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1 Instituto de Estudios Biofuncionales, Universidad Complutense, Madrid, Spain, 2 Centro Nacional de Microbiologı́a, Instituto de Salud Carlos III, Majadahonda, Madrid,
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Abstract

Porous ceramic scaffolds are widely studied in the tissue engineering field due to their potential in medical applications as
bone substitutes or as bone-filling materials. Solid free form (SFF) fabrication methods allow fabrication of ceramic scaffolds
with fully controlled pore architecture, which opens new perspectives in bone tissue regeneration materials. However, little
experimentation has been performed about real biological properties and possible applications of SFF designed 3D ceramic
scaffolds. Thus, here the biological properties of a specific SFF scaffold are evaluated first, both in vitro and in vivo, and later
scaffolds are also implanted in pig maxillary defect, which is a model for a possible application in maxillofacial surgery. In
vitro results show good biocompatibility of the scaffolds, promoting cell ingrowth. In vivo results indicate that material on its
own conducts surrounding tissue and allow cell ingrowth, thanks to the designed pore size. Additional osteoinductive
properties were obtained with BMP-2, which was loaded on scaffolds, and optimal bone formation was observed in pig
implantation model. Collectively, data show that SFF scaffolds have real application possibilities for bone tissue engineering
purposes, with the main advantage of being fully customizable 3D structures.
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Introduction

Porous bioceramics are widely used in medical applications as

bone substitutes or as bone-filling materials [1–4]. These porous

scaffolds are used to provide structural support and also to serve as

a template for cell colonization and extracellular matrix formation

[5]. Both degradable and non-degradable ceramics are used to

fabricate scaffolds and also multiple methods have been used to

create the porous structure [6–8].

However, most conventional scaffold fabrication methods do

not allow the fabrication of structures with customized and

complex external shapes or internal pore architectures. Solid free

form (SFF) fabrication techniques - three-dimensional printing,

stereolithography, fused deposition modeling, robocasting, phase-

change jet printing, etc. - constitute an excellent alternative to

produce well-defined 3D structures [9–13]. These SFF technolo-

gies involve building 3-D objects from a computer-aided design

(CAD) model using layered manufacturing strategies. An addi-

tional advantage of SFF scaffolds is that potentially they could be

specifically designed for specific bone defects, for example, taking

as model an x-ray tomography image.

Robocasting, also known as direct-write assembly or micro-

robotic deposition, is a SFF method that consists of the robotic

deposition of water-based colloidal suspensions (inks), with a high

solid-load and a minimal organic content (,1 wt.%), capable of

fully supporting their own weight during assembly [14,15].

Deposition is usually made within an oil bath to prevent non

uniform drying during assembly. Thus, a 3D network of semisolid

ink rods is created layer-by-layer without the need for a sacrificial

support material or mould.

Recent work has been directed towards developing ceramic

robocast structures [16–18] with the aim of combining the

excellent biological properties of the bioceramics with those

provided by a fully controlled, reproducible and customizable

architecture. Extensive material characterization has been per-

formed in order to elucidate the mechanical properties of these
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scaffolds [16,17,19,20]. However, as yet, there is no biological

information available to confirm the expected applicability of free

form designed, architecturally well-defined ceramics.

In vitro biological properties [21–23] and prospective in vivo

assays [12,24–28] are already performed with other SFF designed

scaffolds, which were made of different materials as polymers,

composites and ceramics. Thus, the purpose of this work is

biological and it is related firstly to testing the biocompatibility and

bioactivity of these scaffolds, and later to assess the potential of this

approach to become clinically viable. In addition, the benefits of

incorporate an osteoinductive factor in the robocast scaffolds are

also explored in this work. BMP-2 is a well-known osteoinductive

growth factor that combined with porous ceramics improves the

osteointegration [29–32].

Results and Discussion

1. Scaffold presentation and morphology
Material fabrication process and physical properties have been

previously described [16,17,19,20]. It is well known the impor-

tance of some scaffold properties in tissue conduction processes

[33,34]. Features like scaffold geometry and surface properties are

biologically relevant, since they have a strong influence in cell

adhesion and proliferation processes [35,36]. For testing assays

square scaffolds were designed. Structural data are summarized on

figure 1 (see table) and macrostructure is also shown in Figure 1,

imaged by SEM (fig. 1A) and mCT (fig. 1B). Views of the entire

scaffolds (fig. 1A1, 1B1), top surface (fig. 1A2, 1B2) and transversal

section (Fig. 1A3, 1B3) are presented. Images correspond to

different samples.

2. In vitro testing
Cellular assays were performed in order to assess cell adhesion,

viability, proliferation and migration on mentioned scaffolds. For

these assays C2C12 pre-myoblastic cell line was selected. As

adherent cell line, it allows testing cell adhesion and colonization

of scaffold surfaces. In addition, C2C12 cell line has the ability to

evolve to an osteoblastic phenotype upon the addition of BMP-2

[37–41]. BMP-2 modifies multiple cellular processes in C2C12

cells, as cell adhesion, proliferation and migration, thereby

inducing osteodifferentiation and processes implicated in new

bone tissue vascularization and progression [40–42].

Thus, firstly cell adhesion and spreading was checked. Figure 2

shows micrographs of different methods used to visualize cells on

scaffolds surface. The green fluorescence observed on Fig. 2A1

and 2A2 corresponds to calcein vital staining, and shows viable

cells adhered on the scaffold surface. A comparison of fluorescent

(Fig. 2A2) and white light (Fig. 2A3) images shows that adhered

cells tend to follow the material surface pattern. Further evidence

of this is shown in the SEM images (Fig. 2B); On the unseeded

scaffold (Fig. 2B1) a pattern of extrusion marks is evident on the

material’s rod surfaces, while the image of a fully cell-covered

scaffold (Fig. 2B2) shows the tendency of cells to follow the

scaffold’s irregular, grooved surface. Also cell nucleous and actin

cytoskeleton were stained and visualized in a confocal microscope

(Fig. 2C: blue, nucleous; red, actin cytoskeleton). Images show

again a fully cell-covered scaffold surface, assessing the ability of

the scaffolds to promote cell adhesion and growth.

Figure 2 demonstrates good cell adhesion and spreading on the

material surface, and suggests an influence of the scaffold surface

patterning on the cell distribution and shape. However, a critical

feature in porous scaffolds is the capability for seeded cells to

migrate and grow on the inner surfaces. Figure 2 shows partially

cells penetrating inside scaffolds but microscopic techniques are

not enough to assess it. Thus, histological and MRI assays were

performed in order to observe cells deep inside structure. Figure 3A

shows in black the area in which these assays were performed.

Histology is already used for other 3D material testing [21].

Figure 3B corresponds to a histological slice obtained in the center

of the specimen and it shows cells inner scaffold’s structure. MRI

technique was also used to see/check live cells inner scaffold

structure. Figure 3C1 shows a non cell-seeded material while

figure 3C2 shows a cell seeded scaffold. There bright areas in the

porous structure correspond to live cells. Additionally, 3D MRI

studies were performed and cells were located in entire scaffold

structure (see Movie S1).

All previous results show cells in the surface or inside material

structure, but cell proliferation should be assessed in order to

consider a material biocompatible. The proliferation of cells was

quantified using two complementary methods, which are MTS

and alamar blue tests. The time course plot of these assays (Fig. 3D)

shows the cell proliferation behavior in the scaffold. As it can be

observed, initially ,10000 cells adhered to the scaffold, while

subsequent measurements show good cell proliferation on the

material. Doubling time of cells on scaffolds was estimated in

32,1 hours, which is similar to the doubling time of C2C12 cells in

control plastic cell culture surface (29,7 hours).

Figure 1. SFF designed Scaffold. A) SEM micrographs of scaffold samples. A1) Entire scaffolds; A2) top plane view; A3) cross-section view. B) mCT
images of scaffold samples. B1) Entire scaffolds; B2) top plane view; B3) cross-section view. Table shows measured structural data.
doi:10.1371/journal.pone.0034117.g001

Solid Free Form BMP
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In bone tissue engineering osteoinductive factors are usually

included to scaffolds, via factor-adsorption onto the surface or via

factor-entrapping in a carrier material [43–46]. BMP-2 is a well

known osteoinductive factor [30,31,41,47–49] and this property is

desirable if in vivo bone formation is desired. Here we selected and

tested two delivery methods which have been previously reported,

both in vitro and in vivo, with BMP-2 and other scaffolds: 1- surface

adsorption [32,50], which is later in vivo assayed in models 3.1 and

3.2, and 2- entrapping in a coating material (Chitosan) [40–42]

which is later shown in in vivo model 3.3. These methods were

selected because there are several paper focused on BMP2

adsorption on ceramic scaffolds and subsequent delivery and also

because we previously reported BMP-2 delivery from chitosan

coating [42].

The activity of this growth factor on the scaffold surface was in

vitro assessed by measuring the ALP activity (an osteoblastic

differentiation specific marker) of scaffold-adhered cells after the

first, fifth and ninth culture day. Plot in Fig. 4C shows that ALP

activity appears at fifth culture day and grows at ninth when BMP-

2 is present on scaffold. These data indicate that BMP-2 on

scaffolds is active and induces in vitro bone differentiation. In

contrast, cells seeded on the control scaffolds do not present ALP

activity in any case.

All together, in vitro results show that these scaffolds are

adequate for cell attachment, proliferation and colonization of

entire structure, thereby confirming that these SFF-designed

materials have appropriate biological properties, at least in vitro.

3. In vivo assays
Bone tissue regeneration is the main applicability of ceramic

scaffolds. However, in scaffold field, a gap exists between research

and clinical translation [51–55]. Thus, focused on a translational

approach, we decided to perform an exhaustive in vivo testing, both

in small and large animal models, both in ectopic and orthotopic

models, and also both in delayed bone healing model and critical

size bone defects, in order to verify material properties. Thus,

assays were designed in order to firstly check the conductive effect

of the control scaffolds and later confirm osteoinductive property

of scaffold/BMP-2 samples.

3.1. Rabbit: Muscle Implantation. Initially biological

behavior of scaffolds was tested by implantation of samples in

rabbit dorsal muscle tissue. This ectopic model allows the testing of

both conductive effect of scaffold’s structure and osteoinductive

effect of incorporated BMP-2. Fig. 5 shows histological appearance

of samples implanted during 3 weeks. Control scaffolds

(Figures 5A) show a matrix filled of muscle tissue which comes

from the surrounding to inside material. Also fibrous tissue can be

observed. On the other hand, scaffolds with BMP-2 exhibit a cell

invaded matrix (Fig. 5B), but the appearance is completely

different. In these cases, fatty tissue with vessels containing red

blood cells can be observed between large areas of newly formed

Figure 2. Cell adhesion studies. A) Calcein cell viability assay. A1) Fluorescence image of a cell-seeded scaffold after 3 days. Green cells are viable
cells. A2) A detailed image showing green viable cells adhered to the material. A3) Light image of the same sample area. Arrows in A2 and A3 mark
similarities between surface morphology and cellular pattern. B) SEM images. B1) Image of a control, unseeded scaffold. Arrows indicate extrusion
marks in the surface of the ceramic rods. B2) A cell seeded scaffold after 7 days. Note that cells follow the pattern of the surface morphology indicated
in B1 image. C) Confocal image of a cell covered scaffold surface at seventh culture day. (Red, actin cytoskeleton; Blue, Nucleous).
doi:10.1371/journal.pone.0034117.g002
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bone (Fig. 5B2, green tissue). It indicates an advanced bone

formation inside the material with generation of fatty marrow

spaces.

These results show that the macropore structure allows

surrounding tissue colonize inner space of robocast scaffold.

However, the influence of the BMP-2 in the newly formed tissue

was remarkable (Fig. 5): muscle tissue and fibrous tissue were

observed inside the control scaffolds, while ectopic bone tissue was

formed inside BMP-2 activated scaffolds. This bone formation

associated with marrow suggests that BMP-2 and scaffold structure

allow a direct bone-inducing effect [43,44].

3.2. Rabbit: Bone Implantation. These findings were

confirmed in a second in vivo model in an orthotopic location. In

this case, bone defects were created in rabbit tibia and samples

were implanted (fig. 6). Figure 6 shows surgery procedure and

sample appearance 3 weeks after surgery. Control samples were

stable in the bone tissue and look integrated, while BMP-2 samples

show high amount of bone formation onto and around the

implanted material. The representative mCT slides in Figure 6

show no bone around the control scaffolds (fig. 6A2) while newly

formed bone is clearly observable surrounding the BMP-2 carrier

scaffolds (fig. 6B2). Furthermore, the histological study shows that

fibrous tissue was formed deep inside control implanted scaffolds

Figure 3. Inner-cells studies and quantification assays. A) Scheme of cell-location studies. Black area correspond to studied area. B) Histology
inner the robocasting structure. Asterisks show the location of ceramic rods, which are empty spaces due to performed sample decalcification. Note
C2C12 cells located in entire scaffold structure. C) Non-destructive MRI images obtained inner scaffold structure. C1) Non cell-seeded scaffold C2) Cell
seeded scaffold. Note brightness in most porous structure attributable to cell presence. D) Quantitative assays for cell proliferation measurement.
Graphic represents the time course plot obtained in both MTS and Alamar Blue assays.
doi:10.1371/journal.pone.0034117.g003
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(Fig. 6A3) while in the BMP-2 carrier scaffolds new bone tissue was

the observed one within the matrix (Fig. 6B3). In this case, like in

muscle implantation model, fatty tissue and red blood cells are also

but barely appreciable, being bone most of the formed tissue.

These results in rabbit models indicate that material on its own

conducts surrounding tissue and allow cell ingrowth, thanks to the

scaffold structure. In addition, scaffolds with BMP-2 show also

osteoinductive properties.

3.3. Pig Maxillary tissue: Clinically relevant animal

model. In order to extend on the applicability of these

structurally customizable scaffolds, a specific design was

fabricated and pig, which is physiologically closer to human

being, was used as animal model. In odontology lack of enough

bone tissue volume to work is a usual clinical problem. Thus,

critical size superior maxillary defects was used as model of poor

bone tissue volume area. Robocast/BMP-2 scaffold was tested as

bone augmentation agent and samples were specifically designed

in order to allow their immobilization by two screws. With

comparative purposes, clinically available conventional porous

ceramic blocks (Bio-OssH) with irregular internal pore structure

were also implanted.

Figure 7A shows specifically designed material and its structural

properties. Surgery is shown in fig. 7B where defect, Robocast

material (which fits to performed defect) and screw implantation

could be observed. Fig. 7C also shows implanted Bio-OssH blocks,

which were mechanically polished in order to fit to the defect area

and which required surgical glue in order to fix them to defects.

Three months after surgery samples were harvested and fig. 8

summarizes obtained results. BMP-2 loaded samples showed high

amount of newly formed bone in the defect area, compared to

empty control and control ceramic scaffolds. Fig. 8 shows it in

images which correspond to performed microCT and histological

studies. Differences in bone volume are appreciable in microCT

images, while histologies show differences in the newly formed

bone structure due to implanted materials. Bone follows material

internal structure and, being robocast structure regular, it could be

observed in histological samples (see fig. 8C4, which correspond to

the centre of a sample, in the area between screws).

The differences shown in figure 8 were measured in 13 from all

16 samples, and obtained microCT data are summarizes in

figure 9. Although some treatments were tested only in duplicate,

data show statistical differences in bone formation between empty

and all other treatments (p#0.05 for control and ceramic scaffolds,

p#0.001 for SFF/BMP-2 and Bio-OssH/BMP-2 scaffolds). No

differences were observed between control Robocast and Bio-OssH
scaffolds and neither between BMP-2 carrier materials. Thus, it

could be concluded that tested Robocast scaffolds have similar

osteoconductive properties to an already clinically available

material (Bio-OssH) and show similar osteoinduction due to

BMP-2 activation. However, SFF ceramic scaffolds could be

Figure 4. ALP activity measurements. Time course plot of ALP
activity in control scaffolds (Control), BMP-2 adsorbed scaffolds (BMP-2)
and Chitosan/BMP-2 coated scaffolds (CH/BMP-2).
doi:10.1371/journal.pone.0034117.g004

Figure 5. Implantation in rabbit muscle. A) control scaffolds, B) BMP-2 adsorbed scaffolds: 1) Hematoxilin/Eosin stainings, 2) Massons tricrome
stainings. Dotted line marks scaffold limits. Empty round spaces correspond to the ceramic material. A1, A2) Fibrous tissue (F) and muscle tissue (M)
are present in the structure of the control scaffolds. B1, B2) Newly formed bone (green tissue: arrows, q), fatty tissue with vessels (asterisks, *) and red
blood cells (arrow heads, .) are observed in BMP-2 adsorbed scaffolds.
doi:10.1371/journal.pone.0034117.g005

Solid Free Form BMP
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specifically designed depending on defect and additionally also

facilitate surgery procedure.

4. Conclusions
SFF designed ceramic scaffolds have the great advantage that

external shape and macroporosity architecture can be precisely

controlled by the spacing of the deposited ink rods. This work

shows the biocompatible and conductive properties of custom-

designed ceramic scaffolds. Osteoinductive properties have been

added via incorporation of BMP-2 in structure. A scaffold was

specifically designed taking into account a clinical problem and

results show the potential applicability of this scaffolding method.

Future work would be directed to study specifically designed

structures and external shapes for specific applications in

odontology, traumatology and bone cancer surgery.

Materials and Methods

1. Ethics Statement
All animal handling and experimental procedures were

approved by the Animal Care and Usage Committee of

Universidad Complutense and Hospital Clı́nico San Carlos,

according to the guidelines for ethical care of experimental

animals of the European Community.

2. Scaffold fabrication
The preparation of the HA and b-TCP scaffolds can be found

elsewhere [16,18]. Briefly, commercially available ceramic pow-

ders (Fluka, Buchs, Switzerland), with an average particle size of

1.860.8 mm, were used to prepare inks for robocasting. The inks

were used to build scaffolds layer-by-layer with a total of 44, using

Robocad 3.0 (3D Inks, Stillwater, OK, USA) for computer design,

in which the in-plane line spacing (from center to center) of the

rods was set to 400 mm and the layer spacing at 225 mm. A three-

axis robotic arm moved the injection syringe while pressing the

ceramic ink through conical deposition nozzles of 250 mm

diameter, immersed in an oil bath, to create the self-supporting

3-D networks. The resulting samples were dried in air at room

temperature for 24 h and then at 400uC for 1 h to evaporate

organics, followed by a sintering treatment at 1300uC for 2 h.

Then, the scaffolds were cut to 36363 mm pieces. Previously to

the in vitro and in vivo experiments pieces were heat sterilized at

300uC.

3. BMP-2 incorporation on scaffolds
Escherichia-coli-produced recombinant human BMP-2 (rhBMP-2)

was generously supplied by Noricum S.L. (Spain). BMP-2 was

adsorbed onto robocasting surface (500 mg/piece) as described in

previous works for other porous ceramic scaffolds [32,50]. Briefly,

each piece was immersed in 400 mL of a BMP-2 solution

(1.25 mg/mL, 50 mM acetic acid). Then, the samples were

incubated in a sterile laminar flow hood at room temperature. The

absorbance at 280 mm was measured in the remaining adsorption

media, in order to ensure that all the BMP-2 was absorbed on the

scaffold. For pig implantation model, BMP-2 was incorporated to

scaffolds via chitosan/BMP-2 coating (1 mg of BMP-2/piece) as it

has been described elsewhere [40–42].

4. Microcomputed tomography (m-CT)
A mCT system (eXplore Vista, GE) was used to perform non-

destructive imaging and to quantify the 3D microarchitectural

morphology of each sample. Samples were imaged with an X-ray

tube voltage of 50 kV and a current of 200 mA. The scanning

angular rotation was 180u, the angular increment 0.40u, and the

voxel resolution 50 mm. Data sets were reconstructed and

segmented into binary images (8-bit BMP images) for the

subsequent image processing, measurements and 3D surface

Figure 6. Implantation in rabbit bone. Up, images of the surgical
procedure. A) control scaffolds, B) BMP-2 adsorbed scaffolds. 1) Gross
appearance of harvested samples, 2) Representative mCT slides, 3)
Representative histological images (Massons tricrome stainings). Note
in B1 and B2 bone formation outside structure, which covered all the
scaffold. See in A3 and B3 the tissue formed inside structure. Fibrous
tissue is observed as purple-blue while bone is green.
doi:10.1371/journal.pone.0034117.g006

Figure 7. Implantation in pig maxillary defects: materials and
surgery. A) Robocast ceramic design, macroscopical appearance of
scaffold and microscopical detail. B) Images of surgery procedure,
implantation of a Robocast sample and fixation of it with screws. C)
Microscopical image of a Bio-OssH sample, detail of Bio-OssH sample
preparation procedure and Bio-OssH implanted and fixated with
surgical glue (see blue glue between sample and surrounding bone).
doi:10.1371/journal.pone.0034117.g007

Solid Free Form BMP
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reconstructions using MicroView ABA 2.2 software (GE Health-

care).

5. Scanning electron microscopy (SEM)
The samples were gold-sputtered (Pelco 91000 sputter coater). A

scanning electron microscope (SEM, JSM-6330F Jeol, Japan) was

used to characterize the surface topography of samples.

6. Cell culture
C2C12 mouse muscle myoblastic cell line was used (CRL

1772, ATTC, USA). Cells were cultured in DMEM high in

glucose (31966-021,GIBCO, UK), containing 10% Fetal Bovine

Serum (10500-064, GIBCO, UK) plus antibiotics (100 U/ml

penicillin and 100 mg/ml streptomycin sulphate) (GIBCO,UK).

Culture conditions were 37uC in a humidified 5% CO2

Figure 8. Implantation in pig maxillary defects: Results. A) Control empty sample. B) Bio-Oss/BMP-2 sample. C) Robocast/BMP-2 sample. 1) 3D
reconstruction of mCT studies. Red arrows indicate bone height. 2) Representative mCT slices. Dotted lines indicate scaffold location. 3) Macroscopic
appearance of histological samples. Dotted lines indicate scaffold location. Squares indicate the area observed in provided histological details (4).
doi:10.1371/journal.pone.0034117.g008

Figure 9. Implantation in pig maxillary defects: Data. Table summarized data obtained from mCT studies (SFF, Robocast scaffolds; BIO, Bio-
Oss). Graphic represent ‘‘Bone Volume’’ and ‘‘Bone Mineral Content’’ (BMC). Data in graphics are provided in mean and standard deviation.
Significative differences stand for: * (p#0.05), ** (p#0.01), *** (p#0.001).
doi:10.1371/journal.pone.0034117.g009

Solid Free Form BMP
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atmosphere. Cell passaging was always performed at 80% of

confluence.

7. General set up for all cellular assays
Each sterile scaffold was placed into a well of 48-well plates, and

trypsinized cells were seeded (50000 cells/sample). Afterwards,

400 ml of pre-warmed complete culture medium was added on

each well. Before any measurement, each scaffold was transferred

to a new culture well to avoid contaminations into the results by

cells adhered onto the plastic surface of the well. All assays were

done at least in triplicate.

7.1. Cellular viability assay. Cellular viability was tested

after three days of culture with the calcein AM assay (Molecular

Probes, Eugene, Oregon, USA) as described by the manufacturer.

Briefly, cell culture medium was replaced with 400 mL of PBS-

calcein AM (1 mg/mL). Cells were them incubated 15 minutes at

37uC. Fluorescent images were obtained in an Olympus BX51

microscope.

7.2. Cellular morphology study. Cell cultured scaffolds

were fixed with Formaldehyde 3.7%. For cellular observation with

SEM (JEOL JSM-35 CF), some samples were fixed with

Formaldehyde 3.7%, dehydrated in an alcohol gradient and

prepared by gold-coating using a sputter coater (Pelco 91000). For

confocal microscopy, other samples were also fixed with

Formaldehyde 3.7%. In these samples F-actin was labelled with

Texas Red-Phalloidin (Molecular Probes, Eugene, Oregon, USA)

and nucleus was stained with Hoechst (Molecular Probes, Eugene,

Oregon, USA) as described by the manufacturer. Briefly,

Formaldehyde solution was removed and samples were washed

twice with PBS. Then they were incubated with 0.1% Triton X-

100 in PBS during 5 minutes and washed again with PBS. Finally

samples were incubated with the inmunostaining solution

30 minutes and washed twice with PBS. Images were obtained

and analyzed using Leica Lite software.

7.3. Magnetic resonance imaging (MRI). Both control and

cell-seeded scaffolds were transferred to 1.5 mL tubes and

visualized by MRI. Data was acquired using a 4.7 Tesla Bruker

BIOSPEC 47/40 MRI system with a gradient intensity of 45 G/

cm. A Bruker designed volume coil was used for data acquisition

(diameter = 3.5 cm). 2D proton-weighted fast spin echo (FSE) MR

images were acquired with the following settings: repetition time

(TR) = 3000 ms; Echo time (TE) = 20 ms; slice

thickness = 1.5 mm; field of view (FOV) = 161 cm2;

matrix = 2566256. The resulting resolution was 39 mm639 mm.

3D proton-weighted FSE-MR images were also acquired with the

following settings: TR = 3000 ms; TE = 20 ms;

FOV = 16161 cm2; matrix = 25661926192. These data was

reconstructed to yield a reconstructed matrix size of

25662566256, with a resolution of 39 mm656 mm656 mm.

7.4. MTS cell proliferation assay. It was performed as

described by the manufacturer (Aqueous MTS Non-Radioactive

Cell Proliferation Assay, Promega, Madison, WI, USA). Briefly,

scaffolds were transferred to new wells, reconstituted MTS was

added (40 ml MTS in 400 ml medium) and scaffolds were

incubated at 37uC for 90 min. The medium was transferred to

new wells to measure the absorbance (460 nm, Biotek FL-600) and

blank readouts were subtracted. The data obtained were

converted to cell number by interpolation on a standard curve.

7.5. Alamar Blue cell proliferation assay. It was

performed as described by the manufacturer (Biosource,

Camarillo, CA, USA). Briefly, before each measurement

scaffolds were transferred to new wells and new culture medium

and Alamar Blue reagent were added (40 ml of reagent in 400 ml of

medium). After the incubation period (37uC, 120 min.) the

medium was transferred to new wells, the absorbance (590 nm)

was measured (Biotek FL-600) and blank readouts were

subtracted. The data obtained were converted to cell number by

interpolation on standard curve.

7.6 In vitro testing of BMP-2 activity. The effect of the

scaffold-adsorbed protein was evaluated through the colorimetric

measurement of alkaline phosphatase (ALP) activity. Briefly

described, after the removal of culture medium, scaffolds were

washed with PBS (200 mL). Afterwards, a 100 mL/well of lysis

buffer (50 mM Tris pH 6.8, 0.1% Triton X-100, 2 mM MgCl2)

was added. 10 mL samples were assayed for alkaline phosphatase

activity in 96-well plates, using p-nitrophenylphosphate in 2-

amino-2-methyl-1-propanol buffer as a substrate in a total volume

of 100 mL; after 10 min. at 37uC. The reaction was stopped with

100 mL of 0.5 M NaOH and the absorbance was measured at

450 nm on a Microplate Reader (Biotek FL-600).

8. Experimental in animals (rabbit models)
The in vivo studies were performed in New Zealand male

rabbits, which had an average weight of 3 kg. The rabbits were

anesthetized by intramuscular injection of 2% Rompun (Xylacine

1 mL/10 kg, Bayer) and Imalgene 1000 (ketamine 20 mg/kg,

Merial). Then, the surgical area was shaved and washed with an

antiseptic solution (Betadine, 10% povidone-iodine, Meda Man-

ufacturing, France). For muscle implantation, an incision was

made in the dorsal muscle tissue, samples were inserted (control

samples (n = 6) and BMP-2 carrier samples (n = 6)). For bone

implantation, an incision was made in the periostium of the tibial

plateau. Later a defect was drilled and a sample was inserted in the

defect (control samples in the right legs (n = 5) and BMP-2 carrier

samples in the left legs (n = 5)). In all cases wound was sutured

layer-by-layer. Animals were sacrificed after three weeks and

samples were dissected and fixed in formalin solution for

subsequent studies.

9. Experimental in animals (pig model)
Pigs (n = 8) were anesthetized with a mixture of Medetomidin

(0.03 mg/kg of DomtorH, Pfizer, Dublin, Ireland), ketamine

(10 mg/kg of KetolarH, Pfizer) and atropin sulfate (0.02 mg/kg

Atropina BraunH, Braun Surgical SA, Rubı́, Barcelona, Spain)

delivered by intramuscular injection. During the surgery the

animals were monitorized and anaesthesia was maintained with

Propofol 1%. 2 defects were created in each pig. In each case, the

gingiva was open and palatal flap was elevated. From distal to

palatal, and below the root of the teeth, a critical size defect was

created (1.5 cm61 cm61 cm) and a scaffold was inserted in the

defect. The SFF implants (1.5 cm60.9 cm60.9 cm) were fixed

with 2 screws. Bio-OssH samples were cut to fit to defect area and

fixed with surgery glue (histoacrylH surgical glue, Braun Surgical,

Tuttlingen, Germany). After surgery, daily during seven days, the

animals received Amoxicilin (7 mg/10 kg) and clavulamic acid

(1.75 mg/19 kg of SyinuloxH, Pfizer) by intramuscular injection.

Pigs were euthanized 3 months after surgery by intravenous

injection of 100 mg/kg of sodium pentobarbital. Samples were

harvested and screws were removed for mCT and histological

evaluation.

9.1. 3D imaging and sample measurements. Before the

histological analysis 13 from all 16 samples were observed by

microcomputed tomography (m-CT) as described above (see 4.3.).

All measurements and 3D surface reconstructions were performed

with MicroView ABA 2.2 software (GE Healthcare). Mean and

standard deviation were obtained from ‘‘Bone Volume’’ and

‘‘Bone Mineral Content’’ parameters. Statistical analysis was

performed using GraphPad Prism version 5.00 for Windows,
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(GraphPad Software, San Diego, California, USA). One-way

ANOVA Analysis with Dunnet post-test between all treatments

and control (empty defect) was performed. Significative differences

stands for: * (p#0.05), ** (p#0.01), *** (p#0.001).

9.2. Histology. Samples were decalcified with 10% nitric

acid during 3 days. After dehydration, decalcified samples were

paraffin-embedded and longitudinally sectioned for histological

study. Three different serial slices were obtained in each sample

(10 slices in each series). Hematoxylin and eosin and Masson’s

tricrome stainings were performed. The histological processing

was performed by Dominion-Pharmakine histology services (www.

pharmakine.com). Stained slides were viewed with an Olympus

BX51 microscope.

Supporting Information

Movie S1 3D MRI study. Video shows the 3D reconstruction

of an entire scaffold. Brightness corresponds to seeded cells which

colonize all structure.

(MOV)
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