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The global epidemic of obesity is accompanied by an increased prevalence of cardiovascular disease (CVD), in particular
stroke and heart attack. Dysfunctional adipose tissue links obesity to CVD by secreting a multitude of bioactive lipids and
pro-inflammatory factors (adipokines) with detrimental effects on the cardiovascular system. Adiponectin is one of the few
adipokines that possesses multiple salutary effects on insulin sensitivity and cardiovascular health. Clinical investigations have
identified adiponectin deficiency (hypoadiponectinaemia) as an independent risk factor for CVD. In animals, elevation of
plasma adiponectin by either pharmacological or genetic approaches alleviates obesity-induced endothelial dysfunction and
hypertension, and also prevents atherosclerosis, myocardial infarction and diabetic cardiomyopathy. Furthermore, many
therapeutic benefits of the peroxisome-proliferator activated receptor gamma agonists, the thiazolidinediones, are
mediated by induction of adiponectin. Adiponectin protects cardiovascular health through its vasodilator, anti-apoptotic,
anti-inflammatory and anti-oxidative activities in both cardiac and vascular cells. This review summarizes recent findings in the
understanding of the physiological role and clinical relevance of adiponectin in cardiovascular health, and in the identification
of the receptor and postreceptor signalling events that mediate the cardiovascular actions of adiponectin. It also discusses
adiponectin-targeted drug discovery strategies for treating obesity, diabetes and CVD.
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Introduction
The modern Western diet coupled with a sedentary lifestyle
has led to an epidemic of obesity, a consequence of which is
a dramatic rise in the incidence of diabetes and cardiovascu-
lar disease (CVD), in particular stroke and heart attack. In
morbidly obese subjects with a body weight index (BMI) of

40–45 kg·m-2, the median survival rate is reduced by 8 to 10
years compared with those with normal BMI, primarily due
to the increased death from CVD (Whitlock et al., 2009). Both
animal and clinical investigations suggest that inflammation
and dysfunction of adipose tissue (fat) is a key mediator that
links obesity with CVD (Mazurek et al., 2003; Xu et al.,
2010a).
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Both heart and blood vessels are surrounded by adipose
tissue. Epicardial adipose tissue is located along the large
coronary arteries and on the surface of the ventricles and the
apex of the heart, whereas perivascular adipose tissue sur-
rounds the arteries. Both these fat depots are not separated
by a fascia from the underlying tissue. Therefore, factors
secreted from epicardial and perivascular adipose tissue,
including active lipids and adipokines (or adipocytokines),
can directly modulate the function of the heart and the
vasculature (Karastergiou et al., 2010). The majority of adi-
pokines released from adipose tissue, including tumour
necrosis factor a (TNFa), leptin, plasmogen activator
inhibitor-1, adipocyte fatty acid binding protein, lipocalin-2,
monocyte chemotactic protein 1 and resistin, exert deleteri-
ous effects on the cardiovascular system (Xu et al., 2010a). In
obesity, the expansion of adipose tissues leads to overpro-
duction of these pro-inflammatory adipokines, thereby con-
tributing to the pathogenesis of CVD. On the other hand,
adiponectin, a major adipocyte-secreted adipokine with
insulin-sensitizing and anti-inflammatory activities, is
down-regulated in obesity and its related pathologies (Zhu
et al., 2008).

Adiponectin possesses multiple salutary effects on
obesity-related metabolic complications, dyslipidaemia, non-
alcoholic fatty liver disease and several types of cancers
(Wang et al., 2008). In particular, its role in cardiovascular
protection has been extensively studied. This review high-
lights recent advances in the understanding of the cardiovas-
cular effects of adiponectin in both animals and humans, and
explores its potential use as a surrogate marker to develop
pharmacological strategies for treating CVD.

The structural features and
post-translational modifications
of adiponectin

Adiponectin is one of the most abundant adipokines secreted
by adipocytes. The circulating level of adiponectin ranges
from 5 to 30 mg·mL-2 in humans (Maeda et al., 1996), which
represents up to 0.05% of total plasma proteins (Arita et al.,
1999; Zhu et al., 2008). The gene that codes for human adi-
ponectin is located on chromosome 3q27, a locus linked with
susceptibility to diabetes and CVD (Stumvoll et al., 2002).
The protein consists of 247 amino acids and contains an
NH2-terminal hyper-variable region, a conserved collagen-
like domain comprising 22 Gly-X-Y repeats and a COOH-
terminal C1q-like globular domain (Wang et al., 2008).
Adiponectin is secreted from adipocytes into the bloodstream
as three oligomeric complexes, including trimer, hexamer
and high molecular weight (HMW) multimer comprising at
least 18 monomers (Magkos and Sidossis, 2007) (Figure 1).
The trimeric adiponectin is the basic building block of adi-
ponectin multimers. The trimer is formed via hydrophobic
interactions within its globular heads and is stabilized by the
non-covalent interactions of the collagen-like domains in a
triple-helix stalk. The assembly of hexameric and HMW
forms of adiponectin requires the formation of an intermo-
lecular disulfide bond between a highly conserved cysteine
residue within the hyper-variable region (Tsao et al., 2003).
The post-translational modifications, especially hydroxyla-
tion and subsequent glycosylation of several conserved lysine
residues within its collagen-like domain are crucial for the

Figure 1
Adiponectin, adiponectin receptors and intracellular signalling. AdipoR, adiponectin receptor; AMPK, AMP kinase; CaMKKb, Ca2+/calmodulin-
dependent protein kinase kinase b; HMW, high molecular weight; PPARa, peroxisome-proliferator activated receptor alpha; S1P, sphingosine-1-
phosphate; SIRT1, sirtuin 1.
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intracellular assembly and secretion of HMW oligomeric
adiponectin.

The biosynthesis and secretion of adiponectin oligomers
in adipocytes are tightly controlled by several molecular
chaperones in the endoplasmic reticulum, including ERp44
(ER protein of 44 kDa), Ero1-La (ER oxidoreductase 1-La) and
DsbA-L (disulfide-bond A oxidoreductase-like protein). ERp44
inhibits the secretion of adiponectin oligomers by a thiol-
mediated retention (Wang et al., 2007). By contrast, Ero1-La
releases HMW adiponectin trapped by ERp44 (Qiang et al.,
2007). DsbA-L promotes the intracellular assembly and secre-
tion of HMW adiponectin (Liu et al., 2008). The three differ-
ent oligomeric forms of adiponectin possess distinct
biological activities. Among them, the HMW oligomer is the
major active form mediating the insulin-sensitizing and car-
diovascular protective effects of the adipokine (Kobayashi
et al., 2004; Pajvani et al., 2004a). In adipose tissue of obese
subjects, both the intracellular assembly and the secretion of
HMW adiponectin are impaired, which may in turn contrib-
ute to insulin resistance and cardiovascular dysfunction.

Adiponectin is also modified by sialic acids through
O-linked glycosylation situated on threonine residues within
the hyper-variable region (Sato et al., 2001; Richards et al.,
2010), which determines the half-life in circulation of the
adipokine by modulating its clearance from the bloodstream.
Furthermore, the highly conserved cysteine residue (Cys36)
within the hyper-variable region of adiponectin is succiny-
lated, thereby blocking its oligomerization through inhibi-
tion of disulphide bond formation (Frizzell et al., 2009). The
extent of succination of adiponectin is elevated in diabetes,
suggesting that this modification contributes to impaired adi-
ponectin secretion in obesity-related disorders. Thus, exten-
sive post-translational modifications are required for efficient
maturation, oligomerization and secretion of adiponectin,
and are also important for maintaining its stability in the
circulation.

Adiponectin receptors and
intracellular signalling

Two structurally related seven transmembrane receptors for
adiponectin have been identified, adiponectin receptor
(AdipoR) 1 and 2 (Yamauchi et al., 2003a). The two are struc-
turally and functionally distinct from classical G-protein
coupled receptors (Kadowaki and Yamauchi, 2005). Both
AdipoR1 and AdipoR2 have an inverted membrane topology
with a cytoplasmic NH2 terminus and a short extracellular
COOH terminus of approximately 25 amino acids. AdipoR1
and AdipoR2 mediate adiponectin-evoked activation of AMP
kinase (AMPK), peroxisome-proliferator activated receptor
alpha (PPARa) and P38 MAP kinase in liver, skeletal muscle
and endothelial cells (Kadowaki and Yamauchi, 2005)
(Figure 1). Recent characterization of mice lacking AdipoR1
or AdipoR2 confirms the importance of the two receptors in
the maintenance of metabolic homeostasis but provides evi-
dence of functional differences between them (Yamauchi
et al., 2007). Mice with targeted deletion of AdipoR1 or
AdipoR2 are partially or totally defective in adiponectin sig-
nalling (Yamauchi et al., 2007). Disruption of AdipoR1 results

in the blockade of AMPK activation upon adiponectin admin-
istration, whereas the PPARa signalling is largely abolished in
AdipoR2-null mice (Yamauchi et al., 2007). Simultaneous dis-
ruption of both AdipoR1 and AdipoR2 causes marked glucose
intolerance. However, conflicting data have been reported
with respect to the phenotypic changes of AdipoR1- and
AdipoR2-null mice. In one study, AdipoR1-null mice exhib-
ited increased adiposity with impaired glucose tolerance,
while AdipoR2-null mice were lean and resistant to diet-
induced glucose intolerance, suggesting that AdipoR1 and
AdipoR2 have opposing effects (Bjursell et al., 2007). By con-
trast in another study, deletion of AdipoR2 rendered mice
more resistant to diet-induced insulin resistance, but
enhanced their susceptibility to type 2 diabetes mellitus (Liu
et al., 2007).

The intracellular signalling events immediately following
activation of the two adiponectin receptors are poorly char-
acterized. APPL1, an adaptor protein containing a pleckstrin
homology domain, a phosphotyrosine binding domain and
a leucine zipper motif, is a direct interacting partner of both
AdipoR1 and AdipoR2 (Mao et al., 2006). Upon stimulation
by adiponectin, the cytoplasmic domain of AdipoR1 and
AdipoR2 bind to APPL1, which in turn promotes the trans-
lation of the protein kinase LKB1 from nuclei to cytosol,
thereby leading to the activation of AMPK (Zhou et al., 2009)
(Figure 1). APPL1 also plays an indispensible role in mediat-
ing the insulin-sensitizing effect of adiponectin, by potenti-
ating Akt activation (Cheng et al., 2009). In addition to
APPL1, several other signalling molecules, including receptor
for activated protein kinase C1 (RACK1) (Xu et al., 2009b),
the regulatory subunit of protein kinase CK2 (CK2b) (Heiker
et al., 2009), endoplasmic reticulum protein 46 (ERp46)
(Charlton et al., 2010) and lymphotoxin-b (Xu et al., 2010b),
have been identified as interacting partners of AdipoR1.
However, the roles of these proteins in adiponectin signal-
ling remain elusive. The binding of lymphotoxin-b to
AdipoR1 appears to be involved in adiponectin-mediated
suppression of NF-kB signalling in endothelial cells (Xu et al.,
2010b).

Besides the APPL1/LKB1 signalling cascade, adiponectin
also activates AMPK by promoting calcium (Ca2+) influx,
which in turn stimulates Ca2+/calmodulin-dependent protein
kinase kinase b (CaMKKb) (Zhou et al., 2009; Iwabu et al.,
2010). Once AMPK is activated, it enhances the activity of
NAD � dependent type III deacetylase sirtuin 1, resulting in
increased mitochondrial oxidative capacity by deacetylation
and activation of PPARg coactivator-1a, a master regulator of
mitochondrial biogenesis (Iwabu et al., 2010).

In addition, a recent study by Holland and colleagues
demonstrated that the insulin-sensitizing and anti-apoptotic
actions of the adipokine in pancreatic beta cells and cardi-
omyocytes are attributed to its effects on sphingolipid
metabolism (Holland et al., 2011). Adiponectin stimulates the
activity of ceramidase and the formation of the anti-
apoptotic metabolite sphingosine-1-phosphate (S1P). This
sphingolipid-associated pathway is activated presumably by
either AdipoR1 or AdipoR2, because the ceramidase activity is
impaired in cells lacking both adiponectin receptors (Holland
et al., 2011), leading to elevated ceramide levels and
enhanced susceptibility to palmitate-induced apoptosis.
Because a pharmacological inhibitor of ceramidase blocks
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adiponectin-stimulated activation of AMPK, the latter may be
a downstream rather than an upstream event, mediated by a
conversion of ceramide to S1P, which in turn triggers an
influx of calcium and CaMKK activation (Holland et al.,
2011).

In addition to AdipoR1 and AdipoR2, the cell-surface gly-
coprotein T-cadherin has been shown to specifically bind the
hexameric and HMW species of adiponectin (Hug et al.,
2004) (Figure 1). A recent study provides compelling evidence
demonstrating the cardioprotection exerted by adiponectin
depends on T-cadherin (Denzel et al., 2010). In light of
the fact that T-cadherin is a glycosylphosphatidylinositol-
anchored extracellular protein, it may function as a
co-receptor with AdipoR1 and AdipoR2 to facilitate adiponec-
tin signalling in specific tissues or cell types.

Adiponectin as biomarker for CVD

Unlike most other adipokines, the plasma level of adiponec-
tin is decreased in obesity and related pathologies, including
type 2 diabetes and CVD (Zhu et al., 2008). Both the mRNA
expression of the adiponectin gene and the secretion of
HMW oligomeric adiponectin are impaired in adipose tissue
of obese subjects (Arita et al., 1999; Bacha et al., 2004; Lara-
Castro et al., 2006). Epidemiological studies in different
ethnic groups demonstrate that a low serum level of adi-
ponectin, especially of its HMW oligomer, is an independent
risk factor for CVD (Koenig et al., 2006; Frystyk et al., 2007).

Hypoadiponectinaemia is independently associated with
endothelial dysfunction in diabetic patients, as assessed by
flow-mediated vasodilatation (Tan et al., 2004; Torigoe et al.,
2007). The plasma level of adiponectin is correlated with the
amplitude of the vasodilator response to reactive hyperaemia
but not to that to nitroglycerin, indicating that adiponectin
modulates endothelium-dependent vasodilatation in periph-
eral arteries (Ouchi et al., 2003b). In a multiple regression
analysis enrolling 36 consecutive non-diabetic patients, the
adiponectin concentration [among risk factors including
homeostasis model assessment for insulin resistance, body
mass index, immunoreactive insulin and triglycerides] was
the only independent predictor of coronary endothelial func-
tion as evaluated by the coronary vascular response to ace-
tylcholine (Okui et al., 2008).

The carotid intima-media thickness (IMT) is a widely
used surrogate marker of subclinical atherosclerosis and is
predictive of future myocardial infarction and stroke
(Nichols et al., 1999). An inverse correlation between IMT
and serum adiponectin has been observed in several clinical
cohorts including healthy and diabetic subjects of both
genders (Pilz et al., 2005; Lo et al., 2006; Nilsson et al., 2006).
In addition, genetic variation within the adiponectin gene
promoter is directly associated with carotid IMT in healthy
subjects and is independent of circulating adiponectin levels
(Patel et al., 2008). Moreover, the leptin to adiponectin ratio
is inversely related with IMT (Norata et al., 2007; Kotani
et al., 2008), and has been proposed as an atherosclerotic
index in patients with type 2 diabetes (Satoh et al., 2004;
Kotani et al., 2005).

A strong correlation between hypoadiponectinaemia
and coronary heart disease has been documented in a

number of cross-sectional and prospective studies (Kumada
et al., 2003; Hashimoto et al., 2006). By contrast, high
plasma levels of adiponectin are associated with a decreased
risk of coronary heart disease, independently of other risk
factors (Frystyk et al., 2007). In a nested case–control study
over a period of 6 years covering 18 225 male participants,
individuals in the highest quintile of adiponectin levels had
a significantly reduced risk of myocardial infarction even
after adjustment for BMI, history of diabetes and hyperten-
sion (Pischon et al., 2004). The association of serum adi-
ponectin with these CVDs might be partly dependent on
low- and high-density lipoprotein cholesterol (L/HDL-C),
since their association became less significant after adjust-
ment for serum L/HDL-C (Pischon et al., 2004; Koenig et al.,
2006).

Two independent longitudinal studies have consistently
demonstrated that hypoadiponectinaemia is an independent
risk factor for hypertension (Chow et al., 2007; Imatoh et al.,
2008). Furthermore, subjects carrying the genetic variants
that are related to lower plasma levels of adiponectin have a
higher risk of hypertension (Iwashima et al., 2004; Ong et al.,
2010). Hyperadiponectinaemia is also an independent risk
factor for diabetic cardiomyopathy (Mitsuhashi et al., 2007;
Kozakova et al., 2008). In healthy subjects, circulating levels
of total and HMW adiponectin are related to left ventricular
hypertrophy, independently of age and metabolic factors
(Mitsuhashi et al., 2007; Kozakova et al., 2008). A similar asso-
ciation has also been observed in obese individuals (Ebinc
et al., 2008).

Although most of the epidemiological studies support the
association of hypoadiponectinaemia with CVD, conflicting
data have been reported on the prospective association
between adiponectin and microvascular disease. In patients
with chronic heart failure (Kistorp et al., 2005), angiographic
coronary artery disease (Pilz et al., 2006) or chronic kidney
disease (Menon et al., 2006), high plasma levels of adiponec-
tin appear to be an independent predictor of mortality. The
association of ‘hyperadiponectinaemia’ with increased mor-
tality risk is more pronounced in patients with prevalent
CVD than in those without (Kistorp et al., 2005; Laughlin
et al., 2007; Maiolino et al., 2007; 2008). These paradoxical
observations have been reconciled by the wasting theory
(Kistorp et al., 2005) or impaired renal function (Menon et al.,
2006). They may also imply the existence of an ‘adiponectin
resistance’ (Lin et al., 2007; Van Berendoncks et al., 2010)
with ageing and the progression of chronic CVD. Indeed,
adiponectin resistance has been documented in both animals
and humans (Lin et al., 2007; Kunihiro Matsushita et al.,
2007). In obesity, several beneficial effects of adiponectin,
including stimulation of fatty acid oxidation in skeletal
muscle (Mullen et al., 2007), promotion of endothelial NO
production in the vasculature (Li et al., 2010) and protection
against ischaemic injury in the heart (Yi et al., 2010), are
impaired.

In all of the above studies, the measurement of adiponec-
tin did not distinguish between its different oligomeric iso-
forms. Therefore, it is still possible that a selective reduction
of HMW adiponectin, which is the major bioactive form with
close relevance to endothelial function (Kobayashi et al.,
2004), occurs in the mentioned hyperadiponectinaemia
conditions.
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Cardiovascular protection by
adiponectin: evidence from in
vitro and animal studies

In addition to its insulin-sensitizing and metabolic activities,
studies in both rodents and large animals have consistently
demonstrated the multiple salutary effects of adiponectin on
cardiovascular health, through its direct actions on both the
heart and the vasculature (Figure 2).

Alleviation of endothelial dysfunction
and hypertension
Endothelial dysfunction and hypertension are two closely
related pathological conditions commonly observed in
obesity and diabetes, both of which are major risk factors for
CVD. Data obtained from both adiponectin-null mice and
gain-of-function experiments demonstrate the protective
effects of adiponectin against endothelial dysfunction and
hypertension, primarily through its multiple actions on the
endothelium (Zhu et al., 2008). Adiponectin knockout mice
display impaired endothelium-dependent vasodilatation
(Ouchi et al., 2003a), elevated systemic blood pressure
(Shimabukuro et al., 2003) and pulmonary hypertension
(Summer et al., 2009). Aortic rings isolated from adiponectin-
knockout mice exhibit reduced endothelial NOS (eNOS)
activation and NO production compared with those from
wild-type controls, and these changes are reversed by
treatment with recombinant adiponectin (Cao et al., 2009).
Likewise, systemic administration of recombinant adiponec-
tin in Sprague-Dawley rats with dietary obesity increases
eNOS activity, NO production and relaxation of aortic rings
to endothelium-dependent vasodilators (Deng et al., 2010).

Furthermore, both globular and full-length adiponectin
induces NO-dependent vasodilatation in resistance arteries of
Zucker lean rats (Schmid et al., 2011). In both coronary arte-
rioles and aortae of db/db diabetic mice, endothelium-
dependent vasodilatations to acetylcholine are blunted
compared with preparations of control mice, whereas sys-
temic infusion of adiponectin reverses these changes by sup-
pressing TNFa production (Zhang et al., 2010).

Most beneficial effects of adiponectin on endothelial
functions are mediated by its ability to activate AMPK.
Indeed, both globular and full-length adiponectin increase
eNOS activity and NO production via AMPK-mediated phos-
phorylation of eNOS at Ser1177 (Chen et al., 2003) and
Ser633 (Chen et al., 2009a) (Figure 3). Both subtypes of adi-
ponectin receptors (AdipoR1 and AdipoR2) are expressed in
endothelial cells and mediate adiponectin-induced phospho-
rylation of AMPK and eNOS in a complementary manner
(Cheng et al., 2007). Adiponectin also promotes the complex
formation between heat shock protein 90 and eNOS, which is
required for the maximal activation of the enzyme (Lin et al.,
2004; Xi et al., 2005; Cheng et al., 2007).

Although the precise signalling events that couple the two
adiponectin receptors and activation of AMPK/eNOS remain
poorly understood, the multiple domain protein APPL1 may
be a key mediator (Cheng et al., 2007). APPL1 binds to both
AdipoR1 and AdipoR2, and mediates adiponectin-induced
activation of AMPK possibly by promoting the translocation
of its upstream kinase LKB from nuclei to cytosol (Mao et al.,
2006; Zhou et al., 2009). Furthermore, adiponectin plays an
indispensible role in conferring the insulin-sensitizing effects
of adiponectin in skeletal muscle (Wang et al., 2009a). In
endothelial cells, suppression of APPL1 expression by RNAi
significantly attenuates adiponectin-induced phosphoryla-
tion of eNOS at Ser1177, as well as the complex formation

Figure 2
The pleiotropic role of adiponectin in the cardiovascular system. EPC, endothelial progenitor cell.
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between eNOS and heat shock protein 90, resulting in a
marked reduction of NO production (Cheng et al., 2007). In
both db/db obese mice and Zucker fat rats, the expression of
APPL1 in resistance arteries is reduced, and this change is
accompanied by impaired vasodilator response of these blood
vessels to adiponectin (Cheng et al., 2007; Schmid et al.,
2011), suggesting that reduced APPL1 expression may con-
tribute to adiponectin resistance in the vasculature. APPL2,
which has the same domain organization with APPL1, also
interact with both AdipoR1 and AdipoR2 (Wang et al., 2009a).
Interestingly, the binding of APPL2 to the two adiponectin
receptors inhibits adiponectin signalling in muscle cells, sug-
gesting that APPL1 and APPL2 may act as a pair of Ying-Yang
molecules involved in fine-tuning the adiponectin signalling.
However, the physiological relevance of these in vitro obser-
vations needs further investigation.

Adiponectin inhibits the production of reactive oxygen
species (ROS) induced by high glucose (Ouedraogo et al.,
2006), oxidized LDL (Motoshima et al., 2004; Plant et al.,
2008) and palmitate (Kim et al., 2010) in cultured endothelial
cells. The anti-oxidant activity of adiponectin appears to be
mediated by cAMP-dependent protein kinase A (PKA) (Oue-
draogo et al., 2006) and AMPK (Kim et al., 2010). Consistent
with these observations, aortic rings of adiponectin knockout
mice display increased levels of both superoxide anions and
peroxynitrite, and these changes are reversed by treatment of
mice with recombinant adiponectin (Cao et al., 2009).

In addition to its effects on eNOS activity and ROS pro-
duction, adiponectin suppresses endothelial activation and
monocyte attachment, an early step of the inflammatory
reaction leading to atherosclerosis (Zhu et al., 2008). Indeed,
adiponectin suppresses TNFa and resistin-induced expression
of adhesion molecules as well as interleukin (IL)-8 (Kobashi
et al., 2005). This anti-inflammatory effect of adiponectin in
endothelial cells appears to be mediated by PKA-dependent
suppression of NF-kB activation, through both an AMPK-
dependent and -independent mechanism (Ouchi et al., 2000;
Wu et al., 2007). In human aortic endothelial cells, adiponec-

tin suppresses high glucose (15 mM)-induced IkappaB (IkB)
phosphorylation and NF-kB binding activity, leading to a
reduced expression of the pro-inflammatory C-reactive
protein (Devaraj et al., 2008). In addition, adiponectin inhib-
its the interaction between leucocytes and endothelial cells
by reducing the expression of E-selectin and vascular cell
adhesion molecule-1 (Ouedraogo et al., 2007). Adenovirus-
mediated overexpression of AdipoR1 and AdipoR2 potenti-
ates the suppressive effects of adiponectin on endothelial
expression of adhesion molecules in both cultured human
umbilical vein endothelial cells and in aorta of mice and rats,
suggesting that these two receptors play an important role in
mediating the anti-inflammatory actions of adiponectin on
the endothelium (Zhang et al., 2009).

Promotion of endothelial repair
by adiponectin
Impairment in endothelial repair is a hallmark of vascular
dysfunction and an early step of the atherosclerotic process.
Endothelial progenitor cells (EPCs) are important contribu-
tors to endothelial repair following vascular injury (Szmitko
et al., 2003). Decreased numbers and/or impaired function of
EPCs are causally associated with endothelial dysfunction
and CVD (Fadini et al., 2007).

Both animal and clinical investigations suggest that adi-
ponectin promotes endothelial repair and angiogenesis by
increasing the number and function of EPCs (Xu et al.,
2010a). Angiogenic repair in ischaemic hind limbs, evaluated
by laser Doppler flow method and capillary density analysis,
is impaired in adiponectin-knockout compared with wild-
type mice (Shibata et al., 2004b), and this impairment
is reversed by adenovirus-mediated supplementation of
adiponectin. In db/db diabetic mice, the lack of adiponec-
tin accelerates diabetes-induced impairment in re-
endothelialization after wire-induced carotid denudation
(Chang et al., 2010). Furthermore, the stimulatory effect of
the PPARg agonist rosiglitazone on endothelial repair is abro-
gated in db/db diabetic mice lacking adiponectin.

Figure 3
The protective function of adiponectin in endothelial cells. AdipoR, adiponectin receptor; AMPK, AMP kinase; CRP, C-reactive protein; PKA, protein
kinase A; ROS, reactive oxygen species.
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The endothelial repair mediated by EPCs involves multiple
steps, including mobilization of EPCs from the bone marrow
or the spleen into the bloodstream, recruitment and adhesion
of EPCs to the injured blood vessel wall, followed by differen-
tiation and tubule formation (Zampetaki et al., 2008). Adi-
ponectin modulates almost every step involved in endothelial
repair of EPCs (Xu et al., 2010a). Adiponectin-deficient mice
exhibit decreased mobilization of EPCs into the circulation in
response to hindlimb ischaemia (Shibata et al., 2008), and this
is normalized upon adenovirus-mediated adiponectin supple-
mentation. In diabetic rats, the reduction in circulating EPCs
and endothelial repair are associated with a reduced serum
level of adiponectin (Sambuceti et al., 2009). Treatment of
diabetic mice with cobalt protoporphyrin, an inducer of the
anti-oxidant haem oxygenase-1, results in up-regulation of
adiponectin expression, which in turn facilitates vascular
repair by improving the function of EPCs (Li et al., 2008).

Adiponectin potently stimulates survival, proliferation
and differentiation of bone marrow-derived EPCs (Eren et al.,
2009), and also promotes the migration activities of EPCs
through activation of the PI3-kinase/Cdc42/Rac1 signalling
cascade (Nakamura et al., 2009). On the other hand, activa-
tion of AMPK is required for the vascular recruitment of EPCs
by adiponectin (Sambuceti et al., 2009), suggesting that the
PI3-kinase/Akt and AMPK pathways may work synergistically
in EPC to confer the favourable effects of the adipokine.
Indeed, a crosstalk between PI3-Kinase/Akt and AMPK in
endothelial cells has been implicated in adiponectin-induced
angiogenesis (Ouchi et al., 2004).

In diabetic patients, both the circulating number and
function of EPCs are impaired, partly due to hyperglycaemia-
induced oxidative stress (Seeger et al., 2005; Sorrentino et al.,
2007). Adiponectin counteracts diabetes-induced damage of
EPC function by decreasing high glucose-induced intracellu-
lar ROS accumulation (Chang et al., 2010). In db/db diabetic
mice, the lack of adiponectin exacerbates hyperglycaemia-
induced decreases in circulating number of EPCs, whereas
this change is reversed by chronic treatment with recombi-
nant adiponectin. Adiponectin prevents high glucose-
induced premature senescence of EPCs derived from both
human peripheral blood and mouse bone marrow (Chang
et al., 2010). At the molecular level, adiponectin decreases
high glucose-induced accumulation of intracellular ROS by
activation of AMPK and consequently suppresses activation
of p38 MAP kinase and expression of the senescence marker
p16INK4A (Chang et al., 2010). Because eNOS plays an indis-
pensible role in endothelial repair by promoting mobilization
of EPCs (Wegiel et al., 2010) and because adiponectin is a
potent stimulator of the production of endothelial NO, the
adipokine may also protect against diabetes-associated EPC
dysfunction by favouring eNOS signalling.

Anti-atherosclerotic and anti-inflammatory
properties of adiponectin
The protective effects of adiponectin against atherogenesis
have been demonstrated in mice (Okamoto et al., 2002;
Yamauchi et al., 2003b) and rabbits (Li et al., 2007). In apoE-
deficient mice, elevation of circulating adiponectin by either
transgenesis or an adenovirus delivery system attenuates ath-
erosclerotic plaque formation (Okamoto et al., 2002; Yamau-
chi et al., 2003b), whereas the suppressive effects of the PPARg

agonists on atherogenesis are abrogated in the absence of
adiponectin (Hiuge-Shimizu et al., 2011). Adiponectin exerts
its anti-atherosclerotic effects through multiple actions on
almost each vascular cell type (Figure 2). In addition to its
beneficial effects on endothelial function and EPCs-mediated
endothelial repair, adiponectin inhibits neointimal forma-
tion by suppressing proliferation and migration of vascular
smooth muscle cells (Matsuda et al., 2002; Wang et al., 2005;
Motobayashi et al., 2009), and blocks inflammation and foam
cell formation from macrophages (Ouchi et al., 2001;
Yamaguchi et al., 2005; Tsubakio-Yamamoto et al., 2008).

Adiponectin in physiological concentrations suppresses
the proliferation and migration of human vascular smooth
muscle cells induced by platelet-derived growth factor-BB
(Arita et al., 2002), basic fibroblast growth factor, and
heparin-binding epidermal growth factor-like growth factor
(Wang et al., 2005). This effect of adiponectin is attributed to
its ability of interacting with these atherogenic growth factors
in an oligomerization-dependent manner, thereby blocking
binding to their respective cell membrane receptors for
further activation of the mitogenic pathways (Wang et al.,
2005). In addition, adiponectin inhibits insulin-like growth
factor-1 induced migration and proliferation of vascular
smooth muscle cells through AMPK-dependent suppression
of P44/P42 MAP kinase (Motobayashi et al., 2009). Consistent
with these in vitro findings, mechanically injured arteries of
adiponectin-deficient mice exhibit severe neointimal thick-
ening and increased proliferation of vascular smooth muscle
cells (Matsuda et al., 2002), and this change can be prevented
by supplementation of recombinant adiponectin (Okamoto
et al., 2002).

In macrophages, chronic treatment with both globular
and full-length adiponectin inhibits the production of pro-
inflammatory cytokines induced by several stimuli, including
lipopolysaccharide, leptin and resistin (Rae and Graham,
2006; Yamaguchi et al., 2005). The anti-inflammatory effect
of adiponectin is associated with its ability to suppress NF-kB
and p42/p44 MAP kinase-dependent signalling (Wulster-
Radcliffe et al., 2004; Yamaguchi et al., 2005). In human
monocyte-derived macrophages, adiponectin also induces a
sequential up-regulation of the anti-inflammatory cytokine
IL-10 (an anti-inflammatory cytokine that renders macro-
phages tolerant to further stimulation by endotoxin or
other pro-inflammatory cytokines) and tissue inhibitor of
metalloproteinase-1 (Kumada et al., 2004). Acute treatment
with adiponectin triggers the release of TNFa and IL-6 via
NF-kB and ERK1/2 activation, which subsequently causes an
induction of IL-10 (Park et al., 2007). Globular adiponectin
induces IL-10 production by stimulating the phosphorylation
of cAMP-response element binding protein, thereby transac-
tivating the IL-10 promoter in macrophages (Park et al.,
2008). In addition, adiponectin may exert its anti-
inflammatory activity by regulating macrophage polarization
(Lovren et al., 2010). Indeed, upon stimulation with adi-
ponectin, human monocytes are primed into anti-
inflammatory M2 macrophages as opposed to the classically
activated M1 phenotype. Incubation of M1 macrophages
with adiponectin-treated M2-derived culture supernatant
results in a pronounced inhibition in secretion of the pro-
inflammatory factors such as TNFa and monocyte chemotac-
tic protein 1. Furthermore, macrophages isolated from
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adiponectin knockout mice exhibits diminished levels of
markers for M2 macrophages, and this phenomenon can be
prevented by adiponectin treatment (Lovren et al., 2010).

Several independent mechanisms have been proposed to
explain the inhibitory effects of adiponectin on the conver-
sion of macrophage to foam cells. First, adiponectin suppress
class A scavenger receptor expression, thereby reducing
uptake of acetylated LDL particles into macrophages (Ouchi
et al., 2001). Second, it decreases the activity of acyl-
coenzyme A: cholesterol acyltransferase, a key enzyme that
catalyses cholesteryl ester formation (Furukawa et al., 2004).
Third, it increases cholesterol efflux by enhancing the expres-
sion of the ATP-binding cassette transporter ABCA1 in mac-
rophages (Tsubakio-Yamamoto et al., 2008).

In addition to its direct actions on blood vessels,
adiponectin acts in an autocrine manner to inhibit
obesity-induced macrophage infiltration and production of
pro-inflammatory cytokines in adipose tissue (Kim et al.,
2007; Ohashi et al., 2010). This may also contribute to its
anti-atherosclerotic properties by preventing the ‘inflamma-
tory signal’ from adipose tissue to the vasculature. In ob/ob
obese mice with transgenic expression of adiponectin, the
degree of macrophage infiltration in adipose tissue and sys-
temic inflammation is markedly attenuated in comparison
with wild-type obese mice, in spite of a marked expansion of
adipose tissue (Kim et al., 2007).

Cardio-protective effects of adiponectin
In addition to its effects on the vasculature, both in vitro
studies and animal experiments demonstrate that adiponec-
tin acts directly on cardiomyocytes to protect the heart from
ischaemic injury, hypertrophy, cardiomyopathy and systolic
dysfunction (Goldstein et al., 2009). In adiponectin-deficient

mice, pressure overload results in enhanced concentric
cardiac hypertrophy and increases mortality compared with
wild-type mice (Shibata et al., 2004a). During ischaemia-
reperfusion (I/R) injury, the lack of adiponectin exacerbates
myocardial infarct size and myocardial apoptosis and
decreases cardiac functions (Shibata et al., 2005; Tao et al.,
2007). Furthermore, adiponectin-deficient mice display more
severe angiotensin II-induced cardiac fibrosis and left ven-
tricular dysfunction as well as doxorubicin-induced cardi-
omyopathy compared with wild-type mice (Fujita et al., 2008;
Konishi et al., 2011). All these pathological changes can be
reversed by adenovirus-mediated supplementation of recom-
binant adiponectin. Adiponectin has been identified as a key
mediator conferring the beneficial effects of caloric restriction
in improving left ventricular function and limiting infarction
size after I/R injury (Shinmura et al., 2007). In db/db diabetic
obese mice, adiponectin improves cardiomyocyte contractile
function possibly by alleviating endoplasmic reticulum stress
(Dong and Ren, 2009). Consistent with aforementioned find-
ings in rodents, the protective effects of adiponectin against
myocardial I/R injury has also been observed in pigs (Kondo
et al., 2010).

The cardio-protective effects of adiponectin are attributed
to its ability in suppressing apoptosis, oxidative/nitrative
stress and inflammation in cardiomyocytes (Figure 4). In
both cultured cardiomyocytes and animals, adiponectin
inhibits apoptosis and promotes cell survival (Tao et al.,
2007). The anti-apoptotic activity of adiponectin is depen-
dent on the activation of AMPK (Kadowaki and Yamauchi,
2005; Shibata et al., 2005). Adenovirus-mediated expression
of dominant negative AMPK prevents the suppressive effects
of adiponectin on I/R-induced apoptosis in mice as well as in
cultured cardiomyocytes (Wang et al., 2009b). In addition, a
recent study demonstrated that adiponectin protects against

Figure 4
Major signalling pathways underlying the cardio-protective effects of adiponectin. AMPK, AMP kinase; PPARg, peroxisome-proliferator activated
receptor gamma; S1P, sphingosine-1-phosphate; Sphk-1, sphingosine kinase-1.
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palmitate-induced cardiomyocyte apoptosis by activation of
ceramidase which in turn promotes the formation of an anti-
apoptotic metabolite S1P (Holland et al., 2011). In rat neona-
tal left ventricular cardiomyocytes, adiponectin increases cell
survival and prevents stress-induced cell apoptosis in an Akt-
dependent manner (Skurk et al., 2008). Thus, adiponectin
appears to exert its anti-apoptotic effects through distinct
mechanisms under different pathological conditions.

Several studies have linked the cardio-protective effects of
adiponectin to its anti oxidative/nitrative stress activities (Tao
et al., 2007; Gonon et al., 2008; Wang et al., 2009b). Forma-
tion of NO, superoxide anions and their cytotoxic product
(peroxynitrite) are all higher in cardiac tissue of adiponectin-
null mice than in that of wild-type mice (Tao et al., 2007).
Moreover, administration of recombinant adiponectin prior
to reperfusion reduces I/R-induced protein expression of
iNOS/gp91phox, decreases NO and superoxide anion produc-
tion, blocks peroxynitrite formation, and reverses the pro-
apoptotic phenotype in adiponectin-null mice. In isolated rat
hearts, adiponectin improves left ventricular function and
increases coronary flow during reperfusion whereas adminis-
tration of the NOS inhibitor nitro-l-arginine (L-NNA) abro-
gates the improvement in myocardial function induced by
the adipokine (Gonon et al., 2008). Although transgenic mice
with cardiomyocyte-specific overexpression of a mutant
AMPKa2 subunit (AMPK-DN) suffer from greater cardiac
injury after myocardial I/R (Wang et al., 2009b), adiponectin
still evokes cardioprotection against myocardial I/R and the
resultant cardiac oxidative and nitrative stress in those mice,
implying that the anti-oxidative/anti-nitrative effects of adi-
ponectin are independent of AMPK (Wang et al., 2009b). The
findings of this study may indicate that adiponectin differ-
entially regulates NO production by eNOS and iNOS. Adi-
ponectin stimulates NO production via eNOS activation,
thereby contributing to its vasodilator and vascular protec-
tive effects. However, under pathological conditions such as
myocardial I/R injury, adiponectin exerts its anti-nitrative
actions in cardiomyocytes by preventing the induction of
iNOS expression and the resulting excess NO generation
(Wang et al., 2009b).

The suppressive effects of adiponectin against myocardial
I/R-induced inflammation appear to be mediated by
cyclooxygenase-2 (COX-2), a rate-limiting enzyme for pros-
tanoid synthesis (Salvado et al., 2009). In cardiomyocytes,
adiponectin induces COX-2 expression and increases its
activity through sphingosine kinase-1 (Ikeda et al., 2008).
Pharmacological inhibition of COX-2 reverses the suppres-
sive effects of adiponectin on myocardial I/R-induced TNFa
production and infarct size (Shibata et al., 2005).

Both AdipoR1 and AdipoR2 are expressed in cardiac cells
(Fujioka et al., 2006; Ding et al., 2007). However, the physi-
ological roles of these two adiponectin receptors in cardiac
functions have never been explored. Instead, T-cadherin, an
adiponectin-interacting partner anchored at cell surface by
glycosyl phosphatidylinositol, plays an indispensible role in
adiponectin-mediated cardioprotection in mice (Denzel et al.,
2010). There is an extensive colocalization between adi-
ponectin and T-cadherin in cardiomyocytes in vivo. In
T-cadherin deficient mice, adiponectin fails to associate with
cardiac tissue. Furthermore, the protective effects of adi-
ponectin against pressure overload-induced cardiac hypertro-

phy and I/R-induced myocardial infarction are lost in mice
lacking T-cadherin (Denzel et al., 2010). These findings
provide compelling evidence supporting the role of
T-cadherin as a physiological adiponectin-binding receptor
that enables the association of adiponectin with cardiac
tissue.

As a metabolic regulator, adiponectin may preserve
cardiac functions by exerting its beneficial effects on glucose
and lipid metabolism. In adult cardiomyocytes, adiponectin
increases CD36 translocation and fatty acid uptake by activa-
tion of AMPK, enhances insulin-stimulated glucose transport
through Akt (Fang et al., 2010), and also stimulates lipopro-
tein lipase activity via RhoA/Rho-associated protein kinase-
mediated actin remodelling (Ganguly et al., 2011). In
addition, adiponectin stimulates vascular endothelial growth
factor production in an AMPK-dependent manner, which
may also contribute to its cardio-protective effects by enhanc-
ing angiogenesis (Shimano et al., 2010).

Although circulating adiponectin is produced predomi-
nantly from adipose tissue, this adipokine is also expressed
and secreted in cardiomyocytes (Ding et al., 2007; Amin et al.,
2010a,b). Moreover, cardiomyocyte-derived adiponectin is
biologically active in protecting cells against I/R injury by
paracrine/autocrine activation of adiponectin receptors
(Wang et al., 2010). Exogenously produced adiponectin pro-
tects cardiomyocytes from hypertrophy by a PPARg-
dependent autocrine mechanism that leads to increased
expression and secretion of endogenous adiponectin (Amin
et al., 2010a). These in vitro observations are corroborated by
a clinical study showing the expression of adiponectin in
human cardiac cells (Skurk et al., 2008). In patients with
dilated cardiomyopathy, the cardiac adiponectin protein
expression is down-regulated, independently of the serum
adiponectin level. Taken together, these findings support a
key role of the autocrine function of adiponectin in confer-
ring its cardio-protective activities.

Adiponectin-targeted strategies to
combat CVD

As adiponectin possesses multiple beneficial effects on cardio-
vascular health, increasing circulating adiponectin levels
and/or enhance adiponectin signalling may represent a
promising strategy for the treatment of CVD. Although
supplementation with exogenous adiponectin is effective in
alleviating CVD in animals, it is practically difficult to use
recombinant adiponectin as a therapeutic agent, due to the
high circulating levels required, the extensive post-
translational modifications needed for its activity and its rela-
tively short half-life. An alternative approach is to increase
the secretion of endogenous adiponectin by the adipocytes, a
process that is impaired in obesity-related pathologies. In
fact, the beneficial effects of several therapeutic interventions
for CVD, including lifestyle modification and several anti-
diabetic and cardiovascular drugs, are associated with eleva-
tion of circulating adiponectin (Zhu et al., 2008).

Adiponectin and lifestyle modifications
Prolonged weight reduction by either gastric bypass surgery
or caloric restriction increase circulating levels of adiponectin
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in obese subjects (Yang et al., 2001). Exercise is another effec-
tive way to elevate adiponectin levels, possibly by improving
oxidative capacity. Overweight males exhibit higher level of
adiponectin after a 10 week aerobic training programme
(Kriketos et al., 2004). Restriction of calorie intake in combi-
nation with moderate physical activity significantly induces
adiponectin expression, especially among obese or diabetic
subjects (Esposito et al., 2003). Furthermore, weight loss
selectively increases the circulating levels of the HMW oligo-
meric adiponectin (Martos-Moreno et al., 2010). The positive
metabolic outcomes after lifestyle intervention in
overweight/obese children are also accompanied by an
increase in circulating adiponectin (Cambuli et al., 2008). In
mice, the protective effects of short-term caloric restriction
against myocardial infarction are abrogated in the absence of
adiponectin (Shinmura et al., 2007). Furthermore, adiponec-
tin plays an obligatory role in mediating the stimulatory
effects of adiponectin on revascularization in response to
ischaemia (Kondo et al., 2009). These findings suggest that
the benefits of lifestyle interventions on cardiovascular
health are mediated at least in part by adiponectin.

Adiponectin and PPAR agonists
The PPARg agonists thiazolidinediones (TZDs), including
pioglitazone and rosiglitazone, are a class of insulin-
sensitizing drugs that also possess protective effects against
endothelial dysfunction and atherosclerosis (Mazzone et al.,
2006; Lincoff et al., 2007). TZDs elevate circulating levels of
adiponectin in both humans and rodents (Tao et al., 2010;
Hiuge-Shimizu et al., 2011), by increasing its gene expression
(Matsuoka et al., 2001) as well as by augmenting the secre-
tion of HMW adiponectin from adipocytes (Phillips et al.,
2009). In diabetic patients, TZDs-mediated increases in adi-
ponectin, especially its HMW oligomeric complexes, corre-
late with the improvement in insulin sensitivity (Pajvani
et al., 2004b). Several therapeutic effects of TZDs, including
their insulin-sensitizing activity (Nawrocki et al., 2006), pro-
tection against I/R-induced myocardial infarction (Tao et al.,
2010) and angiotensin II-induced cardiac hypertrophy (Li
et al., 2010), alleviation of endothelial dysfunction and
improvement in EPCs-mediated endothelial repair (Chang
et al., 2010), as well as amelioration of atherosclerosis (Hiuge-
Shimizu et al., 2011), are all absent in mice lacking adiponec-
tin. Taken in conjunction, these data support an
indispensible role of adiponectin in conferring the therapeu-
tic benefits of TZDs.

Both experimental and clinical studies have demon-
strated that the PPARa agonists bezafibrate and fenofibrate
augment circulating levels of adiponectin (Koh et al., 2006;
Hiuge et al., 2007; Rosenson, 2009). However, the PPARa
agonists-mediated increase in circulating adiponectin is
modest compared with that of the TZDs. Whether or not
adiponectin is required for the lipid-lowering and
endothelium-protective effects of the PPARa agonists is
unclear.

In addition to raising the circulating levels of adiponec-
tin, both PPARg and PPARa agonists increase the expression
of AdipoR2 in primary and THP-1 macrophages (Chinetti
et al., 2004), suggesting that these agents may also potentiate
adiponectin’s actions by enhancing its signal transduction.

Adiponectin and inhibitors of the
renin-angiotensin system (RAS)
The RAS is a critical regulatory system for blood pressure. The
overproduction of angiotensin II in obesity plays an impor-
tant role in the pathogenesis of insulin resistance, hyperten-
sion and CVD. Pharmacological inhibitors of RAS, such as
angiotensin-converting enzyme inhibitors (ACEIs) and angio-
tensin II receptor blockers (ARBs), decrease blood pressure
and also possess anti-diabetic and cardio-protective activities
(Wang and Scherer, 2008). Clinical studies demonstrate that
these agents increase plasma adiponectin levels in humans
(Furuhashi et al., 2003; Koh et al., 2004; 2005; Clasen et al.,
2005). Administration of losartan only or in combination
with simvastatin leads to a significant elevation of plasma
levels of adiponectin in hypertensive patients (Koh et al.,
2004). In a study comparing five antihypertensive drugs for
their effect on adiponectin, ACEIs and ARBs, but not the
other drugs, were found to increase circulating levels of adi-
ponectin (Yilmaz et al., 2007). The ARBs-mediated elevation
of adiponectin may contribute to the additional beneficial
effects of these drugs in hypertensive patients (Furuhashi
et al., 2003). However, further studies in adiponectin knock-
out mice are needed to evaluate whether or not the therapeu-
tic benefits of ARBs and ACEIs are mediated partly by
adiponectin.

Adiponectin and nutraceuticals
A large number of nutraceutical products with beneficial
effects on cardiovascular health, including fish oil (Rossi et al.,
2005), safflower oil (Sekine et al., 2008), conjugated linoleic
acid (Nagao et al., 2003), omega-3 polyunsaturated acids
(Flachs et al., 2006), grape-seed extract (Terra et al., 2009),
green tea extract (Hsu et al., 2008), taurine (Chen et al.,
2009b), dietary docosahexaenoic acid (Lefils et al., 2010), and
the polyphenol resveratrol (Wang et al., 2011), increase adi-
ponectin production in either animals or humans. There is
also a growing interest to use adiponectin as a surrogate marker
for screening lead compounds from nutraceutical products
with anti-diabetic and cardio-protective activities (Xu et al.,
2009a). Such a strategy has been used successfully for identi-
fication of astragaloside II and isoastragaloside I from the
medicinal herb Radix Astragali (Huang Qi in Chinese).
Astragaloside II and isoastragaloside I specifically increase
adiponectin secretion in primary adipocytes, and raise plasma
levels of adiponectin in mice with dietary or genetic obesity
(Xu et al., 2009a). Moreover, long-term treatment with these
two compounds improves obesity-related metabolic compli-
cations in an adiponectin-dependent manner (Xu et al.,
2009a). Noticeably, Radix Astragali has been used as a herb
medicine to treat CVD for several centuries in many Asia
countries. Further studies are warranted to investigate whether
or not its beneficial effect is mediated by astragaloside II and
isoastragaloside I-induced adiponectin secretion.

Concluding remarks

Both clinical data and experimental evidence obtained in the
past decade have demonstrated the multiple salutary effects
of adiponectin in obesity-related metabolic and cardiovascu-
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lar complications. Due to the close proximity between
adipose and cardiovascular tissues, adiponectin acts in both
an endocrine and paracrine manner to modulate circulatory
function. Adiponectin is a key component that mediates the
cross-talk between adipose tissue, cardiac cells and the vascu-
lature (Li et al., 2010).

As epidemiological studies have identified adiponectin
deficiency as an etiological factor of CVD, elevation of plasma
adiponectin by either pharmaceutical or lifestyle interven-
tions represent a promising therapeutic strategy for CVD.
Indeed, numerous drugs and nutraceuticals with anti-diabetic
and cardiovascular protective activities increase plasma adi-
ponectin in humans and/or animals. Notable among them
are TZDs, which bear striking similarity to adiponectin with
respect to their beneficial effects on insulin-sensitization, vas-
cular protection and anti-inflammation. Several independent
studies on adiponectin knockout mice provide compelling
evidence that indeed almost all the beneficial effects of TZDs
are mediated by induction of adiponectin. However, TZDs
have several side effects including body weight gain, fluid
retention, and anaemia (Semenkovich, 2005). Furthermore,
the use of rosiglitazone, one of the most widely used TZD
drugs, is compromised by an increased cardiac risk. A meta-
analysis of controlled clinical trials found a significant
increase in the risk of myocardial infarction and a near-
significant increased risk of death from cardiovascular causes
when rosiglitazone was compared with placebo or with stan-
dard diabetes drugs (Nissen and Wolski, 2007). In contrast to
TZDs, adiponectin possesses cardio-protective activities.
Therefore, pharmacological agents that selectively increase
plasma adiponectin may be able to avoid the detrimental
effects of TZDs. To develop lead compounds that selectively
induce adiponectin production in adipocytes, it is of critical
importance to further elucidate the detailed molecular events
involved in regulating the expression, post-translational
modifications, oligomerization and secretion of the adipok-
ine, and to dissect the pathological pathways that lead its
impaired secretion in obesity-related disorders.

An alternative adiponectin-targeted drug development
strategy is to design chemical agonists that can mimic adi-
ponectin to activate its receptors and/or postreceptor signal-
ling pathways. Such an approach may also be able to reverse
‘adiponectin resistance’, which has been observed in both
animals and humans (Lin et al., 2007; Kunihiro Matsushita
et al., 2007). However, since the discovery of the two adi-
ponectin receptors (AdipoR1 and AdipoR2) in 2003, little
progress has been made in the understanding of the struc-
tural basis underlying their ligand-receptor interactions. The
molecular events whereby the binding of adiponectin to its
receptors results in the activation of its downstream signal-
ling pathways remain poorly characterized. Despite the fact
that AdipoR1 and AdipoR2 are expressed in both cardiac cells
and blood vessels, their physiological roles in modulating
cardiovascular function have not been explored so far.
Although T-cadherin has been identified as a physiological
adiponectin-interacting receptor required for conferring the
cardio-protective effects of this adipokine, the relationship
between T-cadherin, AdipoR1 and AdipoR2 in the cardiovas-
cular system requires further clarification. Further studies in
this exciting field should provide important molecular and
structural information for the rational design of adiponectin

agonists that can potentially be used to combat the escalating
epidemic of obesity, diabetes and CVD.
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