
Crystal Structures of the Tetratricopeptide Repeat
Domains of Kinesin Light Chains: Insight into Cargo
Recognition Mechanisms
Haizhong Zhu1., Han Youl Lee2., Yufeng Tong1, Bum-Soo Hong1, Kyung-Phil Kim2, Yang Shen1, Kyung

Jik Lim3, Farrell Mackenzie1, Wolfram Tempel1, Hee-Won Park1,2*

1 Structural Genomics Consortium, Toronto, Ontario, Canada, 2 Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada, 3 Philip Pocock Catholic

Secondary School, Mississauga, Ontario, Canada

Abstract

Kinesin-1 transports various cargos along the axon by interacting with the cargos through its light chain subunit. Kinesin
light chains (KLC) utilize its tetratricopeptide repeat (TPR) domain to interact with over 10 different cargos. Despite a high
sequence identity between their TPR domains (87%), KLC1 and KLC2 isoforms exhibit differential binding properties
towards some cargos. We determined the structures of human KLC1 and KLC2 tetratricopeptide repeat (TPR) domains using
X-ray crystallography and investigated the different mechanisms by which KLCs interact with their cargos. Using isothermal
titration calorimetry, we attributed the specific interaction between KLC1 and JNK-interacting protein 1 (JIP1) cargo to
residue N343 in the fourth TRP repeat. Structurally, the N343 residue is adjacent to other asparagines and lysines, creating a
positively charged polar patch within the groove of the TPR domain. Whereas, KLC2 with the corresponding residue S328
did not interact with JIP1. Based on these finding, we propose that N343 of KLC1 can form ‘‘a carboxylate clamp’’ with its
neighboring asparagine to interact with JIP1, similar to that of HSP70/HSP90 organizing protein-1’s (HOP1) interaction with
heat shock proteins. For the binding of cargos shared by KLC1 and KLC2, we propose a different site located within the
groove but not involving N343. We further propose a third binding site on KLC1 which involves a stretch of polar residues
along the inter-TPR loops that may form a network of hydrogen bonds to JIP3 and JIP4. Together, these results provide
structural insights into possible mechanisms of interaction between KLC TPR domains and various cargo proteins.
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Introduction

Kinesins are a family of molecular motor proteins that move

along polarized microtubules to transport a macromolecular

‘‘cargo’’ using energy obtained from adenosine triphosphate

(ATP) hydrolysis. Defects of microtubule-based transport are

deleterious to neuronal activity and eventually fatal [1,2,3,4].

Kinesin-1 is responsible for over 40 different cargos and functions

as a heterotetramer composed of two subunits: the kinesin heavy

chain (KHC) and the kinesin light chain (KLC) [5]. The KHC

consists of three domains: the N-terminal motor domain that

contains the ATP and microtubule binding sites, the central

coiled-coil domain responsible for dimerization, and the C-

terminal tail domain that regulates the ATPase and microtubule

binding activity [6]. The KLC also contains three domains: the N-

terminal coiled-coil domain (heptad repeat) that binds to the

KHC, a tetratricopeptide repeat (TPR), and the C-terminal

domain. The latter two domains of the KLC are primarily

involved in the binding of cargos, functioning as a physical linker

between the KHC and its cargos [7].

Four isoforms of KLC exist in humans: KLC1, KLC2, KLC3,

and KLC4. The KLC1 isoform is highly expressed in neurons and

binds to several proteins that are associated with neurodegener-

ation or axonal outgrowth as it interacts with JNK-interacting

proteins (JIPs), Huntingtin-associated protein-1 (HAP1), alcadein-

1 (ALC1) torsinA, collapsing response mediator protein-1

(CRMP2), KIDINS220, and Daxx [8,9,10,11,12,13,14,15]. The

KLC2 isoform shares several cargo proteins with KLC1 [9,12,14],

but cannot interact with torsinA [10]. This is particularly

interesting as the TPR domain, the putative binding site for these

cargos, shares high primary sequence homology with 87% identity

between the two isoforms.

TPR domains are known as a protein-protein interaction

module, which consists of multiple tandem-repeats of 34 amino
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acids [16]. The structures of many TPR domains have been

solved, including the TPR domains of protein phosphatase 5

(PP5), peroxin 5 (PEX5P), small glutamine-rich tetratricopeptide

(SGT), p67phox, and Hsp 70/90 operating protein-1 (HOP1)

[17,18,19,20,21]. The structures of these TPR domains reveal a

helix-turn-helix arrangement for each TPR repeat and a

superhelical conformation of multiple TPR repeats [16]. Further-

more, the ligand-bound structures of p67phox-TPR with Rac1

GTPase and HOP1-TPR with a C-terminal end of Hsp 70/90

peptide establish two different mechanisms for the TPR-ligand

interaction [18,20]. The TPR domain of p67phox recognizes its

ligand through the loops connecting the TPR repeats located on

the outer edges of the superhelix On the other hand, HOP1

utilizes a ‘‘carboxylate clamp’’ formed by two asparagine residues

surrounded by lysines in the inner groove of the TPR domain to

interact with Hsp. In mammalian KLC1, it is known that the

groove of the TPR superhelix binds to the C-terminal residues of

JIP1 whereas the edge of the TPR domain binds to internal

residues of JIP3, suggesting that mammalian KLC1 exploits both

the established TPR domain binding modes [8,21,22,23].

With numerous cargos, competition for KLC1 binding arises

between the cargos [14]. JIP1 suppresses the transport of ALC1

cargos while ALC1 blocks the JIP1 mediated transport of APP-

containing vesicles [14]. Not surprisingly, both the cargos require

their amino acids with similar properties to interact with KLC1.

Aromatic residues such as tyrosine in JIP1 and tryptophans in

ALC1 are required to interact with KLC1 [8,14,15]. In both the

cargos, these aromatic residues are surrounded by aspartic or

glutamic acids that produce a negatively charged stretch of

sequence. As such, a similar mechanism of interaction may be

used by JIP1 and ALC1 to interact with the TPR domain of

KLC1. To understand how KLC TPR domains achieve its cargo

specificity, we solved the crystal structures of KLC1 TPR domain

(KLC1-TPR) and KLC2 TPR domain (KLC2-TPR). These

structures show that KLC1-TPR and KLC2-TPR contain six

repeats and five and one-half repeats of the TPR domain,

respectively. Although these isoforms are nearly identical in their

primary, secondary, and tertiary structures, we suggest structural

basis for the selective binding propertiy of KLC1-TPR. N343 of

KLC1 and the corresponding residue S328 of KLC2 were

responsible for the difference in binding affinity. As the KLC2-

S328N mutant mimics KLC1 in JIP1 binding, the extra hydrogen

bonding capability of the carboxamide side chain of asparagine is

essential for the interaction with JIP1. The involvement of N343 in

the binding of JIP1 was previously suggested by the simultaneous

mutation of six KLC1 asparagines including N343, which

removed the ability of KLC1 to interact with JIP1 [22]. In

addition to the JIP1 binding site involving N343, our data

suggested two other plausible cargo binding sites within KLC1-

TPR for the binding of ALC1 and JIP3/4 cargos. The second

cargo binding site is located on the third TPR repeat and involves

asparagines, similar to the JIP1 binding site that utilizes N343. The

third cargo binding site is likely located on the outer surface of the

TPR domain and is composed of the inter-TPR loops between the

second and third TPR repeats. These results, together with

comparisons of KLC1-TPR with other known TPR domains,

provide the basis for understanding the mechanisms by which

KLC1 interacts with its JIPs and ALC1 cargos.

Materials and Methods

Cloning
DNAs encoding the TPR domains of KLC1-TPR (residues

228–495, genbank: NP_005543) and KLC2-TPR (residues 217–

480, genbank: NP_073733) were amplified by polymerase chain

reaction (PCR) using cDNAs obtained from the Mammalian Gene

Collection as templates. The PCR products were cloned into a

modified version of the expression plasmid pET28-LIC (genbank:

EF442785) using an Infusion cloning kit (ClonTech). The KLC1-

N343S and KLC2-S328N mutants were prepared with a Quick-

ChangeH kit (Stratagene).

Protein expression, purification, and crystallization
The KLC-TPR expression constructs were transformed into the

BL21(DE3)-CodonPlus-RIL strain (Stratagene). Cells were grown

at 37uC in Terrific Broth medium to an A600 of approximately 3.0

and induced with 1 mM isopropyl b-D-1-thiogalactopyranoside

and further grown at 18uC for 14–16 hours. A M9 SeMet growth

media kit (Medicilon) was used for selenomethionine labeling of

the KLC2 protein. All proteins were purified with the same

protocol. Briefly, harvested cells were re-suspended in buffer-A

[phosphate buffered saline with the addition of 5 mM b-

mercaptoethanol, 0.5 M sodium chloride, 5 mM imidazole, and

ethylenediaminetetraacetic acid-free protease inhibitor tablets

(Roche)]. Cells were lysed by using a micro-fluidizer, followed

by centrifugation at 16,000 RPM for 1 hour. The supernatant was

applied to a Ni affinity column equilibrated with buffer A. The

column was washed with buffer-A containing 30 mM imidazole

and a target protein was eluted with buffer-A containing 300 mM

imidazole. Pooled fractions of the target protein were applied to a

Superdex 200 26/60 column (GE Health Science) equilibrated

with buffer-B [20 mM HEPES, pH 7.5, 500 mM sodium

chloride, 1 mM tris(2-carboxyethyl)phosphine(TCEP)]. The puri-

fied protein was concentrated to approximately 10 mg/ml for

crystallization trials.

All initial crystallization trials were performed by the sitting

drop vapor-diffusion method, mixing equal volumes of a protein

solution and a reservoir solution. The KLC1-TPR was crystallized

in 2.0 M ammonium sulfate, 20% ethylene glycol, and 0.1 M Bis-

Tris Propane at pH 7.0 at 18uC. The KLC2-TPR crystals were

grown at 18uC in 1.5 M ammonium sulfate, 0.2 M sodium

acetate, and 0.1 M Bis-Tris at pH 6.6. The crystals appeared after

2 days, which were harvested and soaked in mother liquor

containing 20% (v/v) ethylene glycol, then flash frozen in liquid

nitrogen. The SeMet KLC2 crystals were obtained after two days

at 18uC in 2.1 M sodium formate and 0.1 M Bis-Tris at pH 6.0.

Data collection and structure determination
The structure of the KLC2-TPR was solved by the single-

wavelength anomalous diffraction (SAD) method, using a data set

from a single SeMet crystal. The initial SAD model was used for

the molecular replacement calculation with a data set from a

native crystal. The SeMet data set of the KLC2-TPR was collected

at beamline 23-ID-D, and the native data set was collected at

beamline 19-ID-D, both at Argonne Advanced Photon Source.

The SeMet and native crystals belong to the same space group

P212121, but with slightly different unit cell parameters from each

other. The native crystals of KLC1-TPR belonged to space group

P3121. The structure of KLC1-TPR was solved by molecular

replacement method. All data sets were processed by the program

HKL2000 [24] and reduced by the CCP4 program suite [25]. The

selenium positions in the SeMet crystal were located and refined

by SOLVE [26]. The molecular replacement calculation was

performed by MOLREP [27] and Phaser [28]. Manual model

building was performed by O [29] and Coot [30]. Crystallo-

graphic refinement was performed by CNS [31], Refmac5 [32],

Phenix [33], and Buster [34]. In the case of KLC2-TPR, the TLS

parameters [35] were refined by Refmac5. Geometry validation

Structures of Kinesin Light Chains 1 and 2
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was performed on the Molprobity server [36]. Figures were

generated using PyMol (http://www.pymol.org) and sequence

alignments were performed by ClustalW and rendered by ESPript

[37,38].

Isothermal Titration Calorimetry
Binding affinities of the JIP1 peptide (Ac-EYTCPTEDIYLE-

COOH), ALC1peptide (Ac-EMDWDDSALT-COOH) (synthe-

sized by Tufts University Core Facility), and ALC1 protein to the

KLC1-TPR, KLC2-TPR and their mutants were measured by

isothermal titration calorimetry (ITC) (VP-ITC microcalorimeter,

MicroCal Inc.). Measurements were performed at 25uC by

injecting 5–10 ml of peptide solution (1–3 mM) into a sample

chamber containing 60–130 mM KLC1-TPR or KLC2-TPR in

20 mM Bis-Tris, pH 6.5, 500 mM sodium chloride, and 0.5 mM

TCEP. For the protein-protein interaction, the sample chamber

contained 15 mM of KLC1-TPR and 160 mM of the ALC1

protein in a buffer containing 30 mM HEPES 7.4, 200 mM NaCl,

0.5 mM TCEP. The syringe injections containing peptides and

proteins were dissolved and dialyzed in the same buffer as the

KLC proteins prior to the experiments. A total of 25 injections

were performed with an interval of 300 seconds and a reference

power of 13 mcal/second. The heat of dilution was controlled with

binding isotherms from reference injections containing the peptide

alone prior to fitting of the data. ITC data were analyzed using

Origin software (MicroCal Inc) and were fit using a one-site

binding model.

Results and Discussion

Structural and sequence similarities between KLC1 and
KLC2 TPR domains

The structures of KLC1-TPR and KLC2-TPR adapt the

common TPR structural motif. The KLC1-TPR structure exhibits

a helix-turn-helix motif composed of 13 a-helices (Fig. 1A). Twelve

of these a-helices correspond to six TPR repeats (TRP1–6) while

one non-TPR helix intervenes between TPR5 and TPR6. Each

TPR repeat consists of an inner helix (helix-A) and an outer helix

(helix-B) where the inner helices are one-half-turn shorter than the

outer helices, except for TPR1. The twists of the inner and outer

helices generate a superhelix that forms a groove lined by the inner

helices. Similarly, the KLC2-TPR domain is also composed of 13

a-helices, but it only represents five and one-half TPR repeats, as

two non-TPR helices are present between TPR5 and TPR6

(Fig. 1B). Data collection and refinement statistics of these

structures are listed in Table 1.

The two isoforms retained a high level of structural homology

with a root mean square deviation (RMSD) of 2.6 Å (Fig. 1C) [39].

TPR1 of KLC2-TPR lacks the inner helix-A, which was deleted in

the DNA construct to improve the diffraction quality of the

crystals, and thus starts with an outer helix-B. TPR repeats in both

isoforms contain 16 helix-A residues connected by a 4 residue

intra-TPR loop to the 18 helix-B residues and capped off with a 4

residue inter-TPR loop. There is a higher level of conservation

within helix-A of the TPR motifs than within helix-B. The

structure of KLC1-TPR reveals one non-TPR helix whereas that

of KLC2-TPR shows two, but it is likely that KLC1 has a second

non-TPR helix that was disordered in the structure because of its

mobility (Fig. 1D). These non-TPR inserts have a substantial

influence on the structural difference as they contain the highest

degree of sequence difference between the two isoforms. For

instance, the 87% sequence identity when residues 232 to 495 of

KLC1 and 217 to 480 of KLC2 with the aforementioned 2.6 Å

RMSD, improves to 92% sequence identity and 1.9 Å RMSD

without the non-TPR insert (Fig. 1E).

Structural conservation of KLC TPR domains with other
known TPR domains

KLC TPR motifs with a 42-amino acid repeat are longer than

the consensus 34-amino acid TPR repeat. As a result, each KLC

TPR repeat is lengthened by one helical turn but maintains the

consensus sequence between its 4th and 37th residues. With several

TPR domain structures available, we investigated the level of

structural homology with the KLC TPR domains. The TPR

domains of HOP1, PEX5p, PP5, and small glutamine rich (SGT)

repeat protein align with the KLC1-TPR from TPR2 or TPR3

onwards (Table 2) [39]. Moreover, a synthetic consensus TPR

motif designed using amino acids with the highest propensity at

each position [16] was also aligned starting at TPR3 of the KLC1-

TPR. On the other hand, the TPR domain of p67phox is the only

protein that aligns with KLC1-TPR from TPR1. The primary

sequences of KLC1-TPR and KLC2-TPR domains with the other

TPR domains have less than 20% sequence identity, but show

modest structural homology with RMSD values below 3.0 Å. This

structural conservation helps predict the binding sites of the KLC

TPR domains for various cargos, as several binding sites have

already been identified in other TPR domains.

The mechanisms of interaction for p67phox and HOP1 and

their binding partners have been revealed through the structures

of their complexes [18,20]. Analyses of these two structures reveal

that p67phox and HOP1 use two independent interfaces of the

TPR domains for their binding partners. The p67phox TPR

domain utilizes S37, D67, H69, R102, N104, and D108 residues

located on the outer surface, forming a network of hydrogen bonds

with Rac1 (Fig. 2A) [18]. On the other hand, the TPR domain of

HOP1 interacts with the Hsp using the inner groove residues K8,

S42, N43, R73, and K77 (Fig. 2B) [20]. KLC1 residues conserve a

similar interface with S247, H249, D250, and H251 on the outer

surface, while residues N259, R266, and N302 mimic the HOP1

inner groove interface (Fig. 2). These findings illustrate the

versatility of the protein binding properties of the TPR domains

and imply that the KLC1-TPR is resourceful in the mode of

interaction with its cargos as it contains both the outer surface and

the inner grooves similar to p67phox and HOP1.

Importance of KLC1-N343 in the binding of JIP1 cargo
ITC of KLC1-TPR and KLC2-TPR revealed different binding

affinities towards JIP1. The KLC1-TPR interacted with the JIP1

peptide with a Kd of 9.4 mM while no interaction was detected

with KLC2-TPR (Fig. 3A, B). The thermodynamic parameters of

the interaction are listed in Table 3. This suggests that a subtle

difference between the two isoforms is responsible for the

contrasting JIP1 binding specificities. Out of the 33 non-conserved

residues between KLC1-TPR and KLC2-TPR, we identified

N343 of KLC1-TPR and S328 of KLC2-TPR as the main cause

of the different binding properties. Located in the inner helix of

TPR4, N343 of KLC1-TPR can form hydrogen bonds with T383

and N386 in the neighboring helix (helix-A of TPR5) (Fig. 4A),

while the side chain of S328 in KLC2-TPR cannot (Fig. 4B). The

carboxamide group of N343 also extends towards the surface of

the groove to supply an accessible hydrogen-bonding site for the

cargo. We confirmed the significance of these residues with respect

to cargo binding by mutating N343 of the KLC1-TPR domain to

serine (KLC1-N343S) and S328 of the KLC2-TPR to asparagine

(KLC2-S328N). KLC1-N343S mutant lost the ability to bind to

the JIP peptide while the KLC2-S328N mutant gained binding

capacity (Fig. 3C, Figure S1).

Structures of Kinesin Light Chains 1 and 2
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The JIP1 peptide used in the above ITC binding studies was

sufficient to differentiate between KLC1-TPR and KLC2-TPR, as

it specifically binds to KLC1-TPR but not to KLC2-TPR. The

ability of the JIP1 peptide to differentiate between the two isoforms

suggests that the JIP1 peptide is a good alternative to JIP1 proteins

as purification of the full-length JIP1 protein has been problematic

due to its lack of solubility.

KLC1-N343 is not involved in the binding of ALC1 cargo
protein

An ALC1 peptide interacted with KLC1-TPR with a Kd of

50 mM and a binding stoichiometry of 1.85 (Figure S2). The

binding stoichiometry close to two suggests that one molecule of

KLC1-TPR consists of two binding sites for the ALC1 peptide.

Interestingly, KLC1-N343S was able to interact with the ALC1

Figure 1. Structures of KLC1-TPR and KLC2-TPR. (A) A ribbon diagram of KLC1-TPR with inner helix-A (blue), outer helix-B (red), loops (green),
and the non-TPR insert (gray). (B) A ribbon diagram of KLC2-TPR. (C) Structural alignment of KLC1-TPR (orange) and KLC2-TPR (green). (D) A ribbon
diagram of the highly mobile non-TPR inserts of KLC1-TPR (olive) and KLC2-TPR (dark green). (E) A structure-based sequence alignment of KLC1-TPR
and KLC2-TPR using ESPript [38].
doi:10.1371/journal.pone.0033943.g001
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peptide with a similar Kd (44 mM) and a binding stoichiometry of

2.13, suggesting that N343 is not involved in the binding of ALC1

(Fig. 5A). This finding provides a possible explanation of the

competitive binding of JIP1 and ALC1 to KLC1 [14]. ALC1 uses

an interaction interface of KLC1-TPR that does not require

N343, whereas the JIP1 interaction interface includes N343. Thus,

competition may be caused by steric hindrance when both the

cargos (ALC1 and JIP1) simultaneously bind to independent sites

on the inner groove of KLC1-TPR.

Tryptophans at position 903 and 973 of ALC1 are crucial in

binding to KLC1 as their mutation to alanines disrupt the

interaction [15]. There are two negatively charged aspartic acids

and a polar serine residue adjacent to the tryptophans. Due to the

similarities of the ALC1 residues to those of JIP1, the recognition

of ALC1 by KLC1-TPR could also involve a ‘‘clamping’’ feature.

However, such clamp must be different from the JIP1 binding

polar patch as N343 is not required for ALC1 binding. Also,

residues lining the ALC1 binding clamp should be conserved

between KLC1-TPR and KLC2-TPR as ALC1 can interact with

both isoforms [14]. Possible candidates are N301 and N344

residues in the inner helices of TPR3 and TPR4 of KLC1-TPR.

N301 extends toward the neighboring helix and interacts with

N344, and is adjacent to K340 and Q341. As these residues are

conserved in KLC2-TPR, N301 of KLC1-TPR was mutated into

an alanine (KLC1-N301A) and tested its binding behavior towards

ALC1 peptide. Interestingly, the KLC1-N301A mutant interacted

with the ALC1 peptide at a lower affinity than the wild type KLC1

(a Kd of 179.2 mM with a binding stoichiometry of 1.02) (Fig. 5B).

This suggests that the mutation of N301 of KLC1-TPR to alanine

has abolished one of the two binding sites for the ALC1 peptide

and has also affected the affinity of the second site. Together,

N301 of KLC1-TPR plays an important role in binding of ALC1,

probably by forming one of the ALC1 binding clamps.

In order to elucidate a comprehensive view of ALC1 binding to

KLC isoforms, the cytosolic domain of ALC1 was purified for the

ITC binding studies. The cytosolic domain of ALC1 binds to

KLC1-TPR with a higher affinity than the ALC1 peptide (a Kd of

2.4 mM) and a binding stoichiometry of 0.85 (Fig. 5C). The

binding stoichiometry close to 1.0 suggests that the two KLC1-

binding motifs of the cytosolic domain of one ALC1 molecule

(residues 893–896 and 964–967) independently but simultaneously

bind to the two ALC1 binding sites of one KLC1-TPR molecule.

This would cause the modest increase in binding affinity to KLC1-

TPR, compared to the ALC1 peptide. In addition, recent data

show that S460 of KLC1, a putative extracellular-signal-regulated

kinase (ERK) phosphorylation site, can influence the affinity for

ALC1 [40]. S460 is located at the junction of the inner helix of

TPR6 and the non-TPR helix loop, which is believed to play a

role in keeping the inner helix of TPR5 and TPR6 in close

Table 1. Data collection and refinement statistics of KLC1-
TPR and KLC2-TPR.

KLC1-TPR KLC2-TPR

Data collection

Space group P3121 P212121

Cell dimensions

a, b, c (Å) 74.7, 74.7, 156.2 70.4, 99.9, 103.1

Wavelength 0.92015 0.9790

Resolution (Å) 2.80 (2.90–2.80) 2.75 (2.85–2.75)

Rsym
a(%) 6.8 (58.4) 14.4 (41.2)

I/sI 43.8 (1.8) 16.5 (2.2)

Completeness (%) 97.2 (78.7) 94.3 (82.2)

Redundancy 8.6 (3.8) 13.3 (5.8)

Refinement

Resolution (Å) 29.88–2.80 30.0–2.75

No. reflections 12597 19197

Rwork/Rfree
b (%) 20.0/27.3 23.6/27.1

No. atoms

Protein 2149 4089

Ligand/ion

Water 2

B-factors (Å2)

Protein 94.5 77.1

R.m.s deviations

Bond lengths (Å) 0.01 0.01

Bond angles (u) 1.1 0.85

PDB code 3NF1 3CEQ

aRsym =S|I-,I.|/SI.
bRwork =S||F0|-|Fc||/S|F0|, where F0 and Fc are the observed and calculated
structure factors, respectively. Rfree was calculated as Rwork using 4.6% and 5.1%
of the data selected for KLC1-TPR and KLC2-TPR respectively.
doi:10.1371/journal.pone.0033943.t001

Table 2. Secondary structure alignments with other known
TPR domains.

KLC1-TPR KLC2-TPR

HOP1 TPR1A Z-Score 9.8 11.5

(PDB: 1ELW) Aligned Residuesa 117 114

RMSDb 2.1 Å 2.8 Å

TPR Repeatsc 2–4 2–4

PP5 Z-Score 10.5 11.9

(PDB: 1A17) Aligned Residuesa 124 109

RMSDb 2.8 Å 3.0 Å

TPR Repeatsc 3–5 2–4

PEX5P Z-Score 13.1 13.6

(PDB: 2J9Q) Aligned Residuesa 157 157

RMSDb 3.2 Å 2.8 Å

TPR Repeatsc 2–6 2–6

SGT Z-Score 10.3 11.4

(PDB: 2VYI) Aligned Residuesa 123 123

RMSDb 2.6 Å 3.0 Å

TPR Repeatsc 2–4 2–4

Consensus Z-Score 12.7 13.4

(PDB: 2FO7) Aligned Residuesa 126 123

RMSDb 2.1 Å 2.8 Å

TPR Repeatsc 3–6 1–4

P67phox Z-Score 13 12.5

(PDB: 1WM5) Aligned Residuesa 157 157

RMSDb 2.6 Å 2.9 Å

TPR Repeatsc 1–4 2–5

aAligned Residues: Number of aligned residues.
bRMSD: Root mean square deviation.
cTPR Repeats: TPR repeats of KLCs that were aligned.
doi:10.1371/journal.pone.0033943.t002
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Figure 2. Structural alignment of KLC1-TPR with p67phox and HOP1. (A) KLC1-TPR (orange) is aligned with the p67phox TPR domain
(marine) in complex with Rac1 (Yellow). (B) KLC1-TPR (orange) is aligned with the HOP1 TPR domain (marine) in complex with Hsc70 peptide (Yellow).
Residues lining the interaction interface of the p67phox and HOP1 TPR domains and their respective binding partners as well as the corresponding
KLC1-TPR residues are shown in the circle.
doi:10.1371/journal.pone.0033943.g002

Figure 3. Binding experiments of the KLC1 and KLC2 TPR domains with the JIP1 peptide. Isothermal titration calorimetry measurements
of (A) KLC1-TPR with the JIP1 peptide, (B) KLC2-TPR with the JIP1 peptide, (C) KLC1-N343S mutant with the JIP1 peptide.
doi:10.1371/journal.pone.0033943.g003
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proximity. It is tempting to speculate that KLC1 TPR5/6

involving S460 may be part of the second ALC1 binding site.

The phosphorylation of S460 introduces a negative charge on the

loop and/or may change the TPR5/6 conformation, affecting

KLC1-TPR interaction with ALC1. Together the ALC1 binding

interface of KLC1 may span from TPR3/4 to TPR5/6.

Mechanism of binding of the JIP1 peptide to the KLC1
TPR domain

The structures of KLC1-TPR and KLC2-TPR provide a picture

of the groove for cargo binding. Our ITC results of JIP1, combined

with the results from JIP1 C-terminal deleted mutants and random

mutagenesis studies [8,22], suggest that the C-terminal sequence of

JIP1 interacts with N343 of KLC1-TPR. In close proximity to N343

lie other asparagines, N344 and N386, along with lysines K340 and

K382, which create a positively charged polar patch.

Tyrosine residue at 709 in the last 10 C-terminal residues of

JIP1 is compulsory for the interaction with KLC1-TPR [8].

Multiple negatively charged residues adjacent to Y709 in the JIP1

peptide probably interact with the lysine residues in the polar

patch of KLC1-TPR. Evidently, the JIP1 peptides with mutations

to the negatively charged residues were unable to interact with

KLC1-TPR (Supplementary Figure S3A). The importance of

charges for the JIP1 and KLC1-TPR interaction is further

supported by the random mutagenesis studies simultaneous

mutations to six lysines and three tyrosines of KLC1-TPR that

inhibited the interaction [22]. TorsinA is another cargo that binds

to KLC1-TPR and not KLC2-TPR via its C-terminal end that has

a long stretch of negatively charged and aromatic residues [10].

Together, these findings suggest a possible mechanism of

interaction between KLC1 and cargo proteins (e.g., JIP1 and

torsinA) through hydrogen bonding and electrostatic interactions.

Additional support for interaction via the N343-centered polar

patch is provided by similarities between the interaction of KLC1

with JIP1 and that of HOP1 with Hsp70 and Hsp90 [18]. In HOP1,

asparagines form a ‘‘carboxylate clamp’’ which hydrogen bonds

with the C-terminal carboxylate (residues EEVD) of Hsp peptides.

KLC1-TPR contains N386 adjacent to N343 within the groove and

we hypothesize that these asparagines are able to form a similar

clamp that can interact with the C-terminal carboxylate of JIP1

(residues EDIYLE). In addition, two lysines are in close proximity to

the asparagines with their positive side chains protruding on the

surface, and we predict these lysine side chains would interact with

the negatively charged side chains of the JIP1 C-terminal residues.

Enthalpy is the major driving force of the interaction between the

JIP1 peptide and KLC1-TPR, further supporting the role of

Figure 4. Comparison of KLC1-TPR and KLC2-TPR polar
patches. (A) N343 of KLC1-TPR interacts with neighboring helix
residues T383 and N386 as well as the N343 carboxamide group is
available at the surface. (B) S328 of KLC2 is unable to interact with
neighboring helix residues due to its short side chain.
doi:10.1371/journal.pone.0033943.g004

Table 3. Thermodynamic parameters of the ITC experiment between KLC proteins with JIP1 and ALC1 peptides.

Protein Peptide DHa DSa
Na Kdb

(Cell) (Syringe) (kcal/mol) (eu) (1026 mol/L)

KLC1 JIP1 21.5260.182 17.9 1.0260.1 9.465.85

KLC2 JIP1 N.B N.B N.B N.B

KLC1-N343S JIP1 N.B N.B N.B N.B

KLC2-S328N JIP1 215.961.6 231.8 1.1860.01 18.760.6

KLC1 ALC1 22.560.07 11.4 1.8560.04 50.363.1

KLC1-N343S ALC1 21.760.16 14.1 2.1360.15 44.367.5

KLC1-N301A ALC1 21.260.99 12.9 1.0260.69 179.26126.8

aValues were determined from fits of the ITC profile using the single binding site model.
bKd was determined from Ka derived from fits of the ITC profile using the single binding site model.
The indicated errors reflect the standard deviation of the experimental data from the fits of the ITC profile.
N.B indicates no binding was observed.
The heat of dilution for injection was controlled with reference injections containing peptide alone prior to fitting.Fig.
doi:10.1371/journal.pone.0033943.t003
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hydrogen bonds and electrostatic interactions (Table 3). Consistent

with this notion, the KLC2–TPR lacks the clamp (S328 of KLC2

corresponds to N343 of KLC1, an essential residue for the

carboxylate clamp) although the two lysines are conserved, possibly

explaining the differential binding properties of KLC1-TPR and

KLC2-TPR with regard to JIP1. Taken together, the mechanism of

interaction between the KLC1-TPR and its cargo protein JIP1

likely involves a polar clamp formed by N343 and its adjacent

lysines and asparagines (K340, K382, N344, N386).

Mechanism of binding of ALC1 to the KLC1-TPR different
from that of JIP1

A logical question is what difference, if any, exists between the

N301 polar patch (TPR3–4) and N343 polar patch (TPR4–5) that

explains the specificity for the two cargo proteins ALC1 and JIP1,

respectively. In an attempt to understand the specificity, sequence

and structural alignments were performed. The N301 polar patch

which interacts with ALC1 is lined by residues 294–350 of KLC1-

TPR whereas JIP1 interacting N343 polar patch consists of

residues 336–392 of KLC1-TPR. Sequence alignment of the

residues reveals several differences in outer helix-B whereas only

one major difference exists in the polar patch forming inner helix-

A. N301 polar patch contains an alanine where N343 polar patch

has a lysine. Also, the structural analysis revealed that the

asparagine clamp of N343 to its adjacent N386 was much closer in

distance than the clamp of N301 to N344. The distance between

the two asparagines in N343 patch was 3.6 Å, while the same

clamp in N301 was 5.7 Å apart (Fig. 6). KLC2-TPR which also

interacts with ALC1 conserves the residues of the N301-N344

clamp with N286 and N329 is 5.3 Å apart. Since the indole ring of

the tryptophan in ALC1 is larger than the phenol ring in the

tyrosine of JIP1, this may explain the respective specificity of N301

and N343 polar patches for ALC1 and JIP1.

Structural interpretation of a putative third cargo binding
site on the outer surface of the KLC1 TPR domain

The p67phox TPR domain uses its outer loops to interact with

Rac GTPase. [20]. Previous studies have shown that proteins JIP3

and JIP4 interact with the outer surface of KLC1-TPR through

their leucine zipper domains (LZD) (9, 23, 47). The KLC1

structure allowed us to map previously mutated residues to deduce

the mechanism of interaction for JIP3 and JIP4. First, a set of

leucine/valine residues of KLC1 that affect binding to JIP3/4

[23,41] is located in helix-B of TPR2 (L280, L287) and helix-A of

TPR3 (V294, L301). None of their side chains are accessible for

interaction with JIP3 and JIP4, suggesting a role of these leucine/

valine residues in the structural integrity of KLC1 rather than in

JIP interaction as previously predicted [23,41]. It is likely that

mutation of the leucine/valine residues to alanine disrupts the

packing of the TPR2 and 3 of KLC1-TPR and thereby indirectly

disrupting the binding of KLC1 to JIP3/4.

Figure 5. Binding experiments of the KLC1-TPR mutants with ALC1 peptide and protein. Isothermal titration calorimetry measurements
of (A) KLC1-N343S mutant with the ALC1 peptide, (B) KLC1-N301A mutant with the ALC1 peptide, (C) KLC1-TPR with the cytosolic domain of ALC1
protein.
doi:10.1371/journal.pone.0033943.g005

Figure 6. Comparison of ALC1- and JIP1- binding polar patches
of KLC1-TPR. The distance between N301–N344 clamps of the ALC1-
binding polar patch (marine) is 5.7 Å, while the N343-N386 clamp of the
JIP1-binding polar patch (yellow) is closer at 3.6 Å. A lysine (orange) is
present in the JIP1-binding polar patch compared to an alanine (cyan)
of ALC1-binding polar patch.
doi:10.1371/journal.pone.0033943.g006
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The second set of residues that specifically affect the binding of

KLC1 to JIP3 consists of R214, G227, A232, R310, L319, and

D334 [22]. L319 is located in helix-B of TPR3 and participates in

hydrophobic interactions of the leucine/valine residues along the

inter-TPR2/3 repeats. It is expected that mutation of L319 may

have the same detrimental effect on the structural integrity of the

KLC1-TPR, abrogating the JIP 3/4 interaction. Similarly, A232 is

located in helix-B of TPR1 and participates in intra-TPR1 and

inter-TPR1/2 hydrophobic interactions. Mutation of A232 may

also affect the structural integrity of the KLC1-TPR, changing the

binding affinity of KLC1 for JIP3/4. In comparison to L319 and

A232, R214 is located in the first turn of helix-A of TPR1 and its

side chain stabilizes the loop preceding TPR1, which levels with

the inter-loops of TPR repeats to form a flat surface. Similarly,

D334 is located in the third inter-TPR loop. It is known that the

first three and one-half TPR repeats of KLC1-TPR are critical for

the JIP3 interaction and KLC1-TPR have structural homology to

the p67phox-TPR [23,41]. As p67phox interacts with Rac1 via

the inter-loops of TPR repeats [20], the mutations of R214 and

D334 of KLC1-TPR may directly affect complex formation with

JIP3/4.

G227 and R310 are located in the intra-loops of TPR1 and

TPR3, respectively. As the TPR intra-loops are not known to form

the binding interface for the JIP proteins, mutation of these two

residues would affect formation of the KLC1-JIP3/4 complex

indirectly (e.g., the mutations may affect the folding and/or

stability of the TPR domain). Further analysis of mutant proteins

containing single residue changes may reveal the role of G227 and

R310 in JIP3/4 binding.

The proposed interaction between KLC1 and JIP3/4 mirrors

that of adenosine diphosphate-ribosylation factor 6 (ARF6) and

JIP4 since both the KLC1-TPR and ARF6 interact with the LZDs

of JIP3 and JIP4 [41,42]. More importantly, ARF6 competitively

inhibits the binding of KLC1-TPR to JIP3 or JIP4 by interacting

with the LZDs. The interactions between ARF6 and JIP-LZD

involve both hydrophobic interactions and an elongated network

of hydrogen bonds [43]. Similarly, some of the polar inter-TPR

loops of KLC1 can provide an elongated network of polar residues

for hydrogen bond interactions with the LZDs of JIP3 and JIP4

while the hydrophobic interactions are supplied by L282, L289,

L303 and V296, thus completing the TPR surface interaction

interface.

A perspective on the mechanism of cargo unloading
from kinesin

Another important aspect of the kinesin transport system is the

unloading of cargos at the correct destination. Although the

mechanism is not clearly understood, the regulation occurs at two

different levels; the kinesin motor level and the cargo level. There

has been evidence of phosphorylation occurring at serine 460 and

520 of KLC1 by ERK and 59AMP-activated protein kinase

(AMPK), respectively [40,44]. Phosphorylation of S460 reduces

the interaction between ALC1 and KLC1 [40,44], which may

cause the unloading of ALC1 at the destination. Secondly, several

studies have indicated that transport of JIP4 can be regulated by

ARF6 [23,42], Since the LZD of JIP4 is used to bind to both

ARF6 and KLC1, the activated ARF6 binds to JIP4, thereby

hampering the KLC1-JIP4 interaction. At the same time, the JIP4-

ARF6 complex promotes ternary complex formation with

dynactin, an adaptor for a minus end-directed microtubule motor

dynein, effectively reversing the course of kinesin’s cargo back to

the cell body [42]. Together, more research will be needed to have

further understanding for the regulatory mechanism of the kinesin-

dependent cargo transport, which governs the loading and

unloading of cargos as well as the mode of kinesin-cargo

interaction.

Conclusion
Based on the presented ITC and crystallographic data, we

propose a hypothesis for cargo selectivity and interaction of

KLC1-TPR. Through six TPR repeats, KLC1-TPR can form at

least two polar patches within its groove to interact with the

negatively charged and aromatic residues of various cargo

molecules and an interaction interface outside of the groove using

the highly charged inter-TPR loops with a hydrophobic region.

Further studies are needed to determine the importance of specific

residues of other cargo proteins for the binding to KLCs, and to

elucidate the mechanisms by which KLCs achieve selectivity

among the cargo proteins.
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