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Evidence that protein phosphatase 
2A (PP2A) is a tumor suppressor 

in humans came from the discovery of 
mutations in the genes encoding the Aα 
and Aβ subunits of the PP2A trimeric 
holoenzymes, Aα-B-C and Aβ-B-C. One 
point mutation, Aα-E64D, was found in 
a human lung carcinoma. It renders Aα 
specifically defective in binding regula-
tory B' subunits. Recently, we reported 
a knock-in mouse expressing Aα-E64D 
and an Aα knockout mouse. The mutant 
mice showed a 50–60% increase in the 
incidence of lung cancer induced by ben-
zopyrene. Importantly, PP2A’s tumor 
suppressor activity depended on p53. 
These data provide the first direct evi-
dence that PP2A is a tumor suppressor 
in mice. In addition, they suggest that 
PP2A is a tumor suppressor in humans. 
Here, we report that PP2A functions as 
a tumor suppressor in mice that develop 
lung cancer triggered by oncogenic K-ras. 
We discuss whether PP2A may function 
as a tumor suppressor in diverse tissues, 
with emphasis on endometrial and ovar-
ian carcinomas, in which Aα mutations 
were detected at a high frequency. We 
propose suitable mouse models for exam-
ining whether PP2A functions as tumor 
suppressor in major growth-stimulatory 
signaling pathways, and we discuss the 
prospect of using the PP2A activator 
FTY720 as a drug against malignancies 
that are driven by these pathways.

Understanding how protein phosphatase 
2A (PP2A) functions as a tumor sup-
pressor requires knowledge of its com-
plex structure and the roles its numerous 
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regulatory subunits play. The trimeric 
holoenzyme is composed of a catalytic C 
subunit, a scaffolding A subunit and one of 
many regulatory B subunits. The catalytic 
C subunit exists as two isoforms, Cα and 
Cβ, that are 96% identical. The scaffold-
ing A subunit also exists as two isoforms, 
Aα and Aβ, and they are 87% identical. 
The B subunits fall into four families des-
ignated B, B', B" and B'''. The B or PR55 
family has four members; the B’ family 
(also designated B56 or PR61) consists of 
five isoforms and additional splice vari-
ants, and the B’’ or PR72 family has four 
members including splice variants. B, B' 
and B" are largely unrelated by sequence. 
The combination of all subunits could 
give rise to over 70 distinct holoenzymes. 
In addition, the ability of PP2A to associ-
ate with approximately 150 other proteins 
further increases its regulatory potential.1-5 
Figure 1B shows a schematic diagram of 
the holoenzyme whose subunit interac-
tions and structure have been revealed 
initially by biochemical studies17,18 and 
subsequently in great detail by crystal 
structure analyses.19-23 Through this work 
and numerous other investigations, it has 
become increasingly clear over the past 
25 years that PP2A is not just a nonspecific 
phosphatase, as it was thought to be ini-
tially, but a highly sophisticated enzyme 
involved in most, if not all, fundamental 
cellular processes. One of the most chal-
lenging properties of PP2A is its role as a 
tumor suppressor, which has been covered 
by excellent reviews in references 24–28. 
The present report highlights recently 
developed mouse models for investigating 
PP2A’s tumor suppressor activity.



452	 Cell Cycle	 Volume 11 Issue 3

samples, cancer-associated mutations of 
PP2A were found in significant num-
bers only in the genes encoding Aα and 
Aβ29 subunits but not in those encoding 
regulatory B, B' and B".9 The COSMIC 
database reports 65 Aα mutations in 1655 
tumor samples (4%), whereas the muta-
tion rate for the various B' subunits is less 
than 0.2%.9 This is also the case for all 
forms of B and B". Since all Aα mutations 
reported so far interfere, or are expected to 
interfere, with the binding of most, if not 
all, B' isoforms,33,37 it is far more advanta-
geous for tumor development to abolish 
PP2A tumor suppressor activity by mutat-
ing Aα than by independently mutating 
two or more B' subunits. It is unclear why 
numerous Aβ mutations described by 
Wang et al.29 are not listed in COSMIC.9 
Thus, the conclusions from cancer genome 
sequencing could still change as more data 
become available.

Another aspect of B' holoenzymes that 
needs to be considered is the large differ-
ence in their tissue distribution. For exam-
ple, B'δ is highly expressed in cerebellum 
and cortex but low in kidney and liver, 
whereas B'α is low in cerebellum and cor-
tex and high in lung.37 Which form of B' 
subunit is used for tumor suppression may 
depend on their abundance. Furthermore, 
the affinities of various B' subunits for Aα 
differ greatly,33,37 which could play a role 
in B' holoenzyme formation.

Mouse Model Reveals PP2A  
Tumor Suppressor Activity

To obtain evidence for the hypothesis that 
PP2A is a tumor suppressor in mice, and 
that the human lung cancer-associated 
E64D mutation abolishes PP2A tumor 
suppressor activity by preventing forma-
tion of B' holoenzymes, we generated 
the following mouse strains: (1) E64D/+ 
knock-in; (2) F5–6/+ with exons 5 and 
6 floxed for conditional Aα knockout; 
(3) Δ5–6/+ with exons 5 and 6 deleted. 
The Δ5–6 allele encodes a truncated Aα 
subunit (Δ168–589) missing repeats 6–15, 
very similar to the Δ171–589 mutant in 
breast cancer (Fig. 1C). Both truncation 
mutants are equivalent to an Aα knockout, 
since they bind none of the B and C sub-
units.37 We discovered a 50–60% increase 
in lung cancer incidence in mice of strains 

mutations listed in Figure 1A for two rea-
sons: (1) According to the X-ray structure 
of Aα,22 P179, R182 and R183 are located 
at or near the intra-repeat loop of repeat 
5, and R249, S256, W257, R258, R260 
are located at or near the intra-repeat 
loop of repeat 7 (Fig. 1A and B). As we 
reported previously, the intra-repeat loop 
regions of Aα are important for B and 
C subunit binding.17,18 (2) In vitro bind-
ing assays with artificial Aα mutations 
demonstrated that P179A is specifically 
defective in B'γ binding, and that R183A, 
R183E, as well as W257A are defective 
in binding all forms of B subunits (Fig. 
1F).14 Therefore, it seems highly likely 
that all endometrial and ovarian cancer-
associated mutations located at or close to 
P179, R183 and W257 interfere with B' 
binding only or with binding of all forms 
of B subunits and, consequently, render 
PP2A devoid of tumor suppressor activ-
ity. It is important to note that the true 
incidence of Aα mutations in endometrial 
and ovarian cancers could be considerably 
higher than reported, since only exons 5 
and 6 (encoding repeats 5, 6 and 7) were 
sequenced in search of mutations.8 Thus, 
E64D and E64G, which are located in 
repeat 2 (Fig. 1B), and mutations of other 
binding sites would have been missed 
if they occurred. Furthermore, down-
regulation of Aα expression at the tran-
scriptional or translational level could 
be equally or more important in tumor 
development than A subunit mutations. 
For example, a 10-fold or more reduced 
expression of Aα was observed in 43% of 
primary human gliomas in the absence of 
Aα mutations.35

Which B' Holoenzymes  
are Tumor Suppressors?

This question has been partially answered 
in tissue culture. One study demonstrated 
that B'γ holoenzyme is a tumor suppres-
sor,36 while others identified tumor sup-
pressor activity of the B'α holoenzyme.27 
If either one of these forms played a sig-
nificant role on its own, one might expect 
to find it mutated at a substantial fre-
quency in tumors, which appears not to 
be the case. An explanation could be that 
B' subunits functionally overlap. Based 
on sequencing a large number of tumor 

Aα Subunit Mutations in Human 
Cancer

The discovery that Aα and Aβ are 
mutated in a variety of human malignan-
cies, including carcinomas of the lung, 
breast, colon, skin, ovary and endome-
trium,6-10,29,30 provided the first indication 
that PP2A plays a role as tumor suppres-
sor in humans. A key finding was that 
E64D and E64G, two Aα substitution 
mutants that were discovered in a lung 
and a breast carcinoma, respectively,10 
are specifically defective in binding B'γ 
subunits, whereas binding of Bα and B" 
is normal (Fig.  1F).13,31-33 These results 
raised the question of whether the sole loss 
of B'γ binding to Aα causes loss of tumor 
suppressor activity and whether B'γ itself 
or the B'γ-containing holoenzyme is a 
tumor suppressor.32,33 Initially, it appeared 
that PP2A mutations occur infrequently 
in human cancer, in particular when 
compared with the high frequency of 
mutations in genes encoding the tumor 
suppressors p53 and PTEN, or in proto-
oncogenes encoding K-ras and PI3K.9 
This raised some doubts about the clinical 
relevance of PP2A as a tumor suppressor. 
However, due to recent sequencing of a 
large number of human cancer genomes, it 
became apparent that Aα mutations occur 
in 18% of endometrial and in 6% of ovar-
ian cancers.6-9 Importantly, the incidence 
of Aα mutations in endometrial carcino-
mas is comparable to that of K-ras (15%), 
p53 (20%) and PI3K (24%) and over three 
times as high as the incidence of Arf muta-
tions (5%) (Fig. 1E). Importantly, if one 
looks specifically at cases with high-grade 
serous endometrial cancer, 41% reveal Aα 
mutations.8 These findings strongly sug-
gest that Aα mutations play an essential 
role in the development of a significant 
fraction of endometrial carcinomas. It 
should be noted that the number of new 
cases of endometrial cancer in the US is 
46,470 per year, i.e., 6% of all new cases, 
and that 8,120 women die each year from 
endometrial cancer.34

A critical question is whether the 
newly discovered Aα mutations render 
Aα defective in B' binding, as did the 
E64D and E64G mutations. We suggest 
that this is likely the case for all endome-
trial and ovarian cancer-associated point 
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in benzopyrene-treated mice, we were 
interested in identifying the relevant 
PP2A substrates and the growth stimu-
latory signaling pathways in which these 
substrates operate. Because of the depen-
dence of PP2A tumor suppressor activity 

PP2A Delays Death from Lung 
Cancer Triggered by Oncogenic 

K-rasG12D

Having demonstrated that PP2A sup-
presses the development of lung tumors 

E64D/+, Δ5–6/+ and Δ5–6/E64D in 
comparison with FVB control mice (+/+). 
All mice were treated at 5 weeks of age 
with one dose of benzopyrene, a power-
ful carcinogen in cigarette smoke. We also 
showed that the formation of B' holoen-
zymes is strongly reduced in lungs due to 
the E64D mutation. From these results, 
we concluded that PP2A is a tumor sup-
pressor in mice, and that the point muta-
tion E64D abolishes this activity. A very 
similar increase in cancer incidence was 
obtained in mice with a heterozygous Aα 
knockout. Since the only defect caused by 
the E64D mutation is reduced formation 
of B' holoenzymes, we conclude that one 
or several forms of B' holoenzymes are 
tumor suppressors.37 The data are con-
sistent with previous results in tissue cul-
ture.32,36 Importantly, our results strongly 
suggest that the E64D mutation enhanced 
the development of the human lung carci-
noma in which it was discovered.

As reported previously, homozygous 
E64D and E64G mice as well as Δ5–6/
E64D and Δ5–6/E64G mice are viable, 
implying that they survive with little 
or no B' holoenzyme. We proposed that 
large amounts of B' holoenzymes are only 
required as protection against oncogenic 
stress, such as exposure to benzopyrene 
or expression of K-rasG12D.37 In fact, the 
degree of protection depends on the level 
of B' holoenzyme expression (gene dosage 
effect) (see below).

PP2A Tumor Suppressor Activity 
Depends on p53

We asked whether loss of PP2A tumor 
suppressor activity is enhanced by p53 
inactivation. The expectation was that 
simultaneous loss of two independent 
tumor suppressors would have an additive 
effect on tumor incidence. Surprisingly, 
this was not the case. Instead we found 
that the PP2A tumor suppressor function 
is abolished if p53 is inactivated, suggest-
ing that PP2A either activates the tumor 
suppressor function of p53 or causes a rise 
in its level by preventing its degradation. 
As noted previously, the lung cancer inci-
dence is reduced 35% by PP2A,37 while 
p53 causes a 50% reduction,38 suggest-
ing that PP2A is required for 2/3 of p53’s 
effect.

Figure 1. Model of PP2A holoenzyme; location of human cancer-associated Aα mutations; high 
frequency of Aα mutations in endometrial cancer. (B) Trimeric PP2A holoenzyme consists of 
one catalytic subunit (Cα or Cβ), one scaffolding subunit (Aα or Aβ) and one of several regula-
tory subunits (B, B’ or B’’). Aα and Aβ consist of 15 repeats connected by inter-repeat loops. Each 
repeat consists of two antiparallel α-helices connected by intra-repeat loops. (A) Aα mutations 
in endometrial (endo) or ovarian (ovary) cancer are clustered at or near intra-repeat loop 5 of 
repeat 5 (from P179 to R183) and at or near intra-repeat loop 7 of repeat 7 (from R249 to R258). 
Numbers in parentheses represent number of tumors with a mutation at a particular site.6-9 E64D, 
E64G and R418W were found in lung, breast and skin cancer, respectively.10 Shown in (C and D) 
are C-terminal truncations, Δ171–589 from breast cancer missing repeats 6 to 1510 and Δ375–589 
from kidney cancer missing repeats 11 to 15.11 (E) Frequency of Aα mutations in endometrial (18%, 
31/171) and ovarian (6%, 27/470) cancers in comparison to K-ras, Arf, p53 and PI3K.6-9 (F) Loss of 
Bα, B’γ3 (formerly known as B’α1),12 and B’’/PR72 binding to mutant Aα. Note: All Aα mutants are 
defective in B’γ3 binding.13,14 For E393Q, see reference 15; for R183W in pancreatic (pa) cancer, see 
reference 16; *indicates synthetic mutant.
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one or several B' holoenzyme(s) are PP2A 
tumor suppressors. The data are consis-
tent with results from tissue culture.33,36 
The observation that the survival times 
of E64D/+ and Δ5–6/+ mice are approxi-
mately in the middle between those of 
+/+ and Δ5–6/E64D mice demonstrates 
that the level of tumor suppressor activ-
ity correlates with gene dosage. All mice 
developed multiple adenocarcinomas, as 
described by Johnson et al. To determine 
the tumor burden, we weighed the lungs. 
Compared with normal mouse lungs 
of approximately 0.14 g, the median 
weights of lungs from the tumor mice 
at death were 1.29 g (Δ5–6/E64D;K-
rasG12D), 1.23 g (E64D/+;K-rasG12D), 
1.16 g (Δ5–6/+;K-rasG12D) and 1.17 g 
(+/+;K-rasG12D). Since there is no substan-
tial difference in tumor burden, we con-
clude that the PP2A-mutant mice died 
sooner, because they reached the lethal 
tumor burden earlier than the PP2A wild 
type mice. That all survival curves con-
verge at around 40 weeks of age could be 
caused by multiple side effects from the 
high tumor burden, which overshadows 
the specific effects due to genetic differ-
ences. To fully understand how PP2A acts 
as a tumor suppressor in the Ras-MAPK 
and Arf-MDM2-p53 pathways, it is nec-
essary to investigate how the different 
levels of B' holoenzymes in E64D/+;K-
rasG12D, Δ5–6/+;K-rasG12D and Δ5–6/
E64D;K-rasG12D mice, in comparison to 
+/+;K-rasG12D mice, affect the phosphory-
lation state and/or abundance of poten-
tial PP2A targets, including Raf, MEK, 
ERK, Arf, MDM2 and p53.

Is PP2A a Universal Tumor  
Suppressor?

PP2A is involved in a network of major 
signaling pathways that control growth 
and survival as well as growth arrest and 
apoptosis. Some of these pathways and the 
positions where PP2A might operate as 
tumor suppressor are shown in Figure 3. 
It appears that PP2A is involved in all 
these pathways, raising the question of 
whether it is a universal tumor suppres-
sor. However, much of the evidence for 
the presumed role of PP2A as tumor sup-
pressor is derived from tissue culture data, 
which do not always reflect the situation 

develop into adenocarcinomas. The 
majority of mice die between 4–8 mo of 
age.42 K-rasG12D mice were crossed with 
Aα-E64D and Aα-Δ5–6 mice, and four 
genotypes were obtained: (1) E64D/+;K-
rasG12D, (2) Δ5–6/+;K-rasG12D, (3) Δ5–6/
E64D;K-rasG12D and (4) +/+;K-rasG12D 
(control). The mice were monitored for 
survival. If PP2A suppresses lung tumor 
formation by inhibiting MAP kinase 
signaling, then E64D mutation, hetero-
zygous Aα knockout or a combination 
of both are expected to accelerate tumor 
formation and death.

As shown in Figure 2, E64D/+;K-
rasG12D mice (gray) died 3.5 weeks earlier 
than +/+;K-rasG12D mice (blue), while 
Δ5–6/E64D;K-rasG12D mice (red) died 7 
weeks earlier (Fig. 2, insert). These results 
demonstrate that homozygous wild type 
PP2A extends the median survival time 
of K-rasG12D mice by 25%. Importantly, 
the survival times of E64D/+ and Δ5–6/+ 
mice are very similar, indicating that the 
heterozygous Aα-E64D mutation has 
approximately the same negative effect on 
survival as the heterozygous Aα knock-
out. These results confirm those obtained 
with benzopyrene-treated mice, i.e., that 

on functional p53, we chose to investigate 
the Ras-MAPK pathway, which involves 
both PP2A and p53 and is activated by 
benzopyrene in over 90% of mouse lung 
tumors due to generation of oncogenic 
K-rasG12D.39 Thus, it is likely that K-rasG12D 
was also generated in our benzopyrene-
treated mice, in which case PP2A might 
have dephosphorylated and inactivated 
MEK and ERK as well as increased the 
level of p53 through the Arf-MDM2-p53 
pathway that is connected to the Ras-
MAPK pathway (Fig. 3). To obtain direct 
evidence that PP2A suppresses tumor for-
mation initiated by K-rasG12D, we made use 
of a mouse model of K-rasG12D-induced 
lung carcinogenesis in which a latent allele 
(LA) of K-rasG12D is turned on by sponta-
neous recombination throughout the ani-
mal, but only in a fraction of cells. In this 
K-rasLA2 mouse,42 K-rasG12D expression is 
controlled by the endogenous K-ras pro-
moter, thus mimicking the occurrence of 
mutations in somatic cells, as is the case 
during spontaneous tumor development. 
Despite activation of K-rasG12D in all tis-
sues, the mice develop primarily lung 
tumors, first detectable at 1 week of age 
as hyperplastic pleural nodules, which 

Figure 2. Wild-type PP2A prolongs the survival of mice expressing oncogenic K-rasG12D. Mice 
expressing oncogenic K-rasG12D (LA2) 42 were crossed with PP2A mutant mice to obtain the four 
genotypes listed. The mice were observed daily for signs of ill health, and moribund animals were 
sacrificed. The Δ5–6/E64D;K-rasG12D mice lived statistically significantly shorter than E64D/+;K-
rasG12D (p = 0.01), Δ5–6/+;K-rasG12D (p = 0.03) and +/+;K-rasG12D (p = 0.0003) mice. When considering 
only mice in the 75–25% survival range, p-values are 0.0001 for E64D/+;K-rasG12D vs. +/+;K-rasG12D 
mice and 0.02 for Δ5–6/+;K-rasG12D vs. +/+;K-rasG12D mice (one-tailed t-test for equal variances; 
Excel).
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non-small cell lung carcinomas and 50% 
of colon carcinomas),61 Arf is downregu-
lated to low or undetectable levels by 
promoter methylation,62,63 resulting in 
increased p53 degradation mediated by 
MDM2. That expression of oncogenic 
K-ras induces coordinated upregulation 
of two potent tumor suppressors, Arf and 
p53, might seem “paradoxical.” A cre-
ative suggestion has been offered, accord-
ing to which Arf and p53 upregulation in 
response to strong oncogenic signals rep-
resent a desperate but ultimately unsuc-
cessful attempt to block tumor growth, 
which eventually will be overcome by 
Arf downregulation through promoter 
methylation, p53 loss-of-function muta-
tion, increased oncogene expression or 
expression of additional oncogenic pro-
teins.64-67 Importantly, it was discovered 

generating a continuous growth-stim-
ulatory signal. PP2A has been shown to 
inhibit this cascade and cell growth by 
dephosphorylating MEK and ERK and 
thereby inactivating their kinase activi-
ties.44,45 While our data clearly demon-
strate that PP2A functions as a tumor 
suppressor of K-rasG12D-induced lung 
cancer, we have not yet shown that this 
process depends on p53. This could be 
determined by crossing PP2A mutant 
mice with p53-/- mice (Table 1).

Ras-Arf-p53. Continuously elevated 
signaling by oncogenic K-ras is known 
to induce p53 via transcription of Dmp1, 
which, in turn, triggers expression of Arf, 
a potent tumor suppressor.58 Arf acts as 
tumor suppressor by inhibiting MDM2-
mediated p53 degradation.59,60 In a 
large fraction of tumors (e.g., in 41% of 

in vivo. Therefore, our mouse model for 
testing PP2A’s role as a tumor suppressor 
might represent a suitable tool to answer 
the above question. If PP2A, indeed, plays 
a universal role, it could become a drug 
target for most if not all types of cancer. 
Here, we briefly summarize how PP2A 
might function as a tumor suppressor in 
the various pathways, keeping in mind 
that, like in benzopyrene-treated mice, it 
might only do so if p53 is active, which 
is the case in approximately 50% of all 
cancers.

Ras-Raf-MEK-ERK. Oncogenic muta- 
tion of the K-ras gene was found in 22% 
of all human cancers and thus may repre-
sent one of the most important events in 
cancer development overall.9 Oncogenic 
K-ras constitutively activates the Raf-
MEK-ERK kinase cascade,43 thereby 

Figure 3. PP2A inhibits oncogene signaling and promotes p53 activation. A large fraction of tumors arise from aberrant Ras, Myc or PI3K signaling. 
PP2A has been implicated in the suppression of all three pathways. It suppresses MAPK signaling by dephosphorylating MEK and ERK and it reduces 
the levels of active Myc and active Akt by dephosphorylating S62 as well as T308 and S473, respectively. PP2A is also implicated in promoting the func-
tion of Arf, which is crucial for oncogene-induced p53 activation.40,41
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or mutated in human tumors.75 Loss of 
the PI3K antagonist PTEN also leads to 
enhanced Akt signaling. Akt is activated 
by phosphorylation on T308 and S473. 
One of its many targets is MDM2, which 
is stabilized through phosphorylation by 
Akt, resulting in degradation of p53.76 
Importantly, PP2A has been shown to 
inactivate Akt by dephosphorylating both 
T308 and S473, leading to reduced phos-
phorylation and increased degradation 
of MDM2 while p53 accumulates.76-79 
Whether PP2A mutation cooperates with 
oncogenic PI3K signaling could be tested 
by combining Aα-mutant mice with a 
recently generated transgenic mouse that 
expresses an activating PI3K mutation.50

Ras-PI3K interaction. There is con-
siderable crosstalk between pathways. 
For instance, it has been demonstrated 
that Ras is required to physically inter-
act with PI3K in order to promote lung 
carcinogensis,80 possibly acting as an 
adaptor molecule tethering PI3K to a 
receptor tyrosine kinase.73 The Ras and 
PI3K pathways also converge on BAD, 
each leading to addition of an inhibitory 
phosphate.81,82 PP2A has been shown to 
dephosphorylate BAD, thereby activating 
its pro-apoptotic function as an inhibitor 
of Bcl2 83 (Fig. 3).

suppressor on Myc comes from the dis-
covery that the B'α holoenzyme plays a 
key role in Myc degradation27 and from 
the identification of an inhibitor, CIP2A, 
which binds to PP2A and Myc, thereby 
preventing B'α holoenzyme from dephos-
phorylating Myc at serine 62, a prerequi-
site for Myc degradation (Fig. 3).71 Most 
importantly, CIP2A has clinical relevance, 
since patients with gastric cancer have a 
10-y survival rate of 37% when the tumor 
is CIP2A-negative and PP2A is not inhib-
ited and only an 8% survival rate when 
the tumor is CIP2A-positve and PP2A is 
inhibited.72 Whether E64G, which was 
found in a breast carcinoma, enhances 
the carcinogenic effect of Myc ampli-
fication can be tested in a mouse model 
that combines PP2A mutant mice with 
mice expressing Myc in the mammary 
gland.48,49 We would expect that tumor 
development is accelerated in a PP2A-
mutant background, because the mutant 
PP2A fails to dephosphorylate Myc at S62 
to prepare it for degradation.

PI3K-Akt-p53. The phosphoinositide-
3-kinase (PI3K) pathway is one of the 
most frequently activated pathways in 
cancer.73,74 Upstream receptor tyrosine 
kinases, PI3K itself and its main effec-
tor Akt have all been found amplified 

that the Arf-mediated activation of p53 
is inhibited by polyomavirus small T 
antigen (Py-ST), which binds to the Aα 
subunit of PP2A replacing B subunits. 
Mutants of Py-ST that do not bind to 
PP2A have no effect on Arf. These find-
ings suggest that PP2A is required for 
the Arf-mediated inhibition of MDM2 
and the ensuing accumulation of p53.40 
This implies that PP2A cannot fulfill a 
role as tumor suppressor in the Arf-p53 
pathway, if functional p53 is not pres-
ent. Similar to the continuous expression 
of oncogenic K-ras, high levels of Myc 
also induce p53 through the Arf-p53 
pathway.68,69

To investigate whether PP2A’s tumor 
suppressor function depends on Arf, Arf‑/- 
mice46,47 expressing mutant PP2A could 
be used. If PP2A tumor suppressor activ-
ity acts through Arf, and only through 
Arf, and if this activity is abolished by 
PP2A mutation, then there should be no 
difference in tumor incidence between 
wild type and mutant PP2A mice in the 
absence of Arf. In this case, PP2A would 
be at the center of a major tumor suppres-
sor system that preserves p53 activity.

Myc degradation. The Myc gene is 
amplified in 25% of breast carcinomas.70 
Evidence that PP2A acts as a tumor 

Table 1. Mouse models for testing PP2A’s effects on various signaling pathways

Mouse models tested Organ
Effect of PP2A mutation on carcino-

genesis
Conclusion References

AαE64D + benzopyrene Lung Accelerated PP2A inhibits tumors driven by benzopyrene 37

AαE64D;dnp53 + benzo-
pyrene

Lung None
PP2A requires p53 to inhibit tumors driven by 

benzopyrene
37

AαE64D;K-rasG12D Lung Accelerated PP2A inhibits tumors driven by K-rasG12D 37, 42, this report

Mouse models pro-
posed

Anticipated effect of PP2A mutation 
on carcinogenesis

AαE64D;K-rasG12D;p53-/- Lung None
PP2A requires p53 to inhibit tumors driven 

by K-rasG12D 42

AαE64D;K-rasG12D;Arf-/- Lung None
PP2A requires Arf to inhibit tumors driven by 

K-rasG12D 42, 46, 47

AαE64G;WAP-Myc
Mammary 

gland
Accelerated PP2A inhibits tumors driven by Myc 48, 49

AαE64D;PI3KH1047R Lung Accelerated PP2A inhibits tumors driven by mutant PI3K 50

AαP179A;PTENF/F Endometrium Accelerated PP2A inhibits tumors driven by PTEN loss 51

AαP179A;PTENF/F

+ FTY720
Endometrium

Activation of PP2A by FTY720 inhibits 
progression of endometrial cancer

Activation of PP2A beneficial for 18% of 
women with endometrial cancer with Aα 

mutations
51–57

The Aα-floxed and E64G mice will soon be available from the Jackson Laboratory (order numbers 017441 and 017475).
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