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The wide adoption of social media has increased the competition among ideas for our finite attention. We
employ a parsimonious agent-based model to study whether such a competition may affect the popularity of
different memes, the diversity of information we are exposed to, and the fading of our collective interests for
specific topics. Agents share messages on a social network but can only pay attention to a portion of the
information they receive. In the emerging dynamics of information diffusion, a few memes go viral while
most do not. The predictions of our model are consistent with empirical data from Twitter, a popular
microblogging platform. Surprisingly, we can explain the massive heterogeneity in the popularity and
persistence of memes as deriving from a combination of the competition for our limited attention and the
structure of the social network, without the need to assume different intrinsic values among ideas.

deas have formidable potential to impact public opinion, culture, policy, and profit'. The advent of social

media® has lowered the cost of information production and broadcasting, boosting the potential reach of each

idea or meme’. However, the abundance of information to which we are exposed through online social
networks and other socio-technical systems is exceeding our capacity to consume it. Ideas must compete for
our scarce individual and collective attention. As a result, the dynamic of information is driven more than ever
before by the economy of attention, first theorized by Simon®. Yet the processes that drive popularity in our
limited-attention world are still largely unexplored® .

The availability of data from online social media has recently created unprecedented opportunities to explore
human and social phenomena on a global scale'®"”. In this context one of the most challenging problems is the study
of the competition dynamics of ideas, information, knowledge, and rumors. Understanding this problem is crucial
in a broad range of settings, from viral marketing to scientific discovery acceleration. Aspects of competition for
limited attention have been studied through news, movies, and topics posted on blogs and social media'*'""*. The
popularity of news decreases with the number of competing items that are simultaneously available®'**.

However, even in the simplified settings of social media platforms, it is hard to disentangle the effects of limited
attention from many concurrent factors, such as the structure of the underlying social network™, the activity of
users and the size of their potential audience", the different degrees of influence of information spreaders®, the
intrinsic quality of the information they spread®, the persistence of topics*>**, and homophily**. To compound these
difficulties, social networks that host information diffusion processes are not closed systems; exogenous factors like
exposure to traditional media and their reports of world events play important roles in the popularity and lifetime of
specific topics'®?. Another example of our limited attention is the cognitive limit on the number of stable social
relationships that we can sustain, as postulated by Dunbar®® and recently supported by analysis of Twitter data®.

We propose an agent-based model to study the role of the limited attention of individual users in the diffusion
process, and in particular whether competition for our finite attention may affect meme popularity, diversity, and
lifetime. Although competition among ideas has been implicitly assumed as a factor behind, e.g., the decay in
interest toward news and movies®*®*'’, to the best of our knowledge nobody has attempted to explicitly model the
mechanisms of competition and how they shape the spread of information. In particular, we show that a simple
model of competition on a social network, without any further assumptions about meme merit, user interests, or
explicit exogenous factors, can account for the massive heterogeneity in meme popularity and persistence.

Results
Here we outline a number of empirical findings that motivate both our question and the main assumptions
behind our model. We then describe the proposed agent-based toy model of meme diffusion and compare its
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predictions with the empirical data. Finally we show that the social
network structure and our finite attention are both key ingredients of
the diffusion model, as their removal leads to results inconsistent
with the empirical data.

We validate our model with data from Twitter, a micro-blogging
platform that allows many millions of people to broadcast short
messages through social connections. Users can “follow” interesting
people, by which a directed social network is formed. Posts (“tweets”)
appear on the screen of followers. People can forward (“retweet”)
selected posts from their screen to their followers. Furthermore, users
often mark their posts with topic labels (“hashtags”). Let us use these
tags as operational proxies to identify memes. A retweet carries a
meme from user to user. As a meme spreads in this way, it forms a
cascade or diffusion network such as those illustrated in Fig. 1. We
collected a sample of retweets that include one or more hashtags,
produced by Twitter users over a specific period of time (see details in
Methods section). This provides us with a quantitative framework to
study the competition for attention in the wild.

Limited attention. We first explore the competition among memes.
In particular, we test the hypothesis that the attention of a user is
somewhat independent from the overall diversity of information
discussed in a given period. Let us quantify the breadth of attention
of a user through Shannon entropy S = —X; f(i) log f(i) where f(i) is
the proportion of tweets generated by the user about meme i. Given a
user who has posted n messages, her entropy can be as small as 0, if all
of her posts are about the same meme; or as large as log  if she has
posted a message about each of n different memes. We can measure
the diversity of the information available in the system analogously,
defining f{(i) as the proportion of tweets about meme i across all users.
Note that these entropy-based measures are subject to the limits of
our operational definition of a meme; finer or coarser definitions
would yield different values.

In Fig. 2 we compare the daily values of the system entropy to the
corresponding average user entropy. The key observation here is that
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Figure 2 | Plot of daily system entropy (solid red line) and average user
breadth of attention (dashed blue line). Days in our observation period
are ranked from low to high system entropy, therefore the latter is
monotonously increasing.

a user’s breadth of attention remains essentially constant irrespective
of system diversity. This is a clear indication that the diversity of
memes to which a user can pay attention is bound. With the con-
tinuous injection of new memes, this indirectly suggests that memes
survive at the expense of others. We explicitly assume this in the
information diffusion model presented later.

User interests. It has been suggested that topical interests affect user
behavior in social media*?°. This is a potentially important
ingredient in a model of meme diffusion, as an interesting meme
may have a competitive advantage. Therefore we wish to explore
whether user interests, as inferred from past behavior, are predictive
of future behavior.

Let us consider every user in our dataset and any retweets they
produce. When a user u emits a new retweet, we define her interests I,

Figure 1| Visualizations of meme diffusion networks for different topics. Nodes represent Twitter users, and directed edges represent retweeted posts
that carry the meme. The brightness of a node indicates the activity (number of retweets) of a user, and the weight of an edge reflects the number of
retweets between two users. (a) The #Japan meme shows how news about the March 2011 earthquake propagated. (b) The #GOP tag stands for the US
Republican Party and as many political memes, displays a strong polarization between people with opposing views. Memes related to the “Arab Spring”
and in particular the 2011 uprisings in (c) #Egypt and (d) #Syria display characteristic hub users and strong connections, respectively.
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Figure 3 | Relationship between the probability of retweeting a message
and its similarity to the user interests, inferred from prior posting
behavior.

as the set of all memes about which she has tweeted up to that
moment. We also collect the set M, of memes associated with the
new retweet. The n most recent posts across all users prior to the new
retweet are considered as a set of potential candidates that might have
been retweeted, but were not. The corresponding sets of memes Mj,
M,, ..., M, are recorded (n = 10). We compute the similarity
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sim(My, L,), sim(My, L), ..., sim(M,, I,) between the user interests
and the actual and candidate posts, and recover the conditional
probability P(retweet(u, M)|sim(M, I,,)) that u retweets a post with
memes M given the similarity between the memes and her user
interests. We turn to the Maximum Information Path similarity
measure** that considers shared memes but discounts the more
common ones:

sim(M,I) = 2log[minyepny f(x)]
(M,I) log[min,.y f(x)] 4 log[min,; f(x)]

where x is a meme and f(x) the proportion of messages about x.

Fig. 3 shows that users are more likely to retweet memes about
which they posted in the past (Pearson correlation coefficient p =
0.98). This suggests that memory is an important ingredient for a
model of meme competition, and we explicitly take this aspect into
account in the model presented below.

Empirical regularities. In Fig. 4 we observe several regularities in the
empirical data. We first consider meme lifetime, defined as the
maximum number of consecutive time units in which posts about
the meme are observed; meme popularity, defined as the number of
users per day who tweet about a meme, measured over a given time
period; and user activity, defined as the number of messages per day
posted by a user, measured over a time period. These three quantities
all display long-tailed distributions (Fig. 4(a,b,c)). The excellent
collapse of the curves demonstrates that the distributions are
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Figure 4 | Empirical regularities in Twitter data. (a) Probability distribution of the lifetime of a meme using hours (red circles), days (blue squares), and
weeks (green triangles) as time units. In the plot, units are converted into hours. Since the distributions are well approximated by a power law, we can align
the curves by rescaling the y-axis by A, where A is the ratio of the time units (e.g., 1 = 24 for rescaling days into hours) and « = 2.5 is the exponent of the
power law (via maximum likelihood estimation®®). This demonstrates that the shape of the lifetime distribution is not an artifact of the time unit chosen to
define the lifetime. (b) Complementary cumulative probability distribution of the popularity of a meme, measured by the total number of users per day
who have used that meme. This and the following measures were performed daily (filled red circles), weekly (filled blue squares), and monthly (filled green
triangles). (c) Complementary cumulative probability distribution of user activity, measured by the number of messages per day posted by a user.

(d) Probability distribution of breadth of user attention (entropy), based on the memes tweeted by a user. Note that the larger the number of posts
produced, the smaller the non-zero entropy values recorded for users who focus on a small set of memes. This explains why the distributions for longer

periods of time extend further to the left.
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robust even if measured over different time units or observed over
different periods of time. We further measure the breadth of user
attention, defined earlier through the meme entropy. Although the
entropy distribution is peaked, some users have broad attention
while others are very focused (Fig. 4(d)). This distribution is also
robust with respect to different periods of time.

All of these empirical findings point to extremely heterogenous
behaviors; some memes are extremely successful (popular and per-
sistent), while the great majority die quickly. A small fraction of
memes therefore account for the great majority of all posts.
Likewise, a small fraction of users account for most of the traffic.
These heterogeneities can in principle be attributed to a variety of
causes. The broad distributions of meme popularity could result
from a diversity in some intrinsic meme value, with “important”
memes attracting more attention. Long-lived memes might be sus-
tained exogenously by traditional media and real-world events. User
activity and breadth of attention distributions could be a reflection
of innate behavioral differences. What is, then, a minimal set of
assumptions necessary to interpret this empirical data? One way to
tackle this question is to start from a minimalist model of informa-
tion spreading that assumes none of the above externalities. In par-
ticular we will explore to what extent the statistical features of memes
and users can be accounted by the limited attention capacity of the
users coupled with the heterogeneity of their social connections.

Model description. Our basic model assumes a frozen network of
agents. An agent maintains a time-ordered list of posts, each about a
specific meme. Multiple posts may be about the same meme. Users

pay attention to these memes only. Asynchronously and with
uniform probability, each agent can generate a post about a new
meme or forward some of the posts from the list, transmitting the
corresponding memes to neighboring agents. Neighbors in turn pay
attention to a newly received meme by placing it at the top of their
lists. To account for the empirical observation that past behavior
affects what memes the user will spread in the future, we include
a memory mechanism that allows agents to develop endogenous
interests and focus. Finally, we model limited attention by allowing
posts to survive in an agent’s list or memory only for a finite amount
of time. When a post is forgotten, its associated meme become less
represented. A meme is forgotten when the last post carrying that
meme disappears from the user’s list or memory. Note that list and
memory work like first-in-first-out rather than priority queues, as
proposed in models of bursty human activity’. In the context of
single-agent behavior, our memory mechanism is reminiscent of the
classic Yule-Simon model~\cite{yule-simon®, Cattuto30012007*‘}.
The retweet model we propose is illustrated in Fig. 5. Agents
interact on a directed social network of friends/followers. Each
user node is equipped with a screen where received memes are
recorded, and a memory with records of posted memes. An edge
from a friend to a follower indicates that the friend’s memes can be
read on the follower’s screen (#x and #y in Fig. 5(a) appear on the
screen in Fig. 5(b)). At each step, an agent is selected randomly to post
memes to neighbors. The agent may post about a new meme with
probability p, (#z in Fig. 5(b)). The posted meme immediately
appears at the top of the memory. Otherwise, the agent reads posts
about existing memes from the screen. Each post may attract the

a

follower

b

screen

memory

Figure 5 | Illustration of the meme diffusion model. Each user has a memory and a screen, both with limited size. (a) Memes are propagated along
follower links. (b) The memes received by a user appear on the screen. With probability p,, the user posts a new meme, which is stored in memory.
(c) Otherwise, with probability 1 — p,, the user scans the screen. Each meme x in the screen catches the user’s attention with probability p,. Then with
probability p,, a random meme from memory is triggered, or x is retweeted with probability 1 — p,,. (d) All memes posted by the user are also stored in

memory.
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user’s attention with probability p, (the user pays attention to #x, #y
in Fig. 5(c)). Then the agent either retweets the post (#x in Fig. 5(c))
with probability 1 — p,,,, or tweets about a meme chosen from mem-
ory (#v triggered by #y in Fig. 5(c)) with probability p,,,. Any post in
memory has equal opportunities to be selected, therefore memes that
appear more frequently in memory are more likely to be propagated
(the memory has two posts about #v in Fig. 5(d)). To model limited
user attention, both screen and memory have a finite capacity, which
is the time in which a post remains in an agent’s screen or memory.
For all agents, posts are removed after one time unit, which simulates
a unit of real time, corresponding to N,, steps where N,, is the number
of agents. If people use the system once weekly on average, the time
unit corresponds to a week.

Simulation results. The model has three parameters: p,, regulates the
amount of novelty that enters the system (number of cascades), p,
determines the overall retweet activity (size of cascades), and p,,
accounts for individual focus (diversity of user interests). We
estimated all three directly from the empirical data (see Methods).
The social network underlying the meme diffusion process is a
critical component of the model. To obtain a network of manageable
size while preserving the structure of the actual social network, we
sampled a directed graph with 10°> nodes from the Twitter follower
network (details in Methods). The nodes correspond to a subset of
the users who generated the posts in our empirical data. To evaluate
the predictions of our model, we compare them with empirical data
that includes only the retweets of the same subset of users. To study
the role played by the network structure in the meme diffusion pro-
cess, we also simulated the model on a random Erdés-Rényi (ER)
network with the same number of nodes and edges. As shown in
Fig. 6, the model captures the main features of the empirical distri-
butions of meme lifetime and popularity, user activity, and breadth
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of user attention. The comparison with the corresponding distribu-
tions generated using the ER network shows that in general, the
heterogeneity of the observed quantities is greatly reduced when
memes spread on a random network. This is not unexpected.
Consider for example meme popularity (Fig. 6(b)); the real social
network has a broad (scale free, not shown) distribution of degree,
with a consistent number of hub users who have a large number of
followers. Memes spread by these users are likely to achieve greater
popularity. This does not happen in the ER network where the degree
distribution is narrow (Poissonian). The difference observed in the
distribution of breadth of user attention, for both low and high
entropy values (Fig. 6(d)), may be explained by the heterogeneity
in the number of friends. Users with few friends may have low
breadth of attention while those with many friends are exposed to
many memes and thus may exhibit greater entropy.

The second key ingredient of our model is the competition among
memes for limited user attention. To evaluate the role of such a
competition on the meme diffusion process, we simulated variations
of the model with stronger or weaker competition. This was accomp-
lished by tuning the length ¢,, of the time window in which posts are
retained in an agent’s screen or memory. A shorter time window (t,,
< 1) leads to less attention and thus increased competition, while a
longer time window (t,, > 1) allows for attention to more memes and
thus less competition. As we can observe in Fig. 7, stronger competi-
tion (t,, = 0.1) fails to reproduce the large observed number of long-
lived memes (Fig. 7(a)). Weaker competition (t,, = 5), on the other
hand, cannot generate extremely popular memes (Fig. 7(b)) nor
extremely active users (Fig. 7(c)).

We also simulated our model without user interests, by setting
Pm = 0. The most noticeable difference in this case is the lack of
highly focused individuals. Users have no memory of their past
behavior, and can only pay attention to memes from their friends.
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Figure 6 | Evaluation of model by comparison of simulations with empirical data (same panels and symbols as in Fig.4). To study the role played by the
network structure in the meme diffusion process, we simulate the model on the sampled follower network (solid black line) and a random network
(dashed red line). Both networks have 10° nodes and about 3 X 10° edges. (a) The definition of lifetime uses the week as time unit. (b,c,d) Meme
popularity, user activity, and user entropy data are based on weekly measures.
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entropy data are based on weekly measures.

As a result, the model fails to account for low entropy individuals
(not shown but similar to the random network case in Fig. 6(d)).

Discussion

The present findings demonstrate that the combination of social
network structure and competition for finite user attention is a suf-
ficient condition for the emergence of broad diversity in meme popu-
larity, lifetime, and user activity. This is a remarkable result: one can
account for the often-reported long-tailed distributions of topic
popularity and lifetime”'>'*** without having to assume exogenous
factors such as intrinsic meme appeal, user influence, or external
events. The only source of heterogeneity in our model is the social
network; users differ in their audience size but not in the quality of
their messages.

Our model is inspired by the long tradition that represents
information spreading as an epidemic process, where infection is
passed along the edges of the underlying social network® 712,

In the context of social media, several authors explored the tem-
poral evolution of popularity. Wu and Huberman® studied the decay
in news popularity. They showed that temporal patterns of collective
attention are well described by a multiplicative process with a single
novelty factor. While the decay in popularity is attributed to com-
petition for attention, the underlying mechanism is not modeled
explicitly. Crane and Sornette'® introduced a model to describe the
exogenous and endogenous bursts of attention toward a video, by
combining an epidemic spreading process with a forgetting mech-
anism. Hogg and Lerman®® proposed a stochastic model to predict
the popularity of a news story via the intrinsic interest of the story
and the rates at which users find it directly and through friends.
These models describe the popularity of a single piece of information,

and are therefore unsuitable to capture the competition for our
collective attention among multiple simultaneous information
epidemics. Although recent epidemiological models have started
considering the simultaneous spread of competing strains**’, our
framework is the first attempt to deal with a virtually unbounded
number of new “epidemics” that are continuously injected into the
system. A closer analogy to our approach is perhaps provided by
neutral models of ecosystems, where individuals (posts) belonging
to different species (memes) produce offspring in an environment
(our collective attention) that can sustain only a limited number of
individuals. At every generation, individuals belonging to new spe-
cies enter the ecosystem while as many individuals die as needed to
maintain the sustainability threshold*'.

Since Simon’s seminal paper*, the economy of attention has been
an enormously popular notion, yet it has always been assumed
implicitly and never put to the test. Our model provides a first
attempt to focus explicitly on mechanisms of competition, and to
evaluate the quantitative effects of making attention more scarce or
abundant.

Our results do not constitute a proof that exogenous features, like
intrinsic values of memes, play no role in determining their popu-
larity. However we have shown that at the statistical level it is not
necessary to invoke external explanations for the observed global
dynamics of memes. This appears as an arresting conclusion that
makes information epidemics quite different from the basic model-
ing and conceptual framework of biological epidemics. While the
intrinsic features of viruses and their adaptation to hosts are extre-
mely relevant in determining the winning strains, in the information
world the limited time and attention of human behavior are sufficient
to generate a complex information landscape and define a wide range
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Table 1 | Parameter seftings for different simulations. ““Avg user
activity”’ is the average number of posts per user per time unit

Simulation Network ty pr Avg user activity
Standard Sampled 1.0 0.01¢6 2.5
ER Network Synthetic 1.0 0.029 2.1
Weak Competition ~ Sampled 5.0  0.205 2.3
Strong Competition ~ Sampled 0.1  0.001 2.7

of different meme spreading patterns. This calls for a major revision
of many concepts commonly used in the modeling and character-
ization of meme diffusion and opens the path to different frame-
works for the analysis of competition among ideas and strategies for
the optimization/suppression of their spread.

Methods

The data analyzed in this paper was obtained through Twitter’s public APIs. We
collected more than 120 millions retweets from October 2010 to January 2011,
involving 12.5 million distinct users and 1.3 million hashtags. Each post contains
information about who generated and who retweeted it. As expected in a social
network, the follower graph has scale-free degree distributions.

Due to the size of the empirical follower network, we sampled a manageable subset

for our simulations. The sampling procedure was a random walk with occasional
restarts from random locations (teleportation factor 0.15). Though no sampling
method is perfect, the modified random walk is efficient in terms of API queries and
reproduces the salient topological features of the sampled network*. The sampled
network has 10° nodes and about 3X10° edges. The empirical retweets generated by
the users in the sample display trends similar to those from the entire dataset,
therefore we expect the model predictions to be consistent not only with the sample
but also with the full dataset.

The parameter p,, characterizes the probability of tweeting about a new meme. To

estimate this parameter from the empirical data, we examine whether each hashtag
has been observed in previous time units (weeks). The proportion of posts with new
hashtags is approximately 0.45 = 0.05. We thus set p,, = 0.45 for all the simulations.
For each simulation — standard model, model with underlying random network, and
models with strong and weak competition — the parameter p, is tuned to capture the
average number of posted memes per user per unit time (Table 1). Finally, the
parameter p,, represents the proportion of all memes tweeted by an individual that
match the content of the memory. To estimate it from the empirical data, we compare
each hashtag with those produced by a user in the previous time unit (week). Using
the average value across all users (0.4 = 0.01) we set p,,, = 0.4.
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