donsker theorems,  converges weakly to a mean zero
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Gaussian process and  uniformly in t under the correctly specified
model for r(Wi). Applying Lemma 2 of Gilbert et al. (2008), we have

Hence

(10)

Let Sψi and Iψ be the score vector and the information matrix under the parametric model
r(Wi, ψ), respectively. Specifically,

(11)

Under (A.4),

(12)

By (9), (10) and (12), we have

(13)

where

By the central limit theorem, n−1/2UI (β0, ψ ̂) converges in distribution to a normal random
vector with zero-mean and covariance matrix .

It follows by (7) and (13) that  converges in distribution to a zero-mean Gaussian

random vector with covariance matrix .

Proof of Theorem 2
Consistency of β ̂A

Under (A.4), there exist ψ* and γ* such that  and . Let
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Under Condition A, n−1UA(β, ψ ̂, γ ̂) = ηn(β, ψ*, γ*) + Op(n−1/2) uniformly in β ∈ [−M, M]p

for M > 0.

By application of the Glivenko–Cantelli and Donsker theorems, ηn(β, ψ*, γ*) = η(β, ψ*, γ*) +
Op(n−1/2) uniformly in β ∈ [−M, M]p, where

If at least one of r(Wi, ψ0) and ρ(Wi, γ0) is correctly specified for r(Wi) and ρ(Wi), then

 by the missing at random assumption (2) and by
using the double expectation formula E[·] = E{E[·|Wi, Δi, Δi > 0]} if r(Wi) is correctly
specified and using E[·] = E{E[·|Wi, Ri, Δi > 0]} if ρ(Wi) is correctly specified. Hence

uniformly in β ∈ [−M, M] if at least one of r(Wi, ψ0) and ρ(Wi, γ0) is correctly specified for
r(Wi) and ρ(Wi). Since η(β0, ψ*, γ*) = 0 and β0 is the unique solution to η(β0, ψ*, γ*) = 0 by

Condition (A.3), we have  by Theorem 5.9 of van der Vaart (1998).

Asymptotic Normality of β ̂A

Since UA(β, ψ ̂, γ ̂) = 0, , where β̃ is on the line
segment between β ̂A and β0. We have

By Condition (A.2) and the consistency of β ̂A,  uniformly in t. Furthermore,

by (A.4),  and , we have

converges in probability to
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which equals to  if at least one of r(W) and ρ(W) is correctly
specified. Thus

(14)

Let ṙ(·, ψ) = ∂r(·,ψ)/∂ψ, r ̈(·, ψ) = ∂ṙ(·, ψ)/∂ψ⊤, ρ̇(·, γ) = ∂ρ(·, γ)/∂γ, and r ̈(·, γ) = ∂ρ̇(·, γ)/∂γ⊤.
By the Taylor expansion of UA(β0, ψ ̂, γ ̂) around ψ* and γ*,

Note that

where

(15)

It follows that

(16)

Let , and

(17)

Since , it follows that
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Similar to the arguments given above,  if at least one of r(Wi) and ρ(Wi) is
correctly specified. By application of the Glivenko-Cantelli and Donsker theorems,

 converges weakly to a zero-mean Gaussian process and 
uniformly in t. Applying Lemma 2 of Gilbert et al. (2008), we have

Hence

(18)

Let  and  be the score vector and the information matrix under the parametric model
r(Wi, ψ), respectively, and  and  the score vector and the information matrix under the
parametric model ρ(Wi, γ). Specifically,

(19)

Under (A.4),

(20)

and

(21)

By (16), (18), (20), and (21), we have

(22)

where
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By the central limit theorem, n−1/2UA(β0, ψ ̂, γ ̂) converges in distribution to a normal random
vector with zero-mean and covariance matrix .

It follows by (14) and (22) that  converges in distribution to a zero-mean

Gaussian random vector with covariance matrix .

Hyun et al. Page 20

J Stat Plan Inference. Author manuscript; available in PMC 2013 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hyun et al. Page 21

Ta
bl

e 
1

Su
m

m
ar

y 
st

at
is

tic
s o

f s
im

ul
at

io
n 

re
su

lts
 w

ith
 2

0%
 m

is
si

ng
ne

ss
 u

nd
er

 v
ar

io
us

 m
od

el
 sp

ec
ifi

ca
tio

ns
 o

f ρ
(·)

.

E
st

im
at

or

n 
= 

20
0

n 
= 

40
0

B
ia

s
SS

E
M

SE
C

P
B

ia
s

SS
E

M
SE

C
P

β̂ C
−
0.
13
6

0.
44

2
0.

44
7

96
.0

−
0.
12
9

0.
32

2
0.

31
3

92
.6

β̂ I
c

−
0.
00
7

0.
42

2
0.

42
6

96
.4

−
0.
00
2

0.
31

3
0.

29
9

93
.9

β̂ I
m

−
0.
10
7

0.
43

0
0.

43
0

96
.1

−
0.
18
2

0.
39

2
0.

38
5

92
.2

(M
od

el
 1

)
(M

od
el

 1
)

β̂ A
c

−
0.
00
5

0.
40

6
0.

41
6

96
.2

0.
00

2
0.

30
1

0.
29

2
94

.4

β̂ A
m

−
0.
00
3

0.
40

3
0.

41
1

96
.5

0.
00

3
0.

35
1

0.
34

5
95

.1

β̂ M
1

−
0.
00
3

0.
42

7
0.

43
7

96
.3

0.
00

3
0.

31
3

0.
30

6
94

.3

β̂ M
5

−
0.
00
5

0.
40

6
0.

41
9

96
.6

0.
00

5
0.

30
2

0.
29

4
94

.4

(M
od

el
 2

)
(M

od
el

 2
)

β̂ A
c

−
0.
00
5

0.
40

6
0.

41
6

96
.1

0.
00

2
0.

30
1

0.
29

2
94

.4

β̂ A
m

−
0.
00
7

0.
40

3
0.

41
2

96
.4

0.
00

1
0.

29
7

0.
29

0
94

.3

β̂ M
1

−
0.
01
2

0.
42

8
0.

43
8

96
.2

−
0.
00
3

0.
31

4
0.

30
7

94
.3

β̂ M
5

−
0.
01
1

0.
40

8
0.

42
0

96
.6

−
0.
00
1

0.
30

3
0.

29
5

94
.0

(M
od

el
 3

)
(M

od
el

 3
)

β̂ A
c

−
0.
00
4

0.
40

6
0.

41
6

96
.2

0.
00

2
0.

30
0

0.
29

2
94

.5

β̂ A
m

0.
00

5
0.

39
5

0.
40

5
96

.7
0.

01
0

0.
29

2
0.

28
6

94
.5

β̂ M
1

0.
06

1
0.

37
0

0.
38

3
96

.3
0.

06
6

0.
27

3
0.

26
9

93
.8

β̂ M
5

0.
05

7
0.

34
7

0.
36

4
96

.2
0.

06
7

0.
26

0
0.

25
5

93
.8

(M
od

el
 4

)
(M

od
el

 4
)

β̂ A
c

−
0.
00
5

0.
40

6
0.

41
6

96
.2

0.
00

2
0.

30
1

0.
29

2
94

.5

β̂ A
m

−
0.
00
1

0.
39

7
0.

40
6

96
.7

0.
00

9
0.

34
1

0.
33

6
95

.2

β̂ M
1

0.
05

6
0.

36
7

0.
38

3
96

.5
0.

06
2

0.
27

3
0.

26
9

94
.1

β̂ M
5

0.
05

4
0.

34
8

0.
36

4
96

.5
0.

06
4

0.
26

1
0.

25
6

93
.5

J Stat Plan Inference. Author manuscript; available in PMC 2013 July 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hyun et al. Page 22
B

ia
s, 

th
e 

m
ea

n 
of

 th
e 

es
tim

at
es

 o
f β

; S
SE

, t
he

 sa
m

pl
e 

st
an

da
rd

 e
rr

or
 o

f t
he

 e
st

im
at

es
 o

f β
; M

SE
, t

he
 m

ea
n 

of
 th

e 
st

an
da

rd
 e

rr
or

 e
st

im
at

es
; C

P,
 th

e 
em

pi
ric

al
 c

ov
er

ag
e 

pr
ob

ab
ili

ty
 o

f t
he

 c
or

re
sp

on
di

ng
 9

5%
co

nf
id

en
ce

 in
te

rv
al

s;
 β
̂ C

, t
he

 c
om

pl
et

e-
ca

se
 e

st
im

at
or

; β
̂ Ic

 a
nd

 β
̂ Im

, t
he

 IP
W

 e
st

im
at

or
s;

 β
̂ Ac

 a
nd

 β
̂ Am

, t
he

 A
IP

W
 e

st
im

at
or

s;
 β
̂ M

1  
an

d 
β̂ M

5 ,
 th

e 
m

ul
tip

le
 im

pu
ta

tio
n 

es
tim

at
or

s w
ith

 m
 =

 1
 a

nd
 m

 =
 5

im
pu

ta
tio

ns
. H

er
e 

c 
de

no
te

s t
he

 c
or

re
ct

ly
 sp

ec
ifi

ed
 m

od
el

 a
nd

 m
 th

e 
m

is
sp

ec
ifi

ed
 m

od
el

 fo
r r

(·)
, r

es
pe

ct
iv

el
y.

J Stat Plan Inference. Author manuscript; available in PMC 2013 July 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hyun et al. Page 23

Ta
bl

e 
2

Su
m

m
ar

y 
st

at
is

tic
s o

f s
im

ul
at

io
n 

re
su

lts
 w

ith
 4

5%
 m

is
si

ng
ne

ss
 u

nd
er

 v
ar

io
us

 m
od

el
 sp

ec
ifi

ca
tio

ns
 o

f ρ
(·)

.

E
st

im
at

or

n 
= 

20
0

n 
= 

40
0

B
ia

s
SS

E
M

SE
C

P
B

ia
s

SS
E

M
SE

C
P

β̂ C
−
0.
32
2

0.
59

5
0.

59
9

94
.0

−
0.
30
5

0.
42

0
0.

41
6

88
.1

β̂ I
c

−
0.
01
4

0.
58

3
0.

55
4

93
.7

0.
00

2
0.

41
1

0.
39

4
94

.7

β̂ I
m

−
0.
19
4

0.
56

1
0.

55
2

94
.6

−
0.
18
2

0.
39

2
0.

38
5

92
.2

(M
od

el
 1

)
(M

od
el

 1
)

β̂ A
c

−
0.
02
2

0.
54

0
0.

52
3

94
.3

0.
00

1
0.

38
0

0.
36

5
93

.4

β̂ A
m

−
0.
01
1

0.
49

3
0.

49
4

95
.8

0.
00

3
0.

35
1

0.
34

5
95

.1

β̂ M
1

−
0.
00
7

0.
53

4
0.

53
9

96
.2

−
0.
00
6

0.
37

7
0.

37
6

95
.2

β̂ M
5

−
0.
01
2

0.
50

2
0.

50
9

96
.6

0.
00

1
0.

35
6

0.
35

4
95

.1

(M
od

el
 2

)
(M

od
el

 2
)

β̂ A
c

−
0.
02
1

0.
53

9
0.

52
3

94
.0

0.
00

1
0.

37
9

0.
36

5
93

.6

β̂ A
m

−
0.
01
7

0.
49

5
0.

49
6

95
.9

−
0.
00
3

0.
35

2
0.

34
7

94
.8

β̂ M
1

−
0.
02
2

0.
53

8
0.

54
1

96
.5

−
0.
01
7

0.
37

7
0.

37
7

95
.2

β̂ M
5

−
0.
02
5

0.
50

6
0.

51
0

96
.7

−
0.
01
0

0.
35

6
0.

35
5

94
.8

(M
od

el
 3

)
(M

od
el

 3
)

β̂ A
c

−
0.
02
0

0.
53

8
0.

52
4

94
.9

0.
00

2
0.

37
9

0.
36

5
94

.0

β̂ A
m

0.
01

1
0.

46
3

0.
47

1
96

.0
0.

01
7

0.
33

8
0.

33
3

95
.1

β̂ M
1

0.
13

7
0.

36
8

0.
38

3
94

.6
0.

13
3

0.
26

6
0.

26
8

92
.3

β̂ M
5

0.
13

0
0.

32
5

0.
34

0
94

.6
0.

13
9

0.
23

7
0.

23
8

91
.1

(M
od

el
 4

)
(M

od
el

 4
)

β̂ A
c

−
0.
02
0

0.
53

6
0.

52
5

94
.6

0.
00

2
0.

37
9

0.
36

5
94

.2

β̂ A
m

0.
00

4
0.

46
9

0.
47

6
96

.2
0.

00
9

0.
34

1
0.

33
6

95
.2

β̂ M
1

0.
13

1
0.

37
1

0.
38

4
95

.2
0.

12
7

0.
26

8
0.

26
9

92
.5

β̂ M
5

0.
12

6
0.

32
7

0.
34

0
94

.7
0.

13
4

0.
23

9
0.

23
9

91
.5

J Stat Plan Inference. Author manuscript; available in PMC 2013 July 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hyun et al. Page 24
B

ia
s, 

th
e 

m
ea

n 
of

 th
e 

es
tim

at
es

 o
f β

; S
SE

, t
he

 sa
m

pl
e 

st
an

da
rd

 e
rr

or
 o

f t
he

 e
st

im
at

es
 o

f β
; M

SE
, t

he
 m

ea
n 

of
 th

e 
st

an
da

rd
 e

rr
or

 e
st

im
at

es
; C

P,
 th

e 
em

pi
ric

al
 c

ov
er

ag
e 

pr
ob

ab
ili

ty
 o

f t
he

 c
or

re
sp

on
di

ng
 9

5%
co

nf
id

en
ce

 in
te

rv
al

s;
 β
̂ C

, t
he

 c
om

pl
et

e-
ca

se
 e

st
im

at
or

; β
̂ Ic

 a
nd

 β
̂ Im

, t
he

 IP
W

 e
st

im
at

or
s;

 β
̂ Ac

 a
nd

 β
̂ Am

, t
he

 A
IP

W
 e

st
im

at
or

s;
 β
̂ M

1  
an

d 
β̂ M

5 ,
 th

e 
m

ul
tip

le
 im

pu
ta

tio
n 

es
tim

at
or

s w
ith

 m
 =

 1
 a

nd
 m

 =
 5

im
pu

ta
tio

ns
. H

er
e 

c 
de

no
te

s t
he

 c
or

re
ct

ly
 sp

ec
ifi

ed
 m

od
el

 a
nd

 m
 th

e 
m

is
sp

ec
ifi

ed
 m

od
el

 fo
r r

(·)
, r

es
pe

ct
iv

el
y.

J Stat Plan Inference. Author manuscript; available in PMC 2013 July 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Hyun et al. Page 25

Ta
bl

e 
3

Es
tim

at
io

n 
of

 th
e 

ef
fe

ct
s o

f p
la

te
le

t a
nd

 a
ge

 fo
r t

he
 b

on
e 

m
ar

ro
w

 tr
an

sp
la

nt
 d

at
a.

M
is

si
ng

E
st

im
at

or

Pl
at

el
et

A
ge

E
st

.
SE

E
p-

va
lu

e
E

st
.

SE
E

p-
va

lu
e

N
on

e
β̂ F

−
0.
58
6

0.
18

6
0.

00
2

0.
36

7
0.

08
7

<0
.0

01

M
C

A
R

β̂ C
−
0.
49
1

0.
23

6
0.

03
7

0.
39

7
0.

11
2

<0
.0

01

β̂ A
−
0.
52
0

0.
20

3
0.

01
0

0.
38

7
0.

09
1

<0
.0

01

β̂ M
5

−
0.
53
0

0.
20

5
0.

01
0

0.
38

0
0.

09
6

<0
.0

01

M
A

R

β̂ C
−
0.
50
4

0.
23

8
0.

03
4

0.
24

1
0.

10
7

0.
02

4

β̂ A
−
0.
56
6

0.
20

4
0.

00
6

0.
38

0
0.

09
0

<0
.0

01

β̂ M
5

−
0.
61
4

0.
20

5
0.

00
3

0.
38

0
0.

09
3

<0
.0

01

N
M

A
R

β̂ C
−
0.
39
0

0.
25

3
0.

12
3

0.
15

6
0.

11
4

0.
17

1

β̂ A
−
0.
52
9

0.
22

0
0.

01
6

0.
35

0
0.

09
8

<0
.0

01

β̂ M
5

−
0.
56
7

0.
21

9
0.

01
0

0.
34

4
0.

09
9

<0
.0

01

Es
t.,

 th
e 

es
tim

at
e;

 S
EE

, t
he

 st
an

da
rd

 e
rr

or
 e

st
im

at
e;

 p
-v

al
ue

 p
er

ta
in

in
g 

to
 te

st
in

g 
no

 c
ov

ar
ia

te
 e

ff
ec

t; 
β̂ F

, t
he

 fu
ll-

ca
se

 e
st

im
at

or
 w

ith
 n

o 
m

is
si

ng
 c

au
se

s;
 β
̂ C

, t
he

 c
om

pl
et

e-
ca

se
 e

st
im

at
or

; β
̂ A,

 th
e 

A
IP

W

es
tim

at
or

; β
̂ M

5 ,
 th

e 
m

ul
tip

le
 im

pu
ta

tio
n 

es
tim

at
or

 w
ith

 m
 =

 5
 im

pu
ta

tio
ns

.

J Stat Plan Inference. Author manuscript; available in PMC 2013 July 1.


