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Abstract
The intention-to-treat (ITT) analysis provides a valid test of the null hypothesis and naturally
results in both absolute and relative measures of risk. However, this analytic approach may miss
the occurrence of serious adverse effects that would have been detected under full adherence to the
assigned treatment. Inverse probability weighting of marginal structural models has been used to
adjust for nonadherence, but most studies have provided only relative measures of risk. In this
study, we used inverse probability weighting to estimate both absolute and relative measures of
risk of invasive breast cancer under full adherence to the assigned treatment in the Women’s
Health Initiative estrogen-plus-progestin trial. In contrast to an ITT hazard ratio (HR) of 1.25
(95% confidence interval [CI] = 1.01 to 1.54), the HR for 8-year continuous estrogen-plus-
progestin use versus no use was 1.68 (1.24 to 2.28). The estimated risk difference (cases/100
women) at year 8 was 0.83 (−0.03 to 1.69) in the ITT analysis, compared with 1.44 (0.52 to 2.37)
in the adherence-adjusted analysis. Results were robust across various dose-response models. We
also compared the dynamic treatment regime “take hormone therapy until certain adverse events
become apparent, then stop taking hormone therapy” with no use (HR= 1.64; 95% CI = 1.24 to
2.18). The methods described here are also applicable to observational studies with time-varying
treatments.

The primary analysis of most randomized trials follows the intention-to-treat (ITT)
principle. The ITT analysis is favored because it provides a valid test of the null hypothesis
in placebo-controlled trials -- bypassing the problems associated with imperfect adherence to
the assigned treatment -- and because the absence of adjustment for covariates naturally
yields both absolute and relative measures of risk.

However, the ITT effect is a biased estimate of any true non-null effect that would have
been observed under full adherence to the assigned treatment.1 The greater the nonadherence
to the assigned treatment, the closer to the null the ITT effect is expected to be in placebo-
controlled studies. Thus, in studies whose goal is evaluating a treatment’s safety, one could
naïvely conclude that a treatment is safe because the ITT effect is close to null, even if the
treatment causes serious adverse effects that would have been detected in the absence of
nonadherence.
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To deal with nonadherence, one can attempt to estimate the effect that would have been
observed had all study participants adhered to their assigned treatment throughout the
follow-up, sometimes referred to as the effect of continuous treatment. Inverse probability
weighting can be used to consistently estimate the effect of continuous treatment,2–5 but
only under exchangeability and modeling assumptions that are not required to estimate the
ITT effect. G-estimation of structural nested models that uses assigned treatment as an
instrumental variable can also be used under a different set of assumptions.4,6–8 The wish to
conduct an analysis whose validity does not rely on those assumptions might explain the
widespread use of the ITT analysis, despite its shortcomings.

Here we describe the application of inverse probability weighting of marginal structural
models to estimate both absolute and relative measures of risk under full adherence. To
illustrate the use of inverse probability weighting, we estimated the effect of continuous
postmenopausal hormone therapy on the risk of invasive breast cancer (henceforth, breast
cancer) in the Women’s Health Initiative estrogen-plus-progestin trial.

METHODS
Study population

The Women’s Health Initiative estrogen-plus-progestin trial was a double-blinded, placebo-
controlled, and multi-centered primary-prevention trial in which 16,608 postmenopausal
women aged 50–79 years with an intact uterus at baseline were randomized to either a daily
hormone regime of 0.625mg conjugated equine estrogens plus 2.5mg medroxyprogesterone
acetate (n = 8506) or matching placebo (n = 8102) between 1993 and 1998.9 A detailed
description of the trial has been published elsewhere.9,10 The limited access dataset we used
(obtained from the National Heart, Lung, and Blood Institute) includes follow-up
information through 7 July 2002, for an average follow-up of 5.6 years.

Data were collected at baseline and during the follow-up period on demographic
characteristics; medical, reproductive, and family history; hormone use; dietary intake; and
physical examinations. Safety and adherence data were recorded first at six weeks after
randomization, followed by scheduled semi-annual interviews and annual clinical visits
during which health-related information was also updated. For each follow-up year, the
dataset contains indicators for discontinuation of assigned study pills and initiation of non-
study hormone therapy, as well as the proportion of study pills taken (estimated by weighing
of returned bottles) and self-reported frequency of use. (We re-coded doses less than 1% in a
given year as zero.) Physician adjudicators at local clinics first confirmed self-reported
breast cancer cases by reviewing medical records and pathology reports, and all cases were
subsequently centrally adjudicated using the Surveillance, Epidemiology, and End Results
(SEER) coding system.11,12

ITT analysis
For quality assurance purposes, we first replicated the published estimates of the average
ITT hazard ratio of hormone therapy versus placebo12,13 through a pooled logistic
regression model14 that included months since randomization (modeled by cubic splines),
age at baseline, and randomization status in a parallel diet-modification trial. We estimated
the average ITT hazard ratio over the first 2-, 6-, and 8-year periods. We repeated the
analysis stratified by prior hormone use (yes, no), age (<60 and ≥60 years old), years since
menopause (<10 and ≥10 years).

To estimate breast cancer-free survival curves for initiators and non-initiators, we followed
two separate approaches. First, we constructed unadjusted Kaplan-Meier survival curves, as
previously reported by the Women’s Health Initiative investigators.12,13 Second, we
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estimated standardized survival curves from a pooled logistic model that allowed for time-
varying hazard ratios by including product (“interaction”) terms between treatment arm and
months since randomization, in addition to the covariates listed above. To estimate the
standardized (by the baseline covariates) survival at month m for therapy initiation, we
multiplied the predicted conditional probabilities of surviving to month t≤m given survival
through t-1 for each study participant including those in the placebo arm (by setting the
treatment arm indicator equal to 1 in the fitted pooled logistic model), and then averaged the
estimate across all participants. To estimate the standardized survival under no initiation, we
repeated the process with the treatment arm indicator set equal to 0. In the absence of model
misspecification, the unadjusted and the standardized curves should be similar.

We then computed, from each standardized curve, the estimated absolute risk of breast
cancer (cumulative incidence) as 1 minus the disease-free survival at 2, 6, and 8 years, and
the corresponding risk differences for initiators versus non-initiators. The 95% confidence
interval (CI) for the risk difference was estimated by 200 bootstrap samples (with
replacement).

Adherence-adjusted analysis
We estimated the hazard ratio for continuous hormone use versus no use (an adherence-
adjusted effect) using inverse probability weighting.2–5 Informally, the method weights each
woman at each time period by the inverse of the density of having received her actual
treatment history through that time. The density was computed as the product of the
probability of receiving any hormone therapy during each follow-up year and, for those with
non-zero use during that year, the density of receiving the proportion of pills she actually
took. We estimated these quantities by fitting, separately for each arm, (1) a logistic
regression model to estimate the probability of receiving any hormone therapy, and (2) a
linear regression model that assumed independent normal errors with constant variance to
estimate the density of receiving the log-transformed proportion of pills taken among those
with non-zero use during that year.15,16 A participant contributed as many observations to
the models as years she was in the study, i.e., from baseline to the occurrence of breast
cancer, death, loss to follow-up, or end of study, whichever occurred first.

Both models included years since randomization (linear and quadratic) and covariates listed
in Table 1 measured at baseline and, for time-varying covariates, at the most recent visit.
Fitting a richer model with body pain (none, very mild, mild, moderate/severe) or use of
statins, aspirin, selective estrogen receptor modulators, bisphosphonates, or multivitamin
(yes, no) did not materially change the results (not shown). As noted above, we assumed a
normal density for the error term in the linear regression model, with a constant variance
across all combinations of the covariates. The results (not shown) were similar when we
used alternative distributions (gamma, log-normal), when we used an arcsin-root
transformation instead of log transformation, or when we allowed the error variance to
depend on a subset of the covariates.

To improve statistical efficiency, the weights were stabilized2–5,17 by setting the numerator
weight equal to the estimated probability (density) of received treatment history conditional
on the baseline covariates included in the ITT model plus the following subset of the
baseline covariates used in the model for the denominator of the weights: race/ethnicity,
marital status, body mass index, physical activity, cigarette smoking, alcohol intake, parity,
age at menarche, family history of breast cancer, mammography use, presence of vasomotor
symptoms, use of oral contraceptive, prior hormone use, and years since menopause. Adding
to the numerator weight model the covariates family history of fracture, region, education
level, number of children breastfed, age at first birth, personal history of benign breast
diseases, bilateral oophorectomy, general health, fruit and vegetable intake, and number of
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first-degree relatives with breast cancer yielded similar results (not shown). The mean of the
estimated stabilized inverse probability weights for adherence adjustment was 1.00 (standard
deviation = 0.29). We did not attempt to adjust for selection bias arising from differential
drop-out2–4 because of the low proportion of participants lost to follow-up (3.3%).

We then fitted a weighted model identical to the one used to estimate average ITT hazard
ratios, except that (1) the treatment arm indicator was replaced by a time-varying covariate
for cumulative use of hormone therapy, calculated as the sum of the annual proportion of
pills taken since baseline, and (2) included the additional baseline covariates used to
estimate the numerator of the weights. We used a nonparametric bootstrap estimator18 to
calculate conservative 95% CIs for the average hazard ratio. We added product terms
between cumulative use and indicators for prior hormone use (yes, no), age (<60, ≥60
years), and time since menopause (<10, ≥10 years) to obtain the corresponding stratum-
specific estimates of the average hazard ratio. Results were similar under a number of
sensitivity analyses described in Appendix 1.

Note that we specified a structural model with a dose-response function (cumulative use of
hormone therapy), rather than using a “model-free” approach in which participants are
censored when they become non-adherent, as in previous studies.19–21 The model-free
approach could not be used because the Women’s Health Initiative data did not include
sufficient information to establish the temporal sequence between nonadherence to assigned
treatment and breast cancer diagnosis within each 1-year observation period. On the other
hand, the uncertainty surrounding the time sequence has a small effect on our estimates
because (1) the uncertainty is restricted to a short interval during which only a relatively
small amount of treatment can be taken, and (2) our dose-response function (cumulative
treatment use) assumes that a small amount of treatment has little effect compared with a
large amount of treatment. “Average treatment use” is an example of an alternative dose-
response function that meets condition 2. “Current treatment use”, is an example that does
not.

This application extends previous applications of inverse probability weighting for survival
analysis5,22 to the case of time-varying treatments and dose-response functions for the effect
of treatment on disease-free survival. Annotated SAS programs used for this analysis can be
found in the eAppendix (http://links.lww.com).

Secondary adherence-adjusted analysis
In the Women’s Health Initiative study protocol, participants were required to permanently
stop their assigned hormone therapy if they developed the following events: deep vein
thrombosis, pulmonary embolus, endometrial hyperplasia with atypia, malignant melanoma,
endometrial cancer, breast cancer, triglycerides above 1,000 mg/dL, or starting anticoagulant
medications, estrogen, progesterone, testosterone, tamoxifen, or other selective estrogen-
receptor modulators. We performed a secondary analysis to estimate the survival curve that
would have been observed if all women in the hormone therapy arm had fully complied with
this protocol. More specifically, we estimated survival under the dynamic regime “take
hormone therapy until one of the above events occurs, then stop taking hormone therapy.”
To do so, we artificially censored participants in the hormone arm at the time they deviated
from the protocol (i.e., did not stop taking their assigned study hormone after they had one
of these events). This artificial censoring may result in selection bias because the
distribution of risk factors of breast cancer may differ between the censored and the
uncensored.

To adjust for such potential selection bias, one would estimate time-varying, subject-specific
inverse probability weights whose denominator is the subject’s estimated probability of
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remaining uncensored at each time, conditional on past joint predictors of censoring and the
outcome. Note, however, that the predictors of censoring at time t are in fact the predictors
of hormone therapy continuation at t because those who continue to take their study pills are
precisely those who are censored. Therefore there is no need to estimate separate inverse
probability weights to adjust for selection bias due to artificial censoring because the
treatment weights estimated in the primary analysis already adjust for the potential time-
varying selection bias due to artificial censoring. Also note that most protocol-mandated
reasons for stopping treatment were not risk factors for breast cancer and thus need not be
used to estimate the weights.

The specification of a marginal structural model for dynamic regimes is straightforward
when only two regimes are compared23 or when the goal of the structural model is to
smooth over a set of regimes that can be placed in 1-to-1 correspondence with an indexing
continuous variable.8,24 The situation is not so straightforward when, as is required in this
example, the dose-response function depends on a summary dose measure (such as
cumulative use) that can take the same value for many different regimes. See Appendix 2 for
further discussion and caveats. For simplicity, we used the same specification as in the
primary analysis; specifically we assumed the log discrete hazard is a linear function of
cumulative dose.

RESULTS
ITT estimates

We reproduced the ITT hazard ratio estimates published previously by the Women’s Health
Initiative investigators (Table 2). Compared with women assigned to placebo, women
assigned to estrogen-plus-progestin were 25% more likely to be diagnosed with breast
cancer during the first 8 years of follow-up, but 29% less likely to have the diagnosis during
the first 2 years. Only 2 cases occurred after 8 years, and thus the hazard ratios over the
entire study period (not shown) were virtually identical to those in Table 2.

Figure 1 shows breast cancer-free survival curves for initiators versus non-initiators among
all women, as well as women without and with prior hormone use. Kaplan-Meier
(unadjusted) and standardized (adjusted) curves were similar, which suggests that our model
for the standardized curves was adequately specified. The p-value from a log-rank test for
the equality of the survival curves between initiators and non-initiators was 0.04 for all
women, 0.45 for women without prior hormone use, and 0.01 for women with prior
hormone use. The ITT risk differences at 2, 6, and 8 years are shown in Table 2. By the end
of 8 years of follow-up, the estimated risk difference (cases per 100 women) of breast cancer
was 0.83 (95% CI = −0.03 to 1.69).

Adherence-adjusted estimates
A selected list of potential predictors of hormone use is shown in Table 3 (with all
covariates coded as categorical for simplicity). Women aged 70 years or more and non-
whites were less likely to use hormone therapy in both treatment arms. Examples of time-
varying predictors of hormone use in the treatment arm include normal mammogram/breast
exam (odds ratio of receiving hormone was 0.3 for participants with versus without
abnormal results); no new lumps, nipple discharge, or skin changes (odds ratio = 0.6);
oophorectomy (odds ratio = 1.6); weight loss (odds ratio = 0.7 for women whose body mass
index decreased by more than 0.5 kg/m2 from baseline); and changes in physical activity
(odds ratio = 0.7 for women who reduced their physical activity level by more than 0.5
metabolic equivalent units/week).
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In general, the adherence-adjusted hazard ratios (Table 4) were further away from the null
than the ITT estimates, but the corresponding 95% CIs were also wider. The adherence-
adjusted survival curves (Figure 2) crossed at about 4 years in women without prior
hormone use before randomization, and diverged at approximately 1 year after initiation in
women with prior hormone use. The p-value from a log-rank test for the equality of the
survival curves was <0.0001 for all women, <0.01 for women without prior hormone use,
and <0.001 for women with prior hormone use. By the end of 8 years of follow-up, the
estimated risk difference (cases per 100 women) of breast cancer was 1.44 (95% CI = 0.52
to 2.37) (Table 4). Risk differences obtained from different dose-response models (Table 5)
were qualitatively similar.

In our secondary adherence-adjusted analysis, the hazard ratio for 8-year continuous
hormone use was 1.64 (95% CI = 1.24 to 2.18) for all women, 1.59 (1.13 to 2.24) for women
without prior hormone use, and 2.04 (1.34 to 3.10) for those with prior hormone use. The
corresponding 8-year risk differences (cases per 100 women) were 1.56 (95% CI = 0.68 to
2.44), 1.45 (0.30 to 2.60), and 1.61 (0.60 to 2.62).

DISCUSSION
We have presented an application of inverse probability weighting to adjust for incomplete
adherence to the assigned treatment in randomized trials. Our analysis estimated that,
relative to no hormone therapy, the incidence of breast cancer under 8-year continuous
estrogen-plus-progestin therapy was 1.7 times greater (the ITT estimate was 1.3). In absolute
terms, we estimated that continuous use of estrogen-plus-progestin therapy for 8 years
caused an excess of 1.4 breast cancer cases per 100 women (the ITT estimate was 0.8).
Interestingly, women on estrogen-plus-progestin therapy had a lower incidence of breast
cancer during the first two years of use, which is consistent with the hypothesis that
estrogen-plus-progestin use delays breast cancer diagnosis, possibly by compromising the
diagnostic performance of mammogram and breast biopsies.12,25 Thus, as in previous
Women’s Health Initiative analyses,12,13 it may be more appropriate to say that our analysis
estimated the effect of continuous therapy on the diagnosis, rather than the true incidence, of
breast cancer.

Inverse probability weighting adjusts for the joint time-varying predictors of adherence and
breast cancer that were measured in the study, but cannot adjust for unmeasured predictors
of adherence.8 G-estimation (a general form of instrumental variable analysis) is another
approach that can adjust for measured and unmeasured predictors6–8 and that has been
applied in several randomized trials.4,26–31 We have previously compared the assumptions
for the validity of adherence-adjusted estimates when using adjusted inverse probability
weighting and g-estimation in randomized trials in which the outcome of interest is a
continuous variable.4

In contrast with inverse probability weighting and g-estimation, other adjustment methods
may not appropriately adjust for measured predictors of adherence and survival.32 For
example, a previously-used approach applies to the Women’s Health Initiative data censored
participants 6 months after they took <80% of their study pills or started receiving non-study
hormone. The hazard ratio of breast cancer was 1.49 (95% CI = 1.13 to 1.96).12 Such
approach requires the choice of an arbitrary censoring period, as well as the assumption that
reasons for stopping are not related to time-varying risk factors for breast cancer and the
measured time-varying risk factors that also predict future adherence are not themselves
affected by prior adherence. This assumption may be violated if, for example, women in the
hormone-treatment arm were less likely to adhere to their assigned treatment. In this study,
42% of the women in the hormone arm stopped taking their study pills some time during the
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follow-up, compared with 38% in the placebo arm; 6% and 11%, respectively initiated non-
study hormone therapy.9 Further, women with joint determinants of hormone use and breast
cancer that are also affected by previous hormone therapy, such as abnormalities in
mammogram and breast exam, were less likely to adhere to their assigned treatment.

Besides appropriately adjusting for the measured time-varying determinants of adherence,
our analytic approach allows estimation of the absolute risk under continuous therapy and
the exploration of the sensitivity of the estimates to the functional form of dose-response
function. Had the available Women’s Health Initiative data been sufficient to establish the
temporal sequence between nonadherence and breast cancer diagnosis, we could have done
away with the requirement to specify a dose-response function, at the expense of wider
confidence intervals for our estimates.4 In previous studies19,20 we did not have to specify a
dose-response function because the temporal sequence could be inferred from the data.

Both inverse probability weighting and g-estimation can be extended to the estimation of the
effect of dynamic treatment regimes.8,23 This extension is crucial because in some cases
estimating the effect of continuous treatment (a non-dynamic or static regime) may be of
little interest. For example, if many participants stop taking the treatment because it causes
serious adverse effects, one would not want to estimate the effect under the static regime
“always adhere to the baseline treatment” (the effect of continuous treatment) but rather
under the dynamic regime “adhere to the baseline treatment unless adverse effects become
apparent.” Further, when certain types of participants will always discontinue treatment
given certain adverse events, then estimating the effect under static regimes such as “always
adhere to the baseline treatment” is problematic because the positivity assumption is
violated.17,33

The Women’s Health Initiative protocol required participants who experienced certain
adverse events to stop permanently their assigned hormone treatment. A treatment regime
that changes with patients’ prognosis and response to previous therapy may increase the
effectiveness of the treatment or may reduce the adverse effects associated with the
treatment. In our breast cancer analysis, the effect on breast cancer risk of the dynamic
regime “adhere to the baseline hormone treatment unless adverse effects occurred” was
similar to the effect of continuous hormone use.

Loss to follow-up is another common problem in randomized trials. In the presence of loss
to follow-up, an analysis under the ITT principle is not feasible because some participants’
outcomes are unknown. As a result, some studies use a “pseudo-ITT” analysis4 that does not
preserve the desirable properties of the ITT analysis. Inverse probability weighting can also
be used to adjust for selection bias due to differential loss to follow-up,2–4 but that was not
necessary in this study because few participants dropped out.

In conclusion, we described the application of inverse probability weighting of a dose-
response marginal structural model to estimate both absolute and relative measures of effect
on a failure-time outcome. Although we focused on randomized trials for simplicity, the
methods described here are also applicable to observational studies with time-varying
treatments.
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Appendix 1. Primary analysis: Sensitivity analyses

Missing data on adherence
For women with missing proportion of study pills taken as estimated by weighing of
returned bottles (28% of the total person-time), we estimated this proportion based on their
self-reported frequency of use (none, <1, 1–2, 3–4, 5–6, 7 days/week). When the self-report
use was also missing (71% of the person-time in women with missing estimated proportion
of study pills), we randomly assigned a dose for that year using a uniform distribution. In
addition, because the proportion of pills taken is unknown for women who initiated non-
study hormone therapy, we randomly assigned a dose for such use. We repeated our analysis
under various assumptions for the imputation of missing study and non-study hormone use
(using all, half, or none of the usual proportion of pills, or using the same proportion as the
previous year). Results (not shown) were similar under all these assumptions. We were also
not able to accurately identify the dose a participant received during the year she had the
outcome. A number of sensitivity analyses were performed to test the robustness of our
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results. These included assuming (1) all participants stopped taking the study pills at the
time of outcome; (2) all participants kept taking the study pills until the end of the year; and
(3) participants stopped taking the study pills at a random month. Our results were similar
under these different scenarios. The third approach was used as the main analysis.

Density estimation
We evaluated the sensitivity of our estimates to the method of density estimation by varying
several components of the analysis separately. First, we used a gamma, rather than a normal,
distribution of the log-transformed proportion of dose received. Second, we considered a
log-normal distribution for the original, non-transformed, proportion of dose received.
Third, we used an arcsin-root, rather than a log, transformation. For women with both study
and non-study hormone use whose combined proportion of hormone use was greater than 1,
we recoded their proportion as 1. Fourth, we relaxed the assumption of constant variance
across treatment and covariate histories. We estimated the conditional variances by
regressing the squared residuals from the linear model for the (log-transformed) dose on the
covariates. Results were similar under all these models although, when estimating
conditional variances, we had to restrict the analysis to a subset of the covariates to avoid
extreme stabilized weights.

Dose-response function
To assess the robustness of our estimates to the dose-response function, we also considered
models that included quadratic term of cumulative use, average linear cumulative use, or
average linear and quadratic cumulative use. Results were qualitatively similar under all
these models (Table 5).

Appendix 2. Secondary analysis: Model specification and dynamic
treatment regimes

Given a static treatment regime ā={at;t ≥ 0}, let the dynamic treatment regime d(ā) be the
regime “follow the static regime ā until the occurrence of an adverse event; then take no
more hormone therapy.” The marginal structural model used in our secondary adherence-
adjusted analysis is formally a model for the logit of the discrete hazard of the counterfactual
time to breast cancer diagnosis Td(ā) under regime d(ā) given the baseline covariates V.
Specifically, the simplest version of the model assumes that

where  is the cumulative dose under regime d(ā) up to month m if no
adverse event occurs. The corresponding marginal structural model used in our primary
analysis was the static regime model logit Pr(Tā ≤ m + 1 | Tā > m,V)=α0(m) + α1cum(ām) +
α2V.

We now argue by example that, even if (1) the primary analysis marginal structural model
was correct with α1 > 0 (so increasing cumulative dose increases the risk of breast cancer for
static regimes), and (2) the counterfactual times Cā to an adverse event and Tā to breast
cancer are independently distributed given V, we have no guarantee that our secondary
analysis model is correctly specified (even qualitatively). To show this, let ā= c denote the
treatment history equal to the constant c at all times so cum(ā)= cm when ā = c. Also note
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that, by the definition of the regime d(ā), Tā=0= Td(ā=0). Suppose that, for all subjects, an
adverse event will never occur if the daily dose rate is maintained below 1/2, but will occur
immediately if a dose of 1/2 or greater is ever taken. Then one can see that, to a close
approximation, Tā=0= Td(ā=c), for c≥ 1/2 (since the cumulative dose actually taken will be
essentially zero as the adverse events will dictate no further treatment). In contrast Td(ā=c) =
Tā=c for c<1/2 because no adverse events will occur. Thus we conclude that regime d(ā = c)
increases the risk of breast cancer as c increases to 1/2, and then abruptly, beginning at
c=1/2, has no adverse effect on breast cancer. This dose response is a highly non-monotone
function of c and thus of the cumulative dose cm up to any time m; showing that the model
used in the secondary analysis is badly misspecified in this example.

Furthermore two different dynamic regimes d(ā(1)) and d(ā(2)) that have essentially the same
cumulative exposure in the absence of an adverse event can have very different effects on
breast cancer. Specifically, in the context of the previous example, consider the regimes ā(1)

and ā(2) that specify a dose of 3/4 every other day and a dose of 3/8 every day respectively.
Then the regimes d(ā(1)) and d(ā(2)) will have essentially identical cumulative exposures in
the absence of an adverse event. However Td(ā(1)) is essentially equal to Tā=0; while Td(ā(2))
is equal to Tā=c for c=3/8, so the second regime causes much more breast cancer than the
first. We conclude there is no function of cumulative exposure, even a non-monotonic one,
the can be used to correctly model the discrete hazard of Td(ā). Although, for pedagogic
purposes, this example was purposely chosen to be extreme, it shows that we must be very
concerned about the specification of the secondary analysis model for the Women’s health
Initiative.
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Figure 1.
Proportion of women free of invasive breast cancer--intention-to-treat analysis, Women’s
Health Initiative estrogen-plus-progestin randomized trial.
Kaplan-Meier (unadjusted) curves on top panel; standardized (adjusted) curves on bottom
panel.
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Figure 2.
Estimated proportion of women free of invasive breast cancer under continuous adherence
to the assigned treatment, Women’s Health Initiative estrogen-plus-progestin randomized
trial
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