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Abstract

The use of finite element analysis (FEA) has grown to a more and more important method in the field of biomedical
engineering and biomechanics. Although increased computational performance allows new ways to generate more
complex biomechanical models, in the area of orthopaedic surgery, solid modelling of screws and drill holes represent a
limitation of their use for individual cases and an increase of computational costs. To cope with these requirements,
different methods for numerical screw modelling have therefore been investigated to improve its application diversity.
Exemplarily, fixation was performed for stabilization of a large segmental femoral bone defect by an osteosynthesis plate.
Three different numerical modelling techniques for implant fixation were used in this study, i.e. without screw modelling,
screws as solid elements as well as screws as structural elements. The latter one offers the possibility to implement
automatically generated screws with variable geometry on arbitrary FE models. Structural screws were parametrically
generated by a Python script for the automatic generation in the FE-software Abaqus/CAE on both a tetrahedral and a
hexahedral meshed femur. Accuracy of the FE models was confirmed by experimental testing using a composite femur with
a segmental defect and an identical osteosynthesis plate for primary stabilisation with titanium screws. Both deflection of
the femoral head and the gap alteration were measured with an optical measuring system with an accuracy of
approximately 3 mm. For both screw modelling techniques a sufficient correlation of approximately 95% between numerical
and experimental analysis was found. Furthermore, using structural elements for screw modelling the computational time
could be reduced by 85% using hexahedral elements instead of tetrahedral elements for femur meshing. The automatically
generated screw modelling offers a realistic simulation of the osteosynthesis fixation with screws in the adjacent bone stock
and can be used for further investigations.

Citation: Wieding J, Souffrant R, Fritsche A, Mittelmeier W, Bader R (2012) Finite Element Analysis of Osteosynthesis Screw Fixation in the Bone Stock: An
Appropriate Method for Automatic Screw Modelling. PLoS ONE 7(3): e33776. doi:10.1371/journal.pone.0033776

Editor: Boris Rubinsky, University of California at Berkeley, United States of America

Received September 1, 2011; Accepted February 17, 2012; Published March 28, 2012

Copyright: � 2012 Wieding et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work has been financially supported by the European Union and the Ministry of Economic Affairs, Employment and Tourism of Mecklenburg-
Vorpommern within the project ‘‘Tissue Regeneration’’, sub-project ‘‘BONET’’ ESF/IV-WM-B34-0015/08. The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: jan.wieding@med.uni-rostock.de

Introduction

Large segmental defects and non-unions in long bones caused

by fracture, infection, tumour or cysts are still a challenging

problem in orthopaedic surgery. The stable fixation of an

osteosynthesis system is necessary for the bone healing process

and the clinical success of the implant. Manufacturers worldwide

developed various methods to offer maximum intraoperative

flexibility (e.g. polyaxial screws) and stable screw-plate connection

(e.g. angular stable fixations) [1,2]. The functionality of the

mentioned fixation methods has been demonstrated in several

experimental studies [3–5]. Nevertheless, experimental testing is

often time-consuming, cost-intensive and accurate results have to

be extracted with extensive equipment.

Besides experimental testing, finite element analysis (FEA) has

grown to a powerful tool in order to analyze stresses and strains

within structures during static and dynamic load situations.

Moreover, it offers detailed information which cannot be

determined with experimental methods. Due to the capability to

analyse the influence of various parameters on implant compo-

nents during the preclinical testing, without prototype production,

the FEA has become an irreplaceable tool with various

applicability. Therefore, it is a common method in mechanical

engineering and gains more and more influence in biomechanics.

Furthermore, interactions of the plate-screw-bone composite

could be implemented and analyzed in computational simulations

[6–8], whereat fixation of osteosynthesis implants like plates or

nails to the bone stock can basically be considered with three

different numerical approaches.

First, there is the simple approach to fix an implant directly to

the bone by a tied contact [9]. In this case the outer surface nodes

of the bone are tied to the reference surface. Thereby, translational

degrees of freedom (DOF) of the bone are associated with the

corresponding DOF of the implant and no relative displacement

between the nodes and subsequently no elastic deformation can

occur. This may results in artificial stiffening of the contact area

and deviant stress and strain distributions within the contact area.

In addition, stresses within the bone can differ, because no

elements for the screws were considered. Furthermore, contact

forces are only transmitted via the outer surface.
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Second, there is a common approach to model the screws with

three-dimensional solid elements. This is a frequently described

method which considers the existence of screws by adding

cylindrical shape to a model to approximate the geometry of the

screws. This method is used for different applications, e.g.,

intramedullary nails [6,10] or plates for oral and maxillofacial

surgery [11,12], spine surgery [13,14] and especially for bones [6–

8,15,16]. To realize the fixation, the cylinders are mostly meant to

be in perfect geometric contact to the bone stock and fixed to it.

This method requires the modelling of the cylindrical screws as

well as consideration of the drill holes within the bone model prior

to meshing. Therefore, fine meshing around the drill holes has to

be performed in order to preserve a round curvature, generating

enough elements for a realistic mechanical behaviour and

subsequently an adequate stress transfer between bone and screw.

Relative displacement between the bone and osteosynthesis system

is still enabled and loading forces are induced via the screws into

the bone.

Third, there is the advanced approach, in our point of view,

which implies the usage of structural elements, i.e. beams, for

screw modelling [10,17,18]. The fact, that this method could be

used without considering the screw holes and mesh densities of the

contact area during the meshing process is the major benefit of this

technique. Furthermore, these two-dimensional elements provide

an excellent mechanical behaviour and could be used to model the

screws and the connections to the three-dimensional elements of

the bone. Even the analysis of an equivalent osteosynthesis system

is possible with this technique [19]. This approach decreases the

computational costs for the analysis but at the same time increases

the modelling effort for the screws and their connections to the

bone.

The aim of the present study was to demonstrate the benefit of

an automatic screw modelling with structural elements and its

fixations with an adequate accuracy on arbitrary FE meshes. In

addition, this method was compared to experimental testing and

other frequently used modelling approaches. Furthermore, the

importance of an appropriate fixation technique, exemplarily in

case of large contact areas between bone and implant, has been

investigated.

Materials and Methods

Generating finite element models
CAD models of a composite femur (4th generation large left,

Sawbone Europe AB, Malmö, Sweden) and an angular-stable

osteosynthesis plate (NCBH, Zimmer GmbH, Freiburg, Germany)

were generated from CT data with an approximate voxel size of

0.6 mm cube. The general procedure was described in a previous

work of Kluess, et al. [20]. A segmental bone defect of 30 mm in

Figure 1. Magnification of the mesh for the three different
femoral models. Magnifications are given for the area around the
femoral head (red box), the area around the screw (blue box) and the
area of the medial condylus (green box). Thereby, Model A and B
consisted of tetrahedral elements, whereat Model A did not consider
any screw holes. Model C was discretised with hexahedral elements and
did not consider any screw holes, either.
doi:10.1371/journal.pone.0033776.g001

Table 1. Summary of the investigated models.

Femur-Model Part Element type Number of elements

Model A Femur C3D10 227,000

NCB C3D8 14,000

Model B Femur C3D10 274,000

NCB C3D8 14,000

Model C Femur C3D8 110,000

NCB C3D8 14,000

For each investigated femoral model element types and number of elements
are listed. The osteosynthesis plate (NCBH) was the same for each model.
doi:10.1371/journal.pone.0033776.t001

Figure 2. Distribution of the material properties along the
femur. Femur with its segmental defect at the lower third is shown. An
additional view cut in the frontal plane was created at the proximal end
to show the cortical structure along the femoral axis. Dark colour
represents areas with low HU values, e.g. air and cancellous bone, light
colour represents areas with high HU values, i.e. cortical bone.
doi:10.1371/journal.pone.0033776.g002
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the distal diaphysis of the femur was created analogue to the later

illustrated experimental setup prior to the meshing of the femur.

Convergence testing with respect to the femoral deflection was

performed in order to avoid any influence of the mesh density on

the results. Meshing of the bone was generally performed

neglecting the differentiation of bony structures and the elements

exhibited a global edge length of approximately 2 mm. Edge

length and degree of freedom (DOF) for the femur implies being in

good convergence [21,22].

Due to the different screw modelling and fixation techniques,

meshing procedure of the femur was performed in three work steps

using mainly the FE software package Abaqus (Version 6.10 EF,

Dassault Systèmes, Vélizy-Villacoublay, France). Thus, three

different numerical models for the femoral bone were generated

as illustrated in Figure 1.

The first femur model (Model A) was meshed with ten-node

second-order tetrahedral elements (T10) without taking into

account any screw holes. This model was used for the tie contact

as well as for the structural screw model and consisted of 227,000

elements.

The second femur model (Model B) was also meshed with T10

elements but considered the screw holes with a diameter of 4 mm

for the later implemented solid cylindrical screws. The holes were

cut into the bone, correlating with the direction vectors of the

screws according to the experimental test setup. This model

consisted of 274,000 elements.

A further femur model (Model C) was meshed with eight-node

first-order hexahedral elements (H8) analogue to the first

tetrahedral model (Model A) using the FE software package

HyperMesh (Version 10.0, Hyperworks, Altair Engineering

GmbH, Böblingen, Germany). Screw holes were not considered

because they were also modelled as structural elements. This

model was used to compare the influence of different element

types on the result accuracy and the computational time and

consisted of 111,000 elements.

The osteosynthesis plate was meshed with eight-node hexahe-

dral elements (H8; 14,000 elements), using the FE software

package MSC.Patran (Version 2007r2, MSC Software Corpora-

tion, Santa Ana, CA, USA).

Besides the illustration of the different femur meshes, number of

elements and element type for each model are listed in Table 1.

Material properties
Bone was modelled as linear elastic and isotropic material with

an inhomogeneous material distribution. Inhomogeneity of the

bone was derived from CT data and was applied as a function of

the Hounsfield (HU) values [20] as illustrated in Figure 2. Elastic

constants were taken from the manufacturer’s data with a Young’s

modulus of 16.7 GPa and 137 MPa for cortical and cancellous

bone respectively. The Poisson’s ratio was assumed to be 0.3.

All other materials were modelled as linear-elastic, isotropic and

homogeneous. Material properties of the titanium alloy (Ti6Al4V)

for both plate and screws were derived from the manufacture’s

data and from literature [6,20,23] with a Young’s modulus of

110 GPa and a Poisson’s ratio of 0.3.

Table 2. Overview of the investigated fixation cases.

Case

A1 A2 B C D

Femur model A A B A C

Element type of the
femur

C3D10 C3D10 C3D10 C3D10 C3D8

Number of elements 227,000 227,000 274,000 227,000 110,000

Fixation method Tied (2) Tied (7) Solid Structural Structural

Screw — — Cylindrical
volume

Beam Beam

Number of screw
elements

— — 8,500 2,300 1,900

Element type of screw — — C3D10 B32 B32

Screw holes No No Yes No No

Five different cases for the three fixation methods are investigated, based on
the three different femur models. Furthermore, information of the implemented
screws is also provided.
doi:10.1371/journal.pone.0033776.t002

Figure 3. Osteosynthesis plate and structural screws. FE model
of the osteosynthesis plate and the seven generated screws (a) (view
from anterior, see (b) and (c) for detailed illustration). Angular stable
fixation of the screw heads to the nodes of the osteosynthesis plate (b)
(view from lateral). Screw with the rigid connector elements C between
the base points on the wire W and the FE elements of the bone (c).
doi:10.1371/journal.pone.0033776.g003

Figure 4. CAD model of the plate as a schematic figure for the screw position. Arrows marking the position at which screws are placed for
the fixation to the bone.
doi:10.1371/journal.pone.0033776.g004
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Fixation of the osteosynthesis plate to the bone stock
FE meshes of plate and femur were assembled within the FE

software package Abaqus for further usage and screw modelling.

Femur and plate were positioned according to the experimental

testing. Based on the three femur models, five different cases for

fixation were developed and listed in Table 2.

In case of the first fixation method no screw modelling or screw

holes were necessary (Case A1). The nodes of the medial (inner)

side of the NCBH plate were tied to the outer nodes on the lateral

side of the femur (Model A) in two separate contact areas,

proximal and distal of the segmental gap. Subsequently, no

relative displacement between the femur and the plate could

occur. To reduce an unintended stiffening of the contact zone, a

subset of this fixation method was investigated (Case A2). Thereby,

the contact area was separated into seven areas, beneath and

adjacent to the screws holes of the plate.

For the second fixation technique (Case B) seven solid screws,

dicretised by solid elements (T10), were implemented into screw

holes of the femur (Model B). The geometry of the screws

exhibited a cylindrical shape with an outer diameter of 4 mm and

a length of 40 and 80 mm, respectively for five cortical and two

cancellous screws. Fixation between femur and screws was

modelled by direct mesh connectivity. In such a case elements of

the neighbouring materials share the same nodes and could not be

separated from each other. Translational DOF of all screw head

nodes were bonded to the nodes of the corresponding holes of the

plate representing an angular-stable fixation.

The last fixation method used structural elements to model the

screw and the connection to the three-dimensional FE elements of

the bone (Case C: Model A, T10 and case D: Model C, H8 mesh)

Furthermore, Abaqus/CAE offers the possibility to automatise

processes by a scripting interface, which uses the higher-level

program language Python. Python version 2.5, comprised by the

used Abaqus edition, was enhanced by the mathematical NumPy

package (Version 1.2.1). Structural screws were modelled by an

Figure 5. Experimental test setup. Posterior view of the test
arrangement with a composite left femur mounted in the universal
testing machine (Zwick/Roell). Segmental defect is bridged with an
osteosynthesis system on the lateral (outer) side and fixed with seven
titanium screws. Distal end of the femur is embedded in a metallic
socket, filled with casting resin. 57 optical markers were attached onto
the femur, socket and the testing machine to calculate their
displacement during loading.
doi:10.1371/journal.pone.0033776.g005

Figure 6. Results of the optical measurements. Displacement
vectors calculated for each marker along the femur at a maximum
applied load of 227 N. Direction and magnitude are plotted in the
picture taken from the optical measuring system at the last loading
step. Calculation of the gap alteration was calculated with displacement
vectors between two marker points (indicated with red double-sided
arrow). The colour legend represents the displacement magnitude.
doi:10.1371/journal.pone.0033776.g006
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interactive script according to five requested parameters, i.e. screw

head coordinates, direction vector, length, root diameter and outer

diameter. Information about midpoints of the screw heads and

direction vectors for each screw were determined from CT data of

the experimental test setup. The endpoint of each screw was

calculated by length and direction vector and connected to the

midpoint of the corresponding screw head by modelling a wire

penetrating the elements of the femoral bone (Figure 3). FE nodes of

the femur in the proximity of the screw wire and at distance less or

equal to the outer screw radius, i.e. 2.5 mm, were connected

perpendicular to the wire using rigid connector elements (Figure 3

c). The calculated intersection points between wire and connector

elements were subsequently used for meshing the wire with beam

elements (B32). The circular cross section of the beam elements

were designated with a radius of 2.0 mm, the effective root diameter

of the thread. Angular stable fixation of the screw head was

implemented by coupling the rotational and translational DOF of

the node representing the position of the screw head with the DOF

of the nodes within the screw hole of the plate (Figure 3 b).

Loads and boundary conditions
The femur was loaded with an axial load of 227 N according to

the experimental setup, while the translational displacements at

the distal nodes of the femur were inhibited. Load was transferred

into the femur by a frictionless contact between a rigid plate and

the femoral head.

Experimental test setup
Experimental testing was conducted using a composite femur

(4th generation large left, Sawbone Europe AB, Malmö, Sweden)

and an angular-stable non-contact bridge (NCBH, Zimmer

GmbH, Freiburg, Germany) of medium size (246 mm length, 16

screw holes) and made of standard titanium alloy (Ti6Al4V). This

osteosynthesis system consists of threadless screw heads for a

polyaxial screw positioning within the plate. Angular-stable

fixation is guaranteed by application of an additional locking

cap. Size and position of the plate and screws were chosen by an

experienced surgeon to fit the clinical situation.

The NCBH plate was fixed to the bone prior to the segmental

defect creation to ensure the correct position of the femoral bone

fragment with respect to the intact situation. Seven holes (4 mm

diameter) at the positions 2, 3, 7, 9, 12, 14 and 16 of the plate (marked

with arrows in Figure 4) were drilled into the femur. The positions

were chosen to provide an adequate fixation of the bone. Two

cancellous screws (80 mm length) at position 2 and 3 and five cortical

screws (40 mm length) at the remaining five positions were used,

following angular-stable fixation with locking caps. All screws were

made of the same titanium alloy as the plate, exhibited an outer

diameter of 5 mm and were tightened with a defined torque of 6 Nm.

Figure 7. Displacement magnitude |U| of the numerical
analysis. Displacement field of the femoral bone and displacement
vectors for individual nodes (not equal to those of the experimental test
setup) are shown.
doi:10.1371/journal.pone.0033776.g007

Figure 8. Alignment of the marker points to the FE model.
Overlay plot of the test setup picture with the marker points and the FE
model within the FE software package. By using the translucency for
the FE model the position of the marker points could be adapted to the
FE model. Red marks show position of the nodes, used for the
calculation of the femoral head deflection (1) and for the gap alteration
(2 and 3).
doi:10.1371/journal.pone.0033776.g008
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Finally, a 30 mm segmental defect was created 120 mm

proximal to the condyles of the femur and parallel to the knee

joint axis. 70 mm of the distal end of the femur and subsequently

parts of the plate were fixed with polyurethane casting resin into a

metallic socket for mounting into a universal testing machine

(Zwick Roell, Z050, Ulm, Germany) (Figure 5). To guarantee an

axial load on the femoral head, a bearing inhibiting the

transmission of shear forces was placed between the femoral head

and the crosshead of the testing machine. Furthermore, 57 optical

markers were attached to the surface of the femur, the proximal

and distal defect edges and the osteosynthesis plate in order to

determine the femoral displacement and the gap alteration. Three-

Figure 9. Results for the femoral head displacement. Results were obtained from the experimental testing (PONTOS) and the five numerical
analyses. Mean value and standard deviations are shown for the experimental data, while magnitudes of femoral head displacement are shown for
the data of all numerical models. All results were achieved at a load of 227 N.
doi:10.1371/journal.pone.0033776.g009

Figure 10. Results for the gap decrease. Results were obtained from the experimental testing (PONTOS) and different numerical analyses. Mean
value and standard deviations are shown for the experimental data, while magnitudes of gap width are shown for the numerical data of all five
numerical models. All results were achieved at a load of 227 N.
doi:10.1371/journal.pone.0033776.g010
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dimensional displacements of the markers were calculated using

the dynamic stereo-image based motion analysis system PONTOS

(5 M, GOM mbH, Braunschweig, Germany).

A maximum load of 227 N (17 N for the bearing, 10 N for

preloading and additional 200 N by the testing machine) was

applied onto the femoral head to avoid plastic deformation of the

NCBH plate. Three loading procedures have been performed in

order to average any variability. Mean values and standard

deviations (SD) were calculated.

Results

Accuracy of the optical measuring system was determined with

two markers at the rigid metallic socket and showed an error of

2.963.8 mm (mean value and SD). Hence, it did not have a

measurable influence on the results.

Displacement vectors for each optical marker during loading

were calculated representing the deflection of the bone. Magnitude

and direction for all markers of the femur are shown in Figure 6

for the last frame of the testing procedure, i.e. a load of 227 N.

The displacement of the femoral head as well as the alteration of

the gap distance under the applied load was the most important

factor for comparison. Mean value and standard deviation of the

load-displacement relation were calculated of all testing proce-

dures. A mean deflection of 16.9960.16 mm occurred for the

midpoint of the femoral head marker. Gap alteration was

determined between markers at the proximal and the distal end

of the defect with a magnitude of 1.7860.02 mm. Only small

deviations of the results between the measuring procedures

occurred.

The resulting displacement magnitude |U| for the full femoral

bone, as calculated by numerical analysis, is shown in Figure 7.

Furthermore, displacement vectors for single nodes (without

correlation to the optical markers) are plotted, indicating the

direction and the magnitude of the displacement. Both magnitude

and direction of the numerical analysis were close to the results

obtained from experimental testing.

Figure 11. Elapsed total CPU time for one equilibrium iteration. For all five numerical models the calculations were performed on an IntelH
XeonH processor E 5504 2.0 GHz. Elapsed time for one equilibrium iteration and the DOF for each model are shown. Least DOF and subsequently
least computational time was determined for the hexahedral model.
doi:10.1371/journal.pone.0033776.g011

Figure 12. Stress distribution within the area between the bone
and the osteosynthesis plate. Results are shown on the surface of
the bone (marked with red rectangle on the right). An upper limit of
60 MPa was set for comparison of all cases. Stresses are shown on the
lateral site of the femur without the osteosynthesis plate for both tied
contact models (Case A1 and A2), the model concerning the screw
holes (Case B) and both models with the implemented structural screws
(Case C and D).
doi:10.1371/journal.pone.0033776.g012
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For exact comparison of the numerical results with the

experimental testing, the position of three markers (one for

deflection of the femoral head, two for gap alteration) were

transferred to the numerical models and subsequently used for the

displacement calculations (Figure 8). The positions of the three

points were the same for all numerical models.

Femoral head displacement of the experimental testing and the

numerical analysis are plotted in Figure 9. Good agreement could

be shown between the experimental results and the numerical

models concerning the screws (Case B to D). For these FE models

the results were approximately 5% larger than those obtained

from experimental testing. Deviation between the model with solid

screws and both models with the structural screws were 1.0 and

0.3% for the tetrahedral and the hexahedral models respectively.

Differences between the two structural screw models were less than

1%. In contrast, results for both models with the tied contact

methods (Case A1 and A2) showed deviations of more than 75%

of the experimental results. Although the tied contact was

performed with seven individual contact pairs and created in the

adjacent area of the screws only, the deflection of the femoral

head, calculated with 4.1 mm, was too small and showed only

25% of the deflection measured experimentally. The result for the

case A1, with a decrease of 1.7 mm, was even worse and only 10%

of the displacement obtained experimentally. Furthermore,

differences between both tied fixation models were more than

140% between the cases A1 and A2.

Figure 10 shows the comparison between the experimental

tests and the numerical analysis for the maximum gap alteration.

Again, good agreement could be determined between the

experimental results and the numerical screw models. Results

for the screw models were approximately 6% larger than the

experimental results, whereas the deviation between the struc-

tural screw and the solid screw models was less than 0.6%.

Variability between both structural screw models were less than

0.5%. Results of the two and the seven tie fixation models were

respectively 92 and 78% less than the experimental results.

Deviation was more than 170% for the case A2 compared to the

case A1.

Besides the comparison of the result accuracy, the computa-

tional time for all numerical models was analyzed and plotted

(Figure 11). All calculations have been performed on an IntelH
XeonH processor E 5504 2.0 GHz. In order to take the different

fixation types into account, only the elapsed CPU time for one

equilibrium iteration was used for comparison. For the T10

numerical model (Model B), concerning the solid screw elements,

the highest computational time was necessary. This model also

exhibited with a value of 1,386,000 the largest amount of DOF.

Although the amount of DOF for the T10 model with the

structural screws (Model A) was only 8% larger (1,266,000 DOF)

than for both tie fixation models (also Model A: 1,157,000 DOF),

due to the structural screws, the computational time was

approximately 17% less. Least computational time was necessary

for the H8 model (Model C) with only 480,000 DOF. The

computational time of model C was only 15% of the computa-

tional time compared to Model B.

Subsequently, the stress analysis compared the von Mises

equivalent stresses. Highest stresses occurred at the proximal end

of the gap for all numerical models and are shown as stress

distribution in Figure 12. For all screw models stresses occurred

only within the surrounding area of the screws. In contrast to that,

stresses occurred within the whole contact area between the

osteosynthesis plate and the femoral bone for both tied fixations,

influencing a larger area for the two than for the seven contact

fixation method. Both direct fixation models showed the highest

amount of stress in the area around the screw holes of the

osteosynthesis plate.

Discussion

In this study we described the accuracy of different numerical

techniques to consider the fixation of an osteosynthesis implant to

the bone stock in comparison to experimental testing. Good

correlations in both femoral head displacement and gap alteration

were found between experimental testing with an accuracy of

approximately 95% for the FE models concerning screws.

However, results obtained for the gap alteration of 1.78 mm

under the applied load of 227 N did not represent a micromotion,

as the investigated model is a large segmental defect model and

therefore, the results are more an indicator for the stability of the

osteosynthesis system.

The test setup for the biomechanical application and screw

implementation was performed similar to testing procedures

reported in studies with focus on the comparison of different

types of internal plate fixation [3–5]. Validation was conducted

using a composite femur due to the consistent and reproducible

material properties compared to human specimens [24,25].

Furthermore, the overall behaviour of the composite femur is

similar to that of human bone and is therefore an established

method for biomechanical testing [26,27]. Nevertheless, specific

results, e.g. pull-out testing of screws may differ from human bone.

In addition to the validation of our numerical model we could

also show the strong influence of the numerical implant fixation

technique on the behaviour under static loading. Especially for

clinical predictions and the application of osteosynthesis plates to

fractured bones or bones with segmental defects the use of an

adequate fixation technique is important for the quality of the

numerical results.

The modelling technique of implant fixation for both tied

contact models leads generally to too small deformations due to a

stiffening of the bone-plate-interface, whereby the seven-contact-

model was less stiff and thereby closer to the reality than the two-

contact-model. In general, these results suggest that the use of tie

fixation techniques leads to inadequate displacements when used

with large contact areas and might be an acceptable method for

small contact areas with only small deformations. Taylor, et al. [9]

used this kind of fixation to fix a Thrust Plate Prosthesis to the

bone without modelling additional screws. The tying of bone and

implant surfaces will result in increased and non-physiological

stresses within the contact surface. Especially for the described

bone remodelling processes the impact of this effect remains

uncertain. For this reason, modelling of screws in conjunction with

the use of osteosynthesis systems and big contact areas is highly

recommended.

Concerning the presence of screws our FE simulations showed a

good agreement between numerical results and the experimental

testing. The use of solid elements is the most common method to

consider the screws [6–8,15]. Cegonino, et al. [6] determined the

mechanical stability of fractures at the distal femur and different

types of implants in a clinical situation similar to our case. In

contrast to other authors, hexahedral elements instead of

tetrahedral elements were used to discretise the FE models in

our study. Nevertheless, for different kinds of implants or screw

orientations meshing of the femur and the screws has to be

performed individually for each case, which leads to high pre-

processing costs.

While the fixation of FE models in the field of non-union in long

bones is performed mainly with volumetric elements the mixture

of volumetric and structural elements used for the fixation is only
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reported in a few studies. Seral, et al. [10] used bar elements for

the fixation of an intramedulluary osteosynthesis as a support at

the distal end to the main fixation in the proximal area with

volumetric elements.

Complete fixation of an implant to an open wedge tibial

osteotomy was performed by Blecha, et al. [18] using structural

beam elements. Although their investigations imply good results,

experimental testing for validation purposes is seldom performed.

In contrast, Wilke, et al. [17] performed a validation and showed a

good correlation between numerical analysis and in-vitro testing

with a fixation composed of only structural beam elements for

cervical plates.

In the presented studies structural elements were used for the

fixation of small implants only [17,18] or in addition to solid

screws as supporting elements for partial fixation [10], whereas the

influence of the screws were not clearly determined. In our present

study we could show the accuracy of solely used structural

elements for the fixation of big-sized implants and large screw-

bone-connectivity. Thereby, results of both models, Case C & D

with the structural screws and Case B using solid screws, showed

differences of approximately 1%. Therefore, the use of structural

elements could replace solid screws and thereby spare the

modelling effort for the complex screw structures and the

consideration of screw holes, which complicates the meshing of

the bone, especially when the mesh is composed of hexahedral

elements.

Structural elements like beams are a common method to

discretise slender structures, e.g. in external fixation systems with

satisfying accuracy [28,29]. The described method can therefore

be used to create screws parameterised only by few parameters,

e.g. radius of influence, length and direction on FE meshes with

minimal effort. Due to the use of structural beam and rigid

connector elements the screws could be implemented automati-

cally in arbitrary FE models after volume mesh generation. For

this study complete screw modelling could be performed in less

than one minute. Therefore, numerous variations of screw

parameters, e.g. screw radius, length, orientation, amount of

screws in combination with different osteosynthesis systems can be

investigated in order to give clinically relevant propositions.

Besides the different types of screw modelling, we could also

show the influence of the element type used for the meshing of the

femur (hexahedral versus tetrahedral). Both meshes consisted of a

global edge length of approximately 2 mm as recommended to be

in good convergence [21,22]. Our own testing showed a

convergence of the gap alteration at this edge length. Furthermore,

using second-order ten-node tetrahedral elements should be used

for accurate stress distribution within the elements [22]. It should

be noted, both meshes performed in a similar way but took

different computational time due to the different DOF. Therefore,

hexahedral elements showed an optimum of result accuracy and

computational time. Hence this numerical model using hexahedral

elements is suitable to be used for further numerical investigations

and the developed method can be used for the screw generation in

arbitrary FE models.

As the results showed good agreement between experi-

mental testing and numerical analysis this kind of screw

modelling approach and the CT-based material distribution can

be also used for patient-specific human bones with sufficient

accuracy.

In addition, more complex physiological boundary condi-

tions can be investigated, e.g. considering muscle forces and loads

from daily routines like walking, stair climbing or stumbling in

order to determine the mechanical behaviour under every-day

situations.
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