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Obesity has become a serious global health issue affecting both adults and children. Recent devolopments in world
demographics and declining health status of the world’s population indicate that the prevalence of obesity will continue to
increase in the next decades. As a disease, obesity has deleterious effects on metabolic homeostasis, and affects numerous
organ systems including heart, kidney and the vascular system. Thus, obesity is now regarded as an independent risk factor
for atherosclerosis-related diseases such as coronary artery disease, myocardial infarction and stroke. In the arterial system,
endothelial cells are both the source and target of factors contributing to atherosclerosis. Endothelial vasoactive factors
regulate vascular homeostasis under physiological conditions and maintain basal vascular tone. Obesity results in an imbalance
between endothelium-derived vasoactive factors favouring vasoconstriction, cell growth and inflammatory activation.
Abnormal regulation of these factors due to endothelial cell dysfunction is both a consequence and a cause of vascular disease
processes. Finally, because of the similarities of the vascular pathomechanisms activated, obesity can be considered to cause
accelerated, ‘premature’ vascular aging. Here, we will review some of the pathomechanisms involved in obesity-related
activation of endothelium-dependent vasoconstriction, the clinical relevance of obesity-associated vascular risk, and
therapeutic interventions using ‘endothelial therapy’ aiming at maintaining or restoring vascular endothelial health.

LINKED ARTICLES
This article is part of a themed section on Fat and Vascular Responsiveness. To view the other articles in this section visit
http://dx.doi.org/10.1111/bph.2012.165.issue-3

Abbreviations
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Endothelium-dependent regulation of
vascular tone

Endothelial cells form the inner lining of arterial and venous
blood vessels and lymphatic vessels which amount to

approximately 1.5 kg in a person weighing 70 kg, covering an
area of approximately four tennis courts (Cryer, 1983;
Luscher and Barton, 1997; Barton, 2006). Under normal con-
ditions, endothelial cells constantly produce vasoactive and
trophic substances that control inflammation, vascular
smooth muscle cell growth, vasomotion, platelet function,
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and plasmatic coagulation (Barton and Haudenschild, 2001;
Traupe et al., 2003). In the early 1970s, Ross and Glomset
reported that endothelial cells protect smooth muscle cells to
proliferate, which generated the ‘response-to-injury’ theory
of atherosclerosis (Ross and Glomset, 1973). The importance
of endothelial cells as both source and target of vasoactive
factors, however, was discovered by Robert F. Furchgott
around 30 years ago (Furchgott and Zawadzki, 1980; Nilius
et al., 2010; Barton, 2011). Since then, physiological roles of
these factors have been demonstrated (Furchgott and Van-
houtte, 1989) as well as that these factors both contribute to
and interfere with the development of cardiovascular disease
(Barton and Haudenschild, 2001; Traupe et al., 2003; Barton,
2010; Vanhoutte, 2011). Finally, the new field of endothelial
cell research eventually allowed the development of the first
class of drugs specifically targeting an endothelial vasocon-
strictor, the endothelin receptor antagonists (Barton, 2011).

Endothelium-dependent
vasoconstriction: balancing
endogenous vasodilation

Vasoactive factors derived from endothelial cells include the
vasodilating gas NO, oxygen-derived free radicals such as ·O2-
or ·OH, or peptides such as endothelins and angiotensins
(Feletou and Vanhoutte, 2006). Thus, endothelium-derived
mediators have either endothelium-derived relaxing factor
(EDRF) or endothelium-derived contracting factor (EDCF)
functions (Vanhoutte and Tang, 2008; Vanhoutte, 2009b).
Endothelial cells also synthesize cyclooxygenase-derived
EDCFs and EDRFs, and EDHFs (endothelium-derived hyper-
polarizing factors) (Busse et al., 2002; Feletou and Vanhoutte,
2006). Endothelial factors are formed by enzymes such as NO
synthase, NADPH oxidases, cyclooxygenases, converting
enyzmes and epoxigenases, among others (Feletou and Van-
houtte, 2006). Although termed ‘endothelial’ factors, these
mediators are not exclusively formed by endothelial cells, but
also synthesized by other cells such as vascular smooth
muscle cells, inflammatory cells such as leukocytes, mesan-
gial cells or adipocytes, all of which appear to be centrally
involved in obesity-related disease processes (Xu et al., 2003;
2010; Rocha and Libby, 2009; Li et al., 2010). An excessive
production or increased activity through specific receptors
causes endothelial factors to induce vasoconstriction and vas-
cular cell growth (Luscher and Barton, 1997). The numerous
endothelial factors identified so far have been extensively
studied under physiological and pathophysiological condi-
tions (reviewed in Vanhoutte et al., 2009; Barton, 2010;
2011).

Endothelium-derived vasoconstrictors:
prostanoids, superoxide
and endothelin

Arachidonic acid-derived vasoconstrictor prostanoids were
the first EDCFs identified by DeMey and Vanhoutte (Van-
houtte and Tang, 2008; Vanhoutte, 2009a; Barton, 2011; Van-

houtte, 2011) shortly after the report of endothelium-
dependent dilation (Furchgott and Zawadzki, 1980),
demonstrating contractile effects mediated by endothelium-
derived cyclooxygenase products (De Mey and Vanhoutte,
1982; Wong and Vanhoutte, 2010). Superoxide anion, a
short-lived by-product of oxidative metabolism, was also
found to have vasoconstrictor activity again by Vanhoutte’s
group (Rubanyi and Vanhoutte, 1986) and also by Moncada
and associates (Gryglewski et al., 1986). This constrictor effect
is largely due to the EDRF/NO-inactivating properties of
superoxide anion (Rubanyi and Vanhoutte, 1986). Reactive
oxygen species have been studied since the early 1990s and
Griendling and coworkers have identified a vascular NADPH
oxidase as one of the major sources of vascular reactive
oxygen species (Griendling et al., 2000); the nox4 isoenyzme
is mainly expressed in endothelial cells (Brandes et al., 2010).
Interestingly, EDHF synthase/cytochrome P450 expoxygenase
is also a source of superoxide anion (Fleming et al., 2001). In
the 1980s, several groups reported the release of a vasocon-
strictor substance from cultured endothelial cells (Hickey
et al., 1985; Gillespie et al., 1986; O’Brien et al., 1987). Inves-
tigators had accidentally detected its peptidergic vasoconstric-
tor activity in experiments in search of the vasodilator
molecule then called EDRF (Rubanyi, 2011 and Dr David M.
Pollock, pers. comm.). This ‘EDRF’ was later identified as the
gas NO (Ignarro et al., 1987; Furchgott, 1988). The gene and
peptide sequence of the vasoconstrictor peptide, named
endothelin due to its cellular origin, was ultimately revealed by
Masaki’s group from Japan and published in 1988 (Yanag-
isawa et al., 1988; Barton and Yanagisawa, 2008). Subse-
quently, other members of this peptide family such as
endothelin-2 and endothelin-3 were identified (Barton and
Yanagisawa, 2008). Through activation of ETA receptors,
endothelin-1 (ET-1) causes sustained and potent vasoconstric-
tion and also activates cell proliferation (Barton and
Yanagisawa, 2008) and mediates endothelium-dependent
contractions via thomboxane A2 (Taddei and Vanhoutte,
1993; Moreau et al., 1996; d’Uscio et al., 1997; Traupe et al.,
2002a). As with other vasoconstrictors, NO counterbalances
the effects of endothelin (Vanhoutte, 2000). Recently, Yanag-
isawa’s group reported that endothelial cell-derived ET-1 is
responsible for the majority of endothelin tissue expression,
as endothelial cell-specific prepro-ET-1-deficient mice exhibit
a reduction of ET-1 tissue levels in several organs up to 70%
compared with wild-type mice (Kisanuki et al., 2010). The
hypotension observed in animals with endothelial cell-
restricted endothelin deficiency also indicates that the vaso-
constrictor activity of endogenous endothelin peptide – via
the ETA receptor – outweighs its ETB -mediated dilator activity.

Obesity, insulin resistance and
diabetes: vascular inflammtion
as key event

In the 21st century, obesity has become the main cause of
diabetes and associated diseases. Already in overweight
patients, abnormalities found in obese individuals are
present, albeit to a lesser degree. As a direct consequence of
the disease, obese patients present with enhanced sympa-
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thetic drive, increased vasomotor tone and hypertension;
they develop metablic abnormalties such as insulin resis-
tance, dyslipidaemia and diabetes, and organ injury such as
fatty-inflammatory degeneration of the liver (non-alcoholic
steatohepatitis) and structural injury of the kidney through
focal–segmental glomerulosclerosis (Abate et al., 2001; Viss-
cher and Seidell, 2001). Moreover, overweight or obese indi-
viduals are at a higher risk to develop left ventricular (Russo
et al., 2011) and right ventricular (Wong et al., 2006) diastolic
dysfunctions, and to develop heart failure due to obesity
cardiomyopathy in the course of the disease (Russo et al.,
2011; Wong and Marwick, 2007). Because the metabolic
impairments in obesity often deteriorate in overt diabetes,
prevention of obesity is of paramount importance. Diabetic
complications are now recognized as some of the most fre-
quent causes of organ failure due to cardiovacular causes
(myocardial infarction and heart failure), cerebral disease
(stroke), renal failure/requirement for dialysis or renal trans-
plant therapy (Farag and Gaballa, 2010; Dunlay et al., 2011;
Herman, 2011; Ratner and Sathasivam, 2011), or peripheral
vascular disease (Skilton et al., 2011). The mechanisms
involved in the disease accelleration by obesity and/or diabe-
tes involve various mechanisms (Visscher and Seidell, 2001),
with generalized inflammation being the main unifying
principle of disease (Wellen and Hotamisligil, 2003; 2005);
importantly, these changes are aggravated in women after
menopause where cessation of oestrogen production acceler-
ates the development of obesity, diabetes and hypertension
(Barton and Meyer, 2009; Meyer et al., 2011). Impairment of
glucose and insulin function are central to the metabolic
abnormalities found in obesity (Wellen and Hotamisligil,
2003; 2005). They are, however, not only restricted to the
endocrine pancreas and skeletal muscle but also directly
involve secretion of proteins from fat tissue that are involved
in maintaing adipocyte function, and, if abnormally
increased, may directly worsen metabolism, inflammation,
endothelial cell dysfunction and organ injury (Ouwens et al.,
2010; Zhang et al., 2010; Cui et al., 2011). The so-called adi-
pokines (or adipocytokines), for which disease-modifying
roles in obesity have been demonstrated, include adiponec-
tin, leptin and ghrelin (Ouwens et al., 2010; Zhang et al.,
2010; Cui et al., 2011). For some of these proteins, direct
effects on insulin signalling, fat cell growth and inflamma-
tion have been demonstrated (reviewed in Ouwens et al.,
2010; Zhang et al., 2010; Cui et al., 2011).

Obesity: a trigger of endothelial
cell injury and amplifier of
cardiovascular risk

Within only a decade, obesity has become one of the most
relevant global health issues (McLellan, 2002; Barton and
Furrer, 2003), with the associated health costs exploding
(Finucane et al., 2011; Heidenreich et al., 2011). Six years ago,
1.6 billion adults worldwide were diagnosed as overweight,
and 400 million were obese. Within only another 4 years, the
numbers worldwide will have increased to 2.3 billion adults
being overweight and 700 million being obese (Stewart et al.,
2008; 2009; Malik et al., 2010), representing an alarming

10-year increases of 44 and 75%, respectively. Most recent
studies confirm that the body mass index continues to
increase on almost all continents (Finucane et al., 2011). The
reasons for this development are economic growth in devel-
oping countries as well as changes in nutrition patterns, in
combination with the availability of inexpensive and unbal-
anced diets rich in carbohydrates and fat (Bray and Popkin,
1998; McLellan, 2002; Stewart et al., 2008; 2009; Malik et al.,
2010). Excess food intake is further aggravated by an
unfavourable lifestyle; lacking physical exercise; and consum-
ing high caloric, non-alcoholic and alcoholic drinks (Barton
and Furrer, 2003; Malik et al., 2010). Excessive amounts of
visceral fat are now recognized as one of the major contribu-
tors of the obesity-associated organ injury, and studies in
rodents and in monkeys indicate that either removal of vis-
ceral fat or caloric restriction can substantially extend
lifespan in mammals (Muzumdar et al., 2008; Colman et al.,
2009). Obesity, diabetes and aging share a number of the
same etiopathologies that contribute to endothelial and vas-
cular injury (Barton, 2010). One of the most worrisome devel-
opments is that obesity now increasingly affects school
children (Jolliffe, 2004) (Ludwig, 2007) who – at a young age
– present with diseases normally found only in adults of
higher age, namely arterial hypertension and diabetes melli-
tus (Barton and Furrer, 2003). Overweight children prema-
turely develop abnormal endothelial cell function and
thickening of the arterial vascular wall (Woo et al., 2004), as
well as myocardial wall thickening (de Jonge et al., 2011),
features usually observed only in obese adults or aged indi-
viduals (Steinberg et al., 1996). Indeed, a most recent paper
concluded that obesity induces premature cardiac aging in
younger patients (Niemann et al., 2011). This further under-
scores that obesity actually mimics (and thus accelerates)
normal aging in many aspects, also evident from the
increased intima-media thickness found in obese young
adults (Berni et al., 2011). This once more illustrates the
importance to actively intervene and start obesity prevention
as early as possible to interfere with its cardiovascular conse-
quences (Barton and Furrer, 2003).

Evidence for endothelium-derived
vascoconstriction in obesity

Endothelium-derived vasoconstrictor
prostanoids/EDCF
Enhanced vasoconstriction has been observed in patients
with obesity (Sivitz et al., 2007), and both cyclooxygenase
and endothelin have been implicated in these responses. In
mice with diet-induced obesity, formation of endothelial
vasoconstrictor prostanoids is enhanced in both aorta and
carotid artery (Traupe et al., 2002b) (Figure 1); these contrac-
tions are fully blocked by non-selective COX-inhibition or
antagonists of thromboxane receptors (Figure 1C), but not
COX-2 selective inhibitors (Traupe et al., 2002b). In an
elegant study, Tang et al. subsequently demonstrated using
COX-1- and COX-2-deficient mice that COX-1 is indeed the
sole enzyme mediating prostanoid-mediated EDCF produc-
tion in mice (Tang et al., 2005). Results from studies in mice
on high-fat diet suggest activation of COX-1-dependent vaso-
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constrictor pathways in obesity and that these pathways con-
tribute to enhanced vasoconstriction also observed in obese
humans (Cardillo et al., 2004; Rask-Madsen and King, 2007)
(Figures 1 and 2). Similar to obesity, activation of COX-
dependent pathways has been reported to occur with aging
(Tang and Vanhoutte, 2008), again suggesting common path-

ways between both physiopathologies. Recent work compar-
ing functional vascular injury due to obesity in youth and
adulthood indeed suggests that obesity causes changes com-
patible with accelerated, ‘premature’ vascular aging with
regard to endothelium-dependent, prostanoid-mediated con-
tractlity (Bhattacharya et al., 2008a). In addition to COX-
derived EDCFs activating thromboxane receptors, another
endothelium-derived arachidonic acid product, prostacylin
(which can also act as an EDCF) (Vanhoutte, 2011), has
recently been directly implicated in obesity, by determining
the fate for development of fat cells from progenitor cells
(Ishibashi and Seale, 2010; Vegiopoulos et al., 2010).

Endothelium-derived angiotensin II
Obesity activates the renin-angiotensin-aldosterone system
(RAAS) (reviewed in Barton et al., 2003a). Similar to what
occurs during aging (Barton et al., 1997), obesity does not
equally affect all vascular beds to the same degree. In the C57
mouse model of diet-induced obesity (Surwit et al., 1988),
contractions to angiotensin II markedly increase only in the
aorta (Figure 3C, filled bar) but not in the carotid artery
(Barton et al., 2000b). Chronic treatment with an orally active
endothelin ETA receptor antagonist (darusentan) completely
abrogated the increased contractility (Barton et al., 2000b)
(Figure 3C, hatched bar), indicating a molecular interaction
between these two vasoactive systems and their cellular
targets. These effects were independent of body weight and
arterial blood pressure, compatible with the notion that
endogenous endothelin becomes activated during obesity
and that endothelin – at least partially – contributes to
angiotensin-mediated vasoconstriction in certain vascular
beds. Contractility to angiotensin in this model was also
blocked by cyclooxygenase inhibition in vitro to a large
degree, suggesting that – unlike in other species – in the
mouse vasculature, endothelial EDCFs formed from vasocon-
strictor prostanoids largely contribute to responses elicited by
other vasoconstrictors (Barton et al., 2000b). This effect
appears to develop with age (Kretz et al., 2006). Obesity also
increases protein expression of the main cellular target of
angiotensin II, the AT1 receptor, which is up-regulated only if
the diet contained high amounts of fat (Mundy et al., 2007b).

Endothelium-derived ET-1
As recently shown by Yanagisawa and co-workers,
endothelium-derived endothelin contributes to the majority
of endothelin found in different organs and in plasma, and
also is important for maintaining basal blood pressure
(Kisanuki et al., 2010). Endothelin production not only is
regulated by angiotensin II both in vitro and in vivo (reviewed
in Lüscher and Barton, 2000), but diet-induced obesity also
up-regulates renal (but not pulmonary) ACE activity in an ETA

receptor-dependent manner (Barton et al., 2000b). Again, this
suggests that both the RAAS and the endothelin system inter-
act with each other in a positive feedback loop (Barton et al.,
2000b). The data also indicate – that under certain conditions
such as obesity – endothelin receptor antagonists exert ACE
inhibitor-like activity (Barton et al., 2000a). One of the most
important factors responsible for the high prevalence of
obesity is an increased intake of high-calorie food rich in
carbohydrates and fat (Bhattacharya et al., 2008a). Several

Figure 1
Effect of diet-induced obesity (�) on acetylcholine-mediated,
endothelium-dependent vasoreactivity in the carotid artery (A, C)
and thoracic aorta (B) of C57 mice. Controls (�) were fed a normal
chow diet. In the carotid artery, diet-induced obesity impairs
NO-mediated endothelium-dependent relaxation while at the same
time enhancing endothelium-dependent contractions in the carotid
artery (A). In the aorta, the larger conduit vessel, NO-dependent
dilation is preserved during obesity; however, endothelium-
dependent contractions now become visible (B). *P < 0.05 vs. C57
control. Panel C shows three original recordings of responses to
acetylcholine in norepinephrine-precontracted carotid artery rings
from the same obese C57 animal after 30 weeks on high-fat diet in
the absence of inhibitors (upper tracing), in the presence of the
thromboxane receptor antagonist SQ-30741 (middle tracing) or the
cyclooxygenase inhibitor indomethacin (bottom tracing). Transient,
endothelium-dependent contraction responses to acetylcholine are
visible beginning at concentrations of 30 nmol·L-1 in the untreated
carotid artery ring, whereas inhibition of either thromboxane recep-
tors (SQ-30741) or cyclooxygenase (indomethacin) completely
abrogates endothelium-dependent contractions. NE indicates nore-
pinephrine, arrows indicate administration of increasing cumulative
concentrations of acetylcholine (mol·L-1), ‘w’ indicates wash-out.
Figure panels A an B are adapted from Traupe et al., 2002b and
reproduced with permission of the publisher.
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experimental models of diet-induced obesity are available
(Surwit et al., 1988; Tschop and Heiman, 2001; Collins et al.,
2004) in which changes in the vasculature and kidney have
been studied. Experimental studies suggest that these animal
models exhibit many of the changes seen with obesity in
humans, including inflammation, dyslipidaemia and abnor-
malities of vasomotor tone (Surwit et al., 1988; Tschop and

Heiman, 2001; Traupe et al., 2002b; Collins et al., 2004).
Indeed, like in humans (Cardillo et al., 2004), vascular
responses to endothelin are enhanced in both models of
diet-induced (Figure 3) and monogenetic leptin-deficient
obesity (Traupe et al., 2002a,b; Mundy et al., 2007a,b; Bhatta-
charya et al., 2008b). Importantly, the susceptibility to the
obesity-enhanced responsivness to ET-1 varies between vas-

Figure 2
Effect of 30 weeks of diet-induced obesity in placebo-treated ( ) or endothelin ETA-receptor antagonist-treated ( ) C57 mice on endothelium-
dependent contractions to acetylcholine (30 mmol·L-1) in NO-depleted vascular rings of aorta (A) and carotid artery (B). Contractions to
angiotensin II in the aorta are depicted on the right (C). Depletion of endothelium-derived NO was achieved by acute treatment with L-NAME
(300 mmol·L-1), a non-selective inhibitor of NO synthases. In NO-depleted arteries of control animals on chow diet (�), EDCF were only present
in the carotid artery. In mice with diet-induced obesity ( ), the residual relaxation to acetylcholine is converted into a contraction in the aorta,
and the magnitude of EDCF-mediated contractions was doubled in the carotid artery. Chronic treatment with the orally active endothelin ETA

receptor antagonist darusentan (LU135252) ( ) – without affecting body weight – not only completely prevented enhanced EDCF-mediated
contractions, but also caused acetylcholine to elicit a small relaxation instead (B). Similarly, in NO-depleted aortic rings, contractions to angiotensin
II (0.1 mmol·L-1) were markedly enhanced by obesity ( ), an effect again completely abrogated after chronic endothelin receptor antagonist
treatment which had no effect on obesity ( ). *P < 0.05 versus control; †P < 0.05 versus obesity. Panels A and B: This research was originally
published in Clinical Science. Traupe et al., 2002a. © Portland Press Limited. Panel C is from Barton et al., 2000b, and reproduced with permission
of the American Heart Association and the publisher.

Figure 3
Anatomic heterogeneity of ET-1 mediated vascular contractility in C57 mice. The magnitude of contractions to ET-1 in the carotid artery (A) was
twice that of the aorta (B), yet diet-induced obesity augmented ET-1-induced contractions only in aorta (B) but not the carotid artery (A). Western
blot experiments of aortic expression of ETA receptor; total ERK1/2 protein was used as loading control. Diet-induced obesity substantially increases
aortic endothelin ETA receptor expression, whereas ERK1/2 protein remains unafffected (C). *P < 0.05 versus control. Figure panels are in part
adapted from Traupe et al., 2002b (Panels A and B) and Mundy et al., 2007b; 73:368–375 (Panel C). Figures are reproduced with permission of
the publishers.
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cular beds (Figure 3), an anatomic heterogeneity that could
also be of relevance for the arterial circulation of obese
humans. In addition to its vasoconstrictor function ET-1 is a
potent pro-atherogenic peptide (Barton et al., 2003b), which
likely plays a role in the increased vascular risk seen with
obesity (Barton, 2010). Indeed, with obesity vascular ET-1
expression increases at the mRNA level in the vasculature
(Traupe et al., 2002b) and at the peptide level in the kidney
(Barton et al., 2000b). Obesity-induced increases of vascular
protein levels of the main target of ET-1, the ETA receptor
(Mundy et al., 2007b), have also been reported (Figure 3C).
Thus, the experimental studies provide some mechanistic
explanation (Figure 2) why diet-induced obesity exerts spe-
cific changes promoting enhanced vasoconstriction similar to
what can be seen in obese humans with regard to an activated
endothelin pathway (Cardillo et al., 2004). Clinical studies
using endothelin receptor antagonists (ERAs) also indicate
beneficial metabolic effects (Shemyakin et al., 2006; 2010;
Ahlborg et al., 2007) and suggest possible therapeutic poten-
tial for endothelin receptor antagonists in patients with
obesity (Barton et al., 2003a). Recent studies also suggest
therapeutic potential for obesity-related renal complications
such as proteinuria (Barton, 2008; Thoenes et al., 2009). In
fact, three clinical studies in obese patients with kidney
disease (Weber et al., 2009; Kohan et al., 2010; 2011; Mann
et al., 2010) have been recently published, showing a reversal
of functional renal injury after endothelin blockade.

Endothelium-derived free radicals and
inactivation of NO
Several studies in experimental animals and humans have
shown that in obesity, the bioactivity of NO is reduced
(Bender et al., 2007; Rask-Madsen and King, 2007; Bourgoin
et al., 2008; Damjanovic and Barton, 2008). The mechanistic
concept that has been mostly propagated is the inactivation
of NO by superoxide anion (O2-), leading to formation of
peroxynitrite. The source of increased O2-production is not
only enzymes such as NADPH oxidase, but also uncoupled
NO synthase (Forstermann and Munzel, 2006; Martins et al.,
2010). Increased nitrotyrosine formation as a consequence of
peroxynitrite production has been described in obese animal
models (Brodsky et al., 2004; Galili et al., 2007; Bourgoin
et al., 2008). More recently, other pathways such as guanylate
cyclase, the intracellular target of NO, have also been shown
to be affected by obesity and have been directly linked to
inflammation (Rizzo et al., 2010). Due to the fact that NO is
formed by the multi-enzyme complex NO synthase (Förster-
mann et al., 1994), which concomitantly produces reactive
oxygen species such as superoxide anion through its NADPH
oxidase domain, increasing NO bioactivity has been compli-
cated by NO synthase uncoupling (Wever et al., 1997; Stroes
et al., 1998; Landmesser et al., 2003). As the reaction between
NO and superoxide anion is essentially diffusion limited,
substantial amounts of peroxynitrite (ONOO-) are formed
(Barton, 2010). ONOO- causes cell injury through the
nitrosylation of proteins which partially or completely inac-
tivates them (Abello et al., 2009). Nitrosylation of proteins,
which will cause relatively stable nitrotyrosine to be formed,
will change the function, structure, and thus the ability of
these proteins to interact with other proteins (Musci et al.,
2006). In addition to superoxide anion and peroxynitrite,

vascular formation and activity of other oxygen derived radi-
cals are altered in obesity. In lean control mice and mice with
monogenetic obesity (Mundy et al., 2007a), ET-1 stimulates
hydroxyl radical formation, an effect that is more or less
abolished by obesity (Mundy et al., 2007a). However, relaxant
responses to hydroxyl radical are enhanced in animals with
monogenetic obesity (Mundy et al., 2007a). Similar observa-
tions were made in models of diet-induced obesity, where
vascular responses to hydroxyl radical changed from contrac-
tion in lean animals into relaxation upon obesity induction,
again effects being specific to certain vascular beds (Bhatta-
charya et al., 2008b).

Endothelium-derived peptides neuropeptide y
and atrial natriuretic peptides
Neuropeptide Y, a centrally acting peptide involved in appe-
tite regulation (Achike et al., 2011; Kim et al., 2010), has been
recently shown to stimulate adipogenesis (Baker et al., 2009).
Neuropeptide Y binds to endothelial cells, causes
NO-dependent dilation, stimulates endothelial cell growth
and affects endothelial cell macromolecule permeability (San-
abria and Silva, 1994; Noll et al., 1996; Marion-Audibert et al.,
2000; Nilsson et al., 2000). Although a role for neuropeptide
Y in adipogenesis and endothelial cell function – including
enhanced thromboxane/EDCF-mediated vascular tone (Fabi
et al., 1998) – has been demontrated, no data showing its
involvement in obesity-associated vascular dysfunction have
been published. Another group of peptides are the atrial
natriuretic peptides ANP, BNP, and CNP, which have been
recently implicated in obesity and lipid mobilization (Bartels
et al., 2010; Chen-Tournoux et al., 2010; Koppo et al., 2010;
Saritas et al., 2010). Atrial natriuretic peptides are also formed
and metabolized by endothelial cells (Johnson et al., 1990;
Lew and Baertschi, 1992; Sugiyama et al., 1995; Yamada and
Yokota, 1996). CNP causes endothelium-independent and
endothelium-dependent relaxation (Evans et al., 1993;
Barton et al., 1998; Chauhan et al., 2003; Villar et al., 2007;
Leuranguer et al., 2008; Liang et al., 2010), yet direct effects of
obesity on endothelial-cell dependent responses or activities
of atrial natriuretic peptides have not been reported.

Therapeutic interventions for patients
with obesity: ‘endothelial therapy’

A decade ago, we coined the concept of ‘endothelial therapy’
as a means to preserve and/or improve vascular function by
reducing production of deleterious endothelium-derived
mediators in order to attenuate atherosclerosis progression
(Barton and Haudenschild, 2001). Generally, either increas-
ing cellular antioxidant capacity or reducing oxidative stress
will have similar beneficial effects on the vasculature. Benefi-
cial effects of interventions to reduce oxidative stress and
inflammation (Figure 4) have been shown, among others, for
diseases such as atherosclerosis, myocardial infarction, stroke,
peripheral vascular disease, arterial hypertension, chronic
renal failure, pulmonary arterial hypertension (Vanhoutte
et al., 2009), and for a number of disease conditions mainly
associated with chronic inflammation such as connective
tissue diseases and metabolic conditions such as insulin resis-
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tance and diabetes (Libby, 2005; Rocha and Libby, 2008;
2009; Agouni et al., 2009). A number of modalities are avail-
able to interfere with obesity-related changes in endothelial
cell function (Jensen-Urstad et al., 1999). Preventive mea-
sures, which must be applied already to children and adoles-
cents, should include maintaining normal body weight (or
weight reduction, if required) and avoiding unbalanced diets
rich in fat and sugars and low in fibres (Chen et al., 2010).
Equally important appears to be the ‘therapeutic’ role of
regular physical activity, which reduces the incidence and
prevalence of the obesity-related co-morbidities diabetes,
hypertension, dyslipidaemia and depression (Colditz, 1999;
O’Brien and Dixon, 2002; Barton, 2010). Regular intense
exercise in humans has beneficial effects on cardiovascular
health showing a dramatic risk reduction (Manson et al.,
2002), which appears to be maintained even in the presence
of obesity. Similarly, weight loss has been shown to improve
the vascular risk profile, including a reduction of aortic pulse
wave velocity (Rider et al., 2010). In humans, endothelium-
dependent vasoreactivity can be preserved by exercise even at
a high age (Jensen-Urstad et al., 1999). Obesity is highly
prevalent among elderly individuals (Bramlage et al., 2004),
as is arterial hypertension, dyslipidemia and atherosclerosis
(Barton and Furrer, 2003; Bramlage et al., 2004). Unfortu-
nately, these conditions are no longer restricted to elderly
individuals but already present to a considerable degree in
children (Barton and Furrer, 2003; Ludwig, 2007). It will thus

require immediate action and intervention to avoid future
disease in adulthood. This is of particular importance in view
of the fact that childhood obesity – even if normal body
weight is achieved later in life – has been linked to an
increased likelihood of adult coronary artery disease (Baker
et al., 2007; Bibbins-Domingo et al., 2007; Ludwig, 2007).

Perspective and implications for
therapeutic interventions

It is currently unclear if and how certain drugs, which spe-
cifically target obesity and despite drug-related improvements
in lipid profile and vascular function, can affect overall mor-
bidity, life expectancy, and quality of life and well-being. One
of several unsuccessful recent drug candidates is the cannab-
inoid antagonist rimonabant, for which clinical trials have
been recently terminated due to serious health risks (Kwatra,
2010; Roberfroid et al., 2010; Topol et al., 2010). Whether or
not drug therapy can provide the solution to reduce the risk
related to obesity (a complex neurophysiological problem
with metabolic and physical consequences) remains yet to be
shown. However, the underuse of free and readily available,
non-pharmacological (i.e. physical) interventions clearly
require dramatic behavioural changes to reduce body weight
and improve physical fitness and health around the world.
Recent studies unfortunately show that the trend towards
increases of obesity prevalence continues around the world
(Finucane et al., 2011; Heidenreich et al., 2011). Should inter-
ventions fail, it appears likely that – for the first time and
regardless of all pharmaceutical advances made – mankind
could experience a decline in the overall longevity (Olshan-
sky et al., 2005; Stewart et al., 2009) that has increased conti-
nously since the beginning of time. Therefore, the preventive
power of ‘endothelial therapy’ will hopefully be recognized
and put to work where needed.
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