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ABSTRACT

Exposure to aristolochic acid (AA), a component
of Aristolochia plants used in herbal remedies, is
associated with chronic kidney disease and
urothelial carcinomas of the upper urinary tract.
Following metabolic activation, AA reacts with dA
and dG residues in DNA to form aristolactam (AL)-
DNA adducts. These mutagenic lesions generate
a unique TP53 mutation spectrum, dominated by
A:T to T:A transversions with mutations at dA
residues located almost exclusively on the
non-transcribed strand. We determined the level of
AL-dA adducts in human fibroblasts treated with
AA to determine if this marked strand bias could
be accounted for by selective resistance to global-
genome nucleotide excision repair (GG-NER). AL-dA
adduct levels were elevated in cells deficient in
GG-NER and transcription-coupled NER, but not in
XPC cell lines lacking GG-NER only. In vitro,
plasmids containing a single AL-dA adduct were
resistant to the early recognition and incision
steps of NER. Additionally, the NER damage
sensor, XPC-RAD23B, failed to specifically bind
to AL-DNA adducts. However, placing AL-dA in
mismatched sequences promotes XPC-RAD23B
binding and renders this adduct susceptible to
NER, suggesting that specific structural features
of this adduct prevent processing by NER. We
conclude that AL-dA adducts are not recognized
by GG-NER, explaining their high mutagenicity and
persistence in target tissues.

INTRODUCTION

Aristolochia herbals have been used for centuries for
medicinal purposes; only recently have their serious toxic
effects been recognized (1,2). Aristolochic acid (AA) is
a collective term used to describe the complex mixture of
structurally related nitrophenanthrene carboxylic acids
produced by various Aristolochia species (3). The principal
constituents of this mixture are AA-I and AA-II, which
differ only in the presence or absence of an O-methoxy
group at C-8 (Figure 1). Both AA-I and AA-II react with
DNA to form adducts—we used AA-II in all experiments
reported here.

In the early 1990s, more than 100 Belgian women
developed chronic kidney disease and urothelial carcin-
omas after ingesting a slimming regimen that contained
Aristolochia  fangchi  (4). Aristolactam (AL)-DNA
adducts were found in the renal and urothelial tissues of
these patients, confirming prior exposure to AA (5,6). The
syndrome, initially called Chinese herbs nephropathy
(CHN), later was renamed aristolochic acid nephropathy
(AAN). AAN is characterized by tubulointerstitial
nephritis with urothelial carcinomas of the upper urinary
tract developing in 50% of the cases (7). Many cases of
AAN have subsequently been reported worldwide (1,2).

Aristolochic acids are activated by cellular nitro-
reductases (8), forming reactive intermediates that bind
covalently to DNA. Via this mechanism, AAI and AAII
produce the following DNA adducts: 7-(deoxyadenosin-
NC-yD)aristolactam I (dA-ALI), 7-(deoxyguanosin-N>-yl)
aristolactam I (dG-ALI), 7-(deoxyadenosin-N°-yl)
aristolactam II (dA-ALII) and 7-(deoxyguanosin-N>-yl)
aristolactam II (dG-ALII) (Figure 1) (9). Both dG and
dA adducts block DNA replication and exhibit miscoding
properties (10-12). dA-AL adducts are significantly
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Figure 1. Structures of AA and dA-AL and dG-AL adducts. The DNA adducts are formed by cellular reduction of the nitro group, hydroxy lactone
formation and activation to react with the exocyclic amine groups of dA and dG.

more mutagenic and/or persistent than dG-AL adducts,
reflected in the observation that chronic exposure of
humans to AA leads predominantly to A:T to T:A
transversions (13,14). A remarkable feature of dA-AL
adducts is their persistence in target tissues of rodents
and humans (6,13,15-17), suggesting that these adducts
are at least partially resistant to repair.

In humans, nucleotide excision repair (NER) is the
primary pathway responsible for the removal of bulky
DNA lesions, including those formed by AA (18). There
are two subpathways of NER, transcription-coupled
repair (TC-NER) and global-genome repair GG-NER)
that differ with respect to the manner in which the sub-
strate lesions are recognized. Following lesion recognition,
these two subpathways converge to a common set of steps
to complete the repair process, including DNA opening,
strand incisions by XPF and XPG, and filling of the gap.

TC-NER has been shown to operate specifically on
lesions in the transcribed strand of expressed genes
and is initiated when RNA polymerase is stalled at the
lesion site (19). In contrast, GG-NER monitors the
entire genome and is initiated by the damage sensor
XPC-RAD23B (20,21), sometimes in conjunction with
an ubiquitin—ligase complex containing the UV-damage
binding protein subunit DDB2 (22). In the GG-NER
pathway, there is a strong correlation between the
degree of thermodynamic destabilization induced by the
presence of a DNA lesion and the efficiency of NER
(23,24). In line with this observation, XPC-RAD23B rec-
ognizes lesions indirectly by binding to the undamaged
strand opposite the lesion, which is rendered more
accessible by destabilization of duplex DNA (25-27). No
such correlation has been established for TC-NER, which
does not employ XPC-RAD23B, and it is believed that
most bulky lesions will effectively block transcription by
RNA polymerase II (28-31) leading to the initiation
of repair.

Recently, AA was shown to be the etiologic agent
responsible for Balkan endemic nephropathy (BEN)
(13,17). This environmental disease is characterized by
renal tubulointerstitial fibrosis associated with a high in-
cidence of upper urinary tract carcinomas (32). Analysis of
the mutational profile of the p53 tumor suppressor gene in
BEN patients revealed a unique pattern of A: T—T:A

transversions characteristic of exposure to AA (14).
Importantly, mutated adenosines were located exclusively
on the non-transcribed strand, suggesting that dA-AL
adducts on either strand are likely to be refractory
to GG-NER, while adducts on the transcribed strand
are repaired by TC-NER. A similar strand bias was
observed in studies of Hupki mice exposed to AAI (33).
Both the persistence of dA-AL adducts and the marked
strand bias for A—T mutations suggest that dA-AL
adducts are selectively repaired by TC-NER.

To explore the involvement of TC-NER and GG-NER
in repair of dA-AL DNA adducts, we investigated the
cytotoxicity and genotoxicity of ALII in cell lines with
defects in one or both of these repair pathways.
Additionally, we investigated NER susceptibility and
XPC-RAD23B binding affinity for dA-ALIl adducts
in vitro. Taken together, these studies demonstrate that
dA-AL-DNA adducts fail to bind XPC-RAD23B and,
therefore, are refractory to repair by GG-NER, while
being processed efficiently by TC-NER.

MATERIALS AND METHODS
Chemicals

v-?P-ATP (6000 Ci/mmol) and o-*P-dCTP were
purchased from PerkinElmer (Boston, USA). Cis-
diamminedichloroplatinum(Il), cisplatin, obtained from
Sigma Co. (St. Louis, MO, USA), was dissolved, at
10mM, in DMSO and stored at —80°C. Aristolochic
acid II with a purity of >97%, was dissolved, at 25 mM,
in DMSO and stored at —20°C. The concentration
of AAII was established by UV absorption at 250 nm
(34). Enzymes used for *?P-post-labeling analysis were
obtained from Worthington (Newark, NJ, USA) and
Sigma. dG-ALII, dA-ALII, N-(deoxyguanosin-8-yl)-2-
acetylaminofluorene (dG-AAF), and N-(deoxyguanosin-
8-yl)-2-acetylaminofluorene (dG-AF), containing
oligonucleotides were synthesized as described (12,35).
All other oligonucleotides were purchased from
Integrated DNA Technologies (IDT).

Cell lines

Table 1 lists the cell lines used for the cytotoxicity and
genotoxicity assays. XP cell lines were obtained from the
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Table 1. Cell lines used in the study

Cell line Phenotype Name Expected GGR status Expected TCR status
GMO00637 Wild-type Control + +
CS1AN/p3.1 CSB CSB + -
CSIAN/p3.1-CSBwt CSB corrected CSB* + +
CS1ANE7/p3.1-CSBE646Q CSB mutant corrected CSB™™ + —
GM 16094 CSA CSA + -
GM15983 XPC XPC — +
GM04312 XPA XPA — —
GM15876 XPA corrected XPA™ + +
GM 14930 XPG XPG — —
GM08207 XPD XPD — -
GM15877 XPD corrected XPD" + +

Coriell repository. CSIAN/pc3.1, CSIAN/p3.1-CSBwt
and CSTANE7/p3.1-CSBE646Q (CSB deficient and CSB
corrected cell lines, CSB, CSB', CSB™", respectively)
were kindly provided by Vilhelm Bohr (National
Institute of Aging, Baltimore, MD, USA) (36). All cell
lines were SV-40 transformed.

Cell culture and chemical exposures

Cells were grown in 75cm? flasks containing Dulbecco’s
modified minimum essential medium (high glucose
DMEM) supplemented with fetal bovine serum (10%),
penicillin (100 U/ml) and streptomycin (100 mg/ml). The
medium for CSIAN and XPD complemented cell lines
contained geneticin (0.4 mg/ml). Cultures were maintained
at standard conditions in a humidified atmosphere con-
taining 5% CO, at 37°C. Cultures were splitin a 1: 5 ratio
every third to fourth day. Before treatment, cells were
passed in a 1:6 ratio and 0.5ml culture maintained
on 24-well plates for cytotoxicity assays. Also, S5ml of
the culture was grown to confluence on 60-mm plates.
Following exposure to drug, DNA was isolated for
adduct analysis. Before treatment with the DNA-
damaging agents, cultures were washed thoroughly with
Dulbecco’s phosphate buffered saline (PBS) without
CaCl, and MgCl,. Then 5-200uM AAII or 1-10uM
cisplatin, diluted in DMEM without supplements, were
added to the cells as follows and incubated under
standard conditions: CSB* and XPD" cell lines were
exposed in the presence of geneticin (0.4mg/ml) to
maintain CSB and XPD complementation. Cells were
treated with AAII or cisplatin for 48h for adduct
analyses and with AAII for 72h for cytotoxicity studies.
To establish the time course for adduct formation,
wild-type and selected cell lines were exposed to 100 and
10 uM AALI, for up to 72 h, respectively.

Cell viability assay

To measure cell viability, ATP content was assayed using
a FLASC kit from Sigma. After exposure to AAII, cells in
24-well plates were washed with PBS, and 400 pul lysis
buffer (FL-SAR) was added to each well with the follow-
ing incubation at room temperature for 10 min. Luciferase
(FL-AAM) was diluted 20-fold in the FL-AAB buffer
and the luminescence of Spl sample in 100 pul enzyme
was measured on a TD-20/20 ‘Luminometer’ (Turner

Designs). The toxicity for each chemical dose was
defined as the ratio of ATP in treated cells to ATP in
the untreated control. Treatments were conducted in
six different wells for each exposure. Ratio data were
analyzed using Sigma Plot v8.0 (SPSS Inc.).

32p_post-labeling adduct analysis with gel electrophoresis

DNA adduct levels were measured as described previously
(37). A total of 15fmol of each of the following 24-mer
oligonucleotides were used as standards. This corresponds
to 1 adduct/10°nt in 5pug DNA.

5-TCT TCT TCT GTG CXC TCT TCT TCT-3' X = dA-
ALII

S-TCT TCT TCT GTX CAC TCT TCT TCT-3' X = dG-
ALII

Following exposure to AAII, cells were washed with
phosphate buffered saline, collected by centrifugation
and stored at —80°C for DNA adduct analysis. Briefly,
DNA was isolated using the DNeasy Blood and Tissue
Qiagen kit (Cat. N 69506, QIAGEN Sciences, MD,
USA). DNA (5-20pg) was digested at 37°C overnight
with phosphodiesterase and micrococcal nuclease.
Following further digestion with nuclease-P1 for 1h at
37°C: AL-DNA adducts were extracted with butanol as
described (37), then treated with 20 uCi y-**P-ATP and
10 U of OptiKinase (Affymetrix Inc.). After evaporating
the solution to dryness, 5pul of formamide-EDTA buffer
with xylencyanol and bromophenol blue was added.
Samples were loaded on 30% non-denaturating acryl-
amide gel prerun for 40min at 1600V. The running
buffer consisted of 200mM boric acid, 2.5mM EDTA,
100 mM Tris—base, pH 7.0. The gel was allowed to run
for 4h at 1800 V and then visualized by phosphorimaging.
Image QuaNT v5.2 (Molecular Dynamics) was used to
estimate the amount of adducts present. The dependence
of adduct levels on AAII dose was analyzed using Sigma
Plot v8.0 (SPSS Inc.).

XPC-RAD23B purification and HeLa whole-cell extract
preparation

Polyhistidine-tagged RAD23B was expressed in E. coli
BL21(DE3)LysS using the expression vector pET-24d
and purified on nickel beads (Qiagen) as described (38).



Polyhistidine-tagged XPC was expressed in Sf9 cells using
the expression vector pFastBacl. Cells were lysed as
described and the third supernatant fraction S3 was
combined with partially purified RAD23B (25). The cor-
rectly folded heterodimer was further purified through
nickel beads (Qiagen), gel filteration (Pharmacia) and
heparin (Amersham) columns. HeLa whole-cell extracts
were prepared as described (39).

Preparation of oligonucleotides

The 44-mer oligonucleotides containing dA-ALII were
prepared as described (12), purified by HPLC and char-
acterized by ESI-MS using a Micromass Platform LC/MS.
24-mer and 44-mer oligonucleotides containing a single,
dG-AAF/AF lesion were prepared and purified as
described (35).

Sequences of oligonucleotides containing dA-ALII and
dG-AAF/AF were as follows (5-3') with the modified
residue indicated in bold: C209-ALIl: d(AGACAGCCC
TAGTACGATGACA(ALII)GAAACACTGCGTGC AT
GGATCC); C209-ALII with mismatch: d(AGACAGCC
CTAGTACGATG ACA(ALICAAACACTGCGTGCA
TGGATCC); SI6-ALIL: d(AGACAGCCCTAGT ACTC
TCCTAALIDGGTTGGCTCGGTGCATGG ATC);
SI6-ALII with mismatch: d(AGACAGCCCTAGTACT
CTCCCAALI)CGTTGGCTCGCGTGCATGGATC);
24-mer Narl-AAF: d(CTATTACCGGCG(AAF)CCACA
TGTCAGC); 24-mer Narl-AF: d(CTATTACCG
GCG(AF)CCACATGTCAGC); 44-mer Narl-AAF:
d(CCCT AGCTAGAGCTACGTAGCTATTACCGGC
G(AAF)CCACATGTC AGC); 44-mer Narl-AF: d(CCC
TAGCTAGAGCTACGTAGCTATTACCGGCG(AF)C
CACATGTC AGC).

Preparation of plasmids for in vitro NER assay

The following oligonucleotides (5-3") were cloned into
pBluescript II SK+ using two Bbsl restriction sites.
Primer 1 for C209: d(CCCTAGTACGATGACAGAAA
CACTGC); primer 2 for C209: d(GCACGCAGTGTTTC
TGTCATCGTACT); primer 3 for C209 with mismatch:
d(CCCTAGTACGATGAGGGAAACACTGC); primer
4 for C209 with mismatch: d(GCACGCAGTGTTTCCC
TCATCGTACT); primer 5 for SI6: d(CCCTAGTACTC
TCCTAGGTTGGCTCGC); primer 6 for SI6: d(GCACG
CGAGCCAACCTAGGAGAGTACT); primer 7 for SI6
with mismatch: d(CCCTAGTACTCTCCGGGGTTGGC
TCGC); primer 8 for SI6 with mismatch: d(GCACG
CGAGCCAACCCCGGAGAGTACT). Single-stranded
circular DNA was generated from the resulting plasmids
as described (35) and used in primer extension reaction to
generate the lesion-containing double-stranded plasmids
as follows: 100 pmol of the 44-mer oligonucleotides was
5'-phosphorylated by incubation with 20U of T4 PNK
enzyme and 2mM of ATP for 2h. After annealing with
31 pmol of single-stranded modified pBluescript 11 SK*
(35), further incubation with dNTPs, T4 DNA polymerase
and T4 DNA ligase yiclded covalently closed circular
DNA containing a single ALII adduct (39). The closed
circular DNA was purified by cesium chloride/ethidium
bromide density gradient centrifugation followed by
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consecutive butanol extractions to remove the ethidium
bromide and concentrated on a Centricon YM-30
(Millipore). The plasmid was further purified by sucrose
gradient centrifugation (39). Fractions containing the
closed circular plasmid were pooled and concentrated on
a Centricon YM-30 (Millipore). The purified plasmids
containing single dA-ALIlI and dG-AAF/AF lesions
were aliquoted and stored at —80°C. The NER dual
incision assay was performed using an established
protocol (39). HeLa cell extracts (2pl, 21 mg/ml) or
XP-F cell extract (3pul, 12.5mg/ml), 2ul of Sx repair
buffer (200mM Hepes-KOH, 25mM MgCl,, 110mM
phosphocreatine (di-Tris salt, Sigma), 10mM ATP,
2.5mM DTT and 1.8 mg/ml BSA, adjusted to pH 7.8),
0.2ul 2.5mg/ml creatine phosphokinase (rabbit muscle
CPK, Sigma) and either purified ERCCI1-XPF protein
(0.5ul, 0.18mg/ml) or 400mM NaCl (0.5ul, final
NaCl concentration was 70mM) in a total volume of
10 ul were pre-incubated at 30°C for 10 min. dA-AL or
dG-AAF/AF-containing plasmid DNA (1 ul, 50ng/pl)
was added and the mixture incubated at 30°C for
45min. Samples were placed on ice, 0.5ul of 1uM of
a 3’-phophorylated complementary oligonucleotide was
added and the mixtures heated at 95°C for Smin. The
samples were allowed to cool at room temperature for
15min to allow the DNA to anneal. One microliter
of a sequenase/[a->>P]-dCTP mix (0.25U of sequenase
and 2.5 uCi of [0-**P]-dCTP per reaction) was added, the
mixture was incubated at 37°C for 3min, and 1.2l of
dANTP mix (100 uM of each dATP, dTTP, dGTP, 50 uM
dCTP) was added and the mixture incubated for another
12min. The reactions were stopped by adding 12l
of loading dye (80% formamide, 10mM EDTA)
and heating at 95°C for S5min. The samples were
analyzed on a 14% sequencing gel (0.5x TBE) at 45V
for 2.5h. Reaction products were visualized using a
PhosphorImager (Typhoon 9400, Amersham Biosciences).
Sequences (5—3’) of complementary strands (CS) used in
in vitro NER assay were as follows: CS 1 for Narl-AAF/
AF-containing plasmids: d(GGGGAGTGTTTCTGTCAT
CGTACTAGGGCTGT); CS 2 for a C209-containing
plasmid: d(GGGGAGTGTTTCT GTCATCGTACTAG
GGCTGT); CS 3 for a C209 with mismatch-containing
plasmid: d(GGGGAGTGTTTGTGTCATCGTACTAG
GGCTGT); CS 4 for a Sl6-containing plasmid: d(GGG
GAGCCAACCTAGGAGAGTACTAGGGCTGT); CS 5
for a SI6 with mismatch-containing plasmid: d(GGGGAG
CCAACGTGGGAGAGTACTAGGGC).

Electrophoretic mobility shift assays of XPC-RAD23B
binding to dA-AL and dG-AAF/AF-containing
oligonucleotides

dA-AL, dG-AAF or dG-AF-containing 44-mer oligo-
nucleotides (4 nM) were annealed to a 5’ Cy5 labeled com-
plementary strand (1.3nM) in the presence of 10mM
Tris—HCI, pH 8, containing 6.6 mM NaCl and 0.66 mM
MgCl. The resulting duplexes were incubated with 4 nM
non-modified duplex 44-mer competitor and increasing
amounts of XPC-RAD23B (0-125nM), in 25mM Tris—
HCL, pH 7.5, 40mM NaCl, 0.1 mg/ml BSA and 10%
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glycerol at 25°C for 30 min in a reaction volume of 15pl.
Reaction mixtures were loaded onto a pre-equilibrated
native 5% polyacrylamide gel with 0.5x TBE buffer and
run at 4°C for 50 min at 20 mA. Gels were scanned using
a Typhoon 9400 imager. The intensities of the bands for
free 44-mer oligonucleotides and the complex formed
with XPC-RAD23B were determined by Image Quant
TL program from Amersham Biosciences. Each reaction
was performed a minimum of three times to determine
the binding constant.

The equilibrium dissociation constants (K4) for the
XPC-RAD23B bound to the 44-mer duplexes containing
ALII or AAF/AF were determined using the Hill equation
y = [L]"/(Kg+[L]"), (Y: percentage of protein—DNA
complex and L: concentration (nM) of XPC-RAD23B
(protein), n: Hill coefficient, describing cooperativity).
K4 values were determined using the SigmaPlot program
10.0 by fitting the data to sigmoid curves. The sequences
(5-3’) of the oligonucleotides used in the binding assays
were as follows.

C209: d(AGACAGCCCTAGTACGATGACAGAAA
CACTGCGTGCATGGATCC); C209-ALII: d(AGACA
GCCCTAGTACGATGACA(ALI)GAAACACTGCGT
GCAT GGATCC); Complementary strand (CS) for C209
and C209-ALIl: d(Cy5-GGATCCATGCACGCAGTG
TT TCTGTCATCGTACTAGGGCTGTCT); C209
with mismatch: d(AGACAGCCCTAGTACGATGACA
CAAACACTGCGTGCATGGATCC) C209-ALIT with
mismatch: d(AGACAGCCCTAGTACGATGACA
(ALI)CAAACAC TGCGTGCATGGATCC); CS for
C209-ALII and C209 with mismatch: d(Cy5-GGATCCA
TGCACGCAGTGTTTCCCTCATCGTACTAGGGCT
GTCT); SI6: d(AGA CAGCCCTAGTACTCTCCTAGG
TTGGCTCGGTGCATGGATCQ); SI6-ALIL: d(AGA CA
GCCCTAGTACTCTCCTA(ALINGGTTGGCTCGGT
GCATGGATCQ); CS for SI16 and SI6-ALII: d(Cy5-GATC
CATGCACGCGAGCCAACCTAGGAGAGTACTAG
GGC TGTCT); SI6 with mismatch: d(AGACAGCCC
TAGTACTCTCCCACGTTGGCTC GCGTGCATG
GATC); SI6-ALII with mismatch: d(AGACAGCCCTA
GTACTCTC CCA(ALII)CGTTGGCTCGCGT GCAT
GGATC); CS for SI6 and SI6-ALII with mismatch:
d(Cy5-GATCCATGCACGCGAGCCAACCCCGGAG
AGTACTAGGGCTG TCT).

RESULTS

Cell lines with defects in both GG-NER and TC-NER
are sensitive to AAII

We used a series of fibroblast cell lines with mutations in
selected components of TCR-NER and/or GGR-NER to
investigate the relative roles of these repair processes in
the genotoxic and the cytotoxic response to AAII
(Table 1). Cell lines deficient in one of the genes of
a pathway responsible for AL-DNA adduct repair are
expected to be more sensitive to AA exposure. Cells
lacking functional CSA or CSB are deficient in
TC-NER, those lacking XPC are deficient in GG-NER,
whereas cells deficient in XPA, XPD or XPG have
deficiencies in the steps common to both pathways.

The following corrected human fibroblast cell lines were
used: CSB*, CSB™"" (E646Q an ATPase-deficient mutant
of CSB), XPA™" and XPD™. Cells were treated with differ-
ent doses of AAII and their viability was measured by an
ATP luciferase-dependent proliferation assay.

Cisplatin was used as a positive control, as it has been
shown that cells with a defect in TC-NER (CSA-, XPD-,
XPG- and XPA-deficient human fibroblasts) are hyper-
sensitive to this drug in an MTT assay (40). Results
obtained with the ATP assay were fully consistent with
these observations (Supplementary Figure S1).

Among GGR/TCR-deficient cell lines, XPA was most
sensitive to AAIL. XPA complementation rescued partially
the phenotype when compared to the control (Figure 2A).
XPG and XPD cells were more affected than the control,
with XPG being more sensitive than XPD (Figure 2B and
C). The sensitivity of the XPD™ cell line was similar to that
of normal human fibroblasts (Figure 2B). The XPA and
XPG cell lines exhibit unscheduled DNA synthesis (UDS)
level less than 2% of normal (41) while XPD cells retain
approximately 5% of UDS (42). Thus, variations in the
level of UDS between different cell lines may account
for observed differences in sensitivity to AAIIL.

Cells with deficiencies in either GG-NER or TC-NER
were not hypersensitive to AAIL. CSA, CSB and XPC
showed no or marginal hypersensitivity to treatment with
AAIl compared to normal fibroblasts (Figure 2D, E
and F). Intriguingly, complementation of CSB cells with
wild-type protein, but not with the E646Q mutant with a
deficiency in ATPase activity (36), result in increased cyto-
toxicity, suggesting that overexpression of active CSB ad-
versely affects cellular response to AAII (Figure 2E).

Our studies therefore show that deficiencies limited to
either the TC-NER (CSA, CSB) or GG-NER (XPC)
pathway did not result in AAII hypersensitivity, while
cells lacking components involved in both pathways
(XPA, XPD or XPG) displayed increased cytotoxicity,
suggesting that, in vivo, AL-DNA adducts are repaired
by NER.

Defects in TC-NER, but not GG-NER lead to increased
levels of ALII-DNA adducts

To establish the genotoxicity of AAII and to correlate
cytotoxicity with AII-DNA adduct levels, cell lines were
treated with different doses of AAII for 48 h and the levels
of adducts were determined. The time of exposure was
chosen so as to avoid cell death and hence the depletion
of cells containing adducts from the plates. Following
exposure, the cells were washed, collected and stored at
—80°C. DNA was digested to single nucleotides, labeled
with y-[*’P]-ATP and analyzed by gel electrophoresis.
This post-labeling approach allows for the determination
of adduct levels in many samples on a single gel (37).
Initially, we performed a time course study with 10 and
100 uM AAII for selected cell lines to establish the linear-
ity of adduct formation (Supplementary Figure S2). To
quantify adducts, synthetic oligonucleotides with single
dG-ALIl or dA-ALII adduct were used as standards.
Following mock treatment, no bands corresponding to
the dA and dG adduct were found (data not shown).
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Figure 2. AAII cytotoxicity study. (A-F) XP-, CS-deficient and control normal human fibroblasts cell lines were treated with 5-200 uM AAII for
72 h with the following ATP level measurements. Filled circles indicate the control normal human fibroblasts cell line, open circles—the deficient cell
lines corresponding to the panel names, filled triangles—complemented cell lines if available. In the case of CSB-deficient cell lines, the comple-
mentation of the deficient cell line was achieved through pc3.1 plasmid vector harboring the cDNA of wild-type or ATPase mutant ERCC6 gene. On
the F, filled squaresindicate the CSB-deficient cell line complemented with ATPase mutant gene. To correct the abnormal phenotype XPA-deficient
cells are transfected with the full-length cDNA of the XPAC gene. The XPD cell line is transfected with p2E-ER2, a complementary DNA expression
construct of the ERCC2 (XPD) gene, to correct the abnormal phenotype. The point for each AAIIl dose corresponds to the ATP ratio between
treated and untreated cells and presents mean + standard deviation for at least six measurements in two independent experiments.

Figure 3G shows a fragment of the polyacrylamide gel
used for the adduct analysis.

We detected 5- to 10-fold higher levels of dA-AL
adducts, compared to dG-AL, in all cell lines after
treatment with AAII over a dose range of 20-100 uM
(Figure 3). Measurement of repair is complicated by
intracellular accumulation of the chemical and differing
growth rates of the cell lines employed. After removal of
AAII from the medium, washing and continued growth in
AA-free medium, cells continued to divide, though at
reduced rates. After incubation for 80h, cells contained
significant levels (>70% of initial adduct levels) of
both dG-AL and dA-AL adducts (data not shown).

These results are consistent with measurements of
adduct levels in primary human urothelial cell cultures
(Sidorenko, unpublished data).

The levels of dA-AL and dG-AL adducts in cells
with deficiencies in different NER genes decreased
in the following order: XPA > XPD =~ CSA > XPG >
CSB ~ CSB" ~ CSB™" ~ XPC ~ WT control (Figure 3).
CSB deficiency led to higher adduct levels when compared
to the control cell line only at the highest AAII dose
(Figure 3E). Complementation of XPA and XPD defi-
ciency led to significant decreases in the levels of dG-AL
and dA-AL (Figure 3A and B), while adduct levels in
XPC-deficient cells were comparable to control values,
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Figure 3. AAII genotoxicity study. XP-, CS-deficient, normal fibroblast and complemented cell lines if available were treated with 20, 50, 100 pM
AAII for 48 h. DNA was isolated and analyzed for adduct levels with 3?P-post-labeling assay. (A—F) — The dependence of dG- and dA-ALII adduct
levels from the treatment AAII dose. Control indicates the control human fibroblasts cell line. XPA-, XPD-, XPG-, CSA-, CSB-, CSBmut-,
XPC-deficient human fibroblasts cell lines. XPA™, XPD", CSB" are corresponding complemented cells. All treatments for every cell line were
done in triplicate and the results are presented as means + standard deviations. (G) The fragment of a 30% polyacrylamide gel after >2P-labeling
of DNA adduct nucleosides. 1-3, XPA-deficient cell line treated with 20, 50, 100 uM AAII for 48 h; 4-6, XPA complemented cell line treated the
same way; st, The standard mixture of 24-mer oligonucleotides containing 15fmol of each of the single dG-ALII or dA-ALII, the upper and lower
bands, respectively. Each standard band corresponds to 1 adduct/10° nucleotides for 5pg DNA. For each DNA digestion, at least three standard

mixtures were used.

suggesting that GG-NER plays only a minor role in
adduct repair (Figure 3G). However, after exposure to
100 uM AAII, we did observe a small, but significant,
difference in the levels of dG-ALII, but not dA-ALII,
adduct levels between XPC cells and the control, suggest-
ing that dG-ALII adducts are repaired by both TC-NER
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and GG-NER. The lack of difference at lower doses might to AA (14).

reflect the limit of detection for the post-labeling assay
where the signal cannot be reliably separated from the
noise. These in vivo studies suggest that TC-NER is
the main pathway for repair of dA-ALII adducts, as
suggested by the 7TP53 mutation spectrum of patients
with upper urothelial cancers caused by dietary exposure




dA-ALII adducts are refractory to repair by GG-NER
in vitro

We next sought to investigate whether dA-ALII adducts
are repaired by GG-NER in vitro and, if they proved
refractory to NER, to develop an understanding of why
they are not repaired. We decided to investigate NER of
dA-ALII in the context of hot spots for mutagenesis in the
p53 gene of patients with upper urothelial cancer as likely
sites with inefficient GG-NER (14). Oligonucleotides con-
taining dA-ALII at codon 209 (ACAGA) or at a splice site
in intron 6 (CTAGG) (Table 2) were synthesized (12)
and used to prepare plasmids containing single site-
specifically placed adducts (35). These plasmids were
incubated with an NER-proficient Hela whole-cell
extract and the products, expected to be ~25-30nt in
length, were detected after annealing to complementary
oligonucleotide with an overhang of four Gs and a
“fill<in’ labeling reaction with **P-dCTP (35,39). We
compared repair of dA-ALII to that of dG-AAF, an ex-
cellent NER substrate, and dG-AF, an inefficient NER
substrate. Consistent with our previous observations
(JEY and ODS, manuscript in preparation), dG-AAF
was processed efficiently in the extracts, yielding the char-
acteristic multi band pattern of excised fragments, while
the dG-AF substrate was repaired with much lower effi-
ciency (Figure 4, lanes 1 and 2). In contrast, no product
was observed for the two dA-ALII containing plasmids
(C209-ALII and SI6-ALII) (Figure 4, lanes 3 and 5),
indicating that dA-ALII adducts were not repaired by
GG-NER under these conditions.

We then sought to understand whether the absence of
NER was due to a lack of thermodynamic destabilization
induced by dA-ALII lesions. Previous studies have shown
that certain lesions, such as UV-induced cyclopyrimidine
dimers, are inefficiently repaired by NER and that the
NER activity can be dramatically increased by placing
the lesion in the context of a mismatch (25). To test if
this was also the case for dA-ALII, we placed dA-ALII
in the C209 and SI6 sequences in the context of a CCC

Table 2. Oligonucleotide sequences used in this study

Name Sequence
AAF 5'-GGCG (AAF) CC-
AF 5'-GGCG (AF)CC-
C209 5 -ACAGA-
C209-ALIT 5'-ACA (AL)GA-
C209 with mismatch 5'-ACACA—
-TCCCT-5
C209-ALII with mismatch 5'-ACA (AL)CA-
-TC C cr-5
SI6 5'-CTAGG-
SI6-ALIL 5'-CTA (AL)GG-
SI6 with mismatch 5'-CCACG-
-Gceee-5’
SI6-ALII with mismatch 5'-CCA(AL)CG-
-GC C cc-5'

AAF (dG-AAF), N-(deoxyguanosin-8-yl)-2-acetylaminofluorene;
C209, codon 209; SI6, splice site, intron 6; AF (dG-AF),
N-(deoxyguanosin-8-yl)-2-aminofluorene; ~ ALII ~ (dA-ALII),
7-(deoxyadenosin-N®-yl) aristolactam II (R = H). The modified
residue is indicated in bold.
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mismatch and measured whether this additional distortion
reflected NER activity. This was indeed the case (Figure 4,
lanes 4 and 6) and the repair efficiency of the dA-ALII
adducts in the context of a mismatch was similar to that
of dG-AAF.

As is often observed during NER in vitro assays,
the pattern of the bands of the excised fragments and
non-specific bands was different for the dG-AAF and
dA-ALIIl adducts and we wished to confirm that the
activities observed were indeed due to GG-NER. We
therefore performed additional NER assays using
extracts from cell lines derived from xeroderma group F
patients with a mutation in the XPF protein. We have
shown previously that these extracts are devoid of NER
activity and that activity can be restored by adding recom-
binant purified ERCCI-XPF (43,44). No NER-specific
bands were observed for any of the substrates upon
incubation with the XP-F extract alone (Supplementary
Figure S3, odd lanes), but addition of ERCCI1-XPF
restored robust NER activity to the reactions with the
dG-AAF plasmid (Supplementary Figure S3, lane 2) and
with dA-ALII plasmids, if dA-ALII was located in a
mismatch (Supplementary Figure S3, lanes 8§ and 12).
These studies show that dA-ALII adducts are specifically
repaired by NER only if they are placed in the context
of a destabilized duplex.
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Figure 4. NER dual incision activity on dG-AAF, dG-AF and
dA-ALII containing plasmids. Plasmids containing site-specific
dG-AAF (lane 1), dG-AF (lane 2) or dA-ALII (lanes 3-6) residues
were incubated with a HeLa cell extract. Excision products containing
were detected by annealing to complementary oligonucleotides with a
4G overhang, which served as a template for end-labeling with [0-*>P]
dCTP and sequenase. The reaction products were resolved on a 14%
denaturing polyacrylamide gel. A low molecular weight ladder from
NER was used as a size marker and the position of 25 and 34nt
bands are indicated. Asterisks denotes non-specific, NER-independent
bands.
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dA-ALII adducts are poorly recognized by XPC-RAD23B
in duplex DNA

XPC-RAD23B is responsible for recognition of DNA
lesions in GG-NER and for the subsequent recruitment
of downstream NER factors (18). It is generally believed
that the thermodynamic destabilization induced in a DNA
duplex influenced by parameters such as base-pairing
disruption, bending, and flexibility is correlated with
XPC-RAD23B binding affinity and overall NER
efficiency (23,45). We investigated whether the binding
affinity of XPC-RAD23B correlated with the efficiency
of GG-NER for dA-ALII adducts in the matched and
mismatched duplexes used for the NER experiments.
44-mer oligonucleotides containing a dA-ALII residue in
the same sequence context that was used in the NER ex-
periments (Table 2) were annealed to 5'-CyS5-labeled com-
plementary strands and incubated with increasing
concentrations of XPC-RAD23B in the presence of a
3-fold excess of a competitor (25,46), and bound and
unbound fractions were separated on a 5% native
PAGE gel (Figure 5A and Supplementary Figure S4).
Comparison of the binding affinities of C209 and
C209-ALII revealed that the presence of dA-ALII had
no effect on binding affinity of XPC-RAD23B (Figure 5
and Table 3). However, when C209 and C209-ALII were

placed opposite a three base pair mismatch, the Ky values
of both substrates are decreased to similar levels by
about 2-fold, similar to the binding affinity of dG-AAF
(Table 3). This result showed that the presence of a
mismatch significantly affected the binding affinity of
XPC-RAD23B, while the presence of dA-ALII did not.
Similar results were obtained in binding experiments
with the SI6 sequence, with the exception that the
SI6-dA-ALII oligonucleotide had a binding affinity to
XPC-RAD23B intermediate of that of C209 and the
mismatch-containing sequences. Overall the binding

Table 3. Dissociation constants (Ky) of XPC-RAD23B bound to
dA-ALII and dG-AAF-containing oligonucleotides

Sequence Ky (nM)
Narl-AAF 29+ 3
C209 60 +2
C209-ALIT 59+3
C209 with mismatch 31+5
C209-ALII with mismatch 26 + 10
SI6 60 + 3
SI6-ALIL 44 + 4
SI6 with mismatch 27 +4
SI6-ALII with mismatch 17+ 8
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Figure 5. Determination of binding affinities of XPC-RAD23B binding to dG-ALII and dG-AAF containing oligonucleotides. (A) Lesion-containing
44-mer oligonucleotides (4 nM) were annealed to a complement containing a 5’ Cy5 fluorescent label and incubated with different concentrations (0—
125nM) of XPC-RAD23B for 30 min. The reactions were analyzed on a 5% native polyacrylamide gel and visualized on a Typhoon imaging system.
Two representative gels using C209-ALII and C209-ALII with mismatch are shown. (B) Determination of Ky values: the percentage of bound
(DNA+XPC-RAD23B) and non-bound fractions (DNA) were determined using Image Quant TL. K4 were calculated from at least three independent
experiments and the data analyzed using sigma plot. Standard deviations are indicated by error bars.
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affinity of XPC-RAD23B was proportional to the effi-
ciency of NER, suggesting that dA-ALIl adducts in
DNA are refractory to GG-NER because they fail to
bind the damage sensor XPC-RAD23B with higher
affinity than non-damaged DNA.

DISCUSSION

Nucleotide excision repair (NER) excises a variety of
bulky lesions from DNA. Such DNA adducts are
recognized with varying efficiency by the XPC-RAD23B
protein in the GG-NER pathway. DNA lesions that are
repaired with high efficiency, such as dG-AAF adducts,
6—4 photoproducts or benzo[a]pyrene (BPDE) adducts in
most contexts, distort locally and/or destabilize DNA.
In contrast, adducts that destabilize duplexes to a lesser
degree, such cyclopyrimidine dimers (CPDs) or BPDE in
some sequence contexts, are repaired with low efficiency
(47-51). A second NER pathway, TC-NER, is initiated
when a RNA polymerase stalls at a lesion during tran-
scription and is dependent on the size or structure of the
lesion, but not on the destabilization it induces in the
duplex. Therefore, lesions like CPDs are repaired efficient-
ly by TC-NER in the transcribed strand of active genes,
while being relatively persistent in other parts of the
genome (18,19).

In the course of our studies of aristolochic acid toxicity
and mutagenicity, we discovered that A:T to T:A
transversions in the 7P53 gene of AA-induced tumors
mapped almost exclusively to the non-transcribed
strand, suggesting that AL-DNA adducts are repaired at
much higher rates by TC-NER than by GG-NER (14).
In this study, we determined the cytotoxicity of AA and
AL-DNA adduct levels in cells with deficiencies in
GG-NER, TC-NER or both, and investigated why
AL-DNA adducts might escape GG-NER.

Cellular studies support the proposal that dA-ALII
adducts are resistant to GG-NER

We exposed cells with defects in the genes involved in
GG-NER (XPC), TC-NER (CSA, CSB) or both (XPA,
XPD, XPG) to determine if adduct levels support the
notion that dA-AL adducts are repaired by TC-NER,
while being resistant to GG-NER. Although we
observed large variation in adduct levels and in AA
toxicity among various cell lines, likely due to the
known significant differences in residual NER levels
(52), our studies allow us to conclude that AL-DNA
adducts are primarily repaired by TC-NER and are resist-
ant to GG-NER. The XPA-deficient cells XP20S showed
the most striking cytotoxic and genotoxic response, con-
sistent with the severe XP phenotype associated with this
cell line, caused by an almost complete defect in GG-NER
and TC-NER. In contrast, dA-AL adduct levels and
AA-induced cytotoxicity did not increase in the XPC-
deficient cell line XP4PA. This cell line has a similar low
level of GG-NER as XP2OS, but is fully proficient in
TC-NER, since the XPC protein operates exclusively in
GG-NER. However, cells deficient in the TC-NER gene
CSA displayed increased levels of dA-ALIl adducts,
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supporting in turn the proposition that these adducts are
excised by TC-NER. The patterns observed in other cell
lines, including those with mutations in XPD and XPG,
were intermediate, consistent with the known milder
NER phenotypes in these cells (53,54).

In CSB-deficient cell lines, effects on AL-DNA adduct
accumulation were more pronounced only at the highest
AAII dose. Intriguingly, despite similarity at low doses
adduct levels, CSB complementation leads to increased
cytotoxicity to AAII and cisplatin as compared to the
control cells. The loss of sensitivity to AAII of CSB-
deficient cells complemented with the mutant CSB
protein E646Q (36,55) supports that observation. Over-
expression of repair-proficient CSB may lead to a rapid
accumulation of DNA repair intermediates that may not
be immediately processed by downstream NER eclements.

Mechanistic basis for inefficient NER of dA-ALII adducts

We found that dA-ALII adducts were not repaired by
GG-NER in vitro under standard conditions in several
sequence contexts and that the lack of repair correlated
with a failure of the damage sensor XPC-RAD23B to bind
these lesions specifically. Similar to previous observations
for CPDs and other non-distorting lesions (25,56,57),
positioning dA-AL adducts in the context of a mismatch
restored NER activity, suggesting that lack of thermo-
dynamic destabilization is responsible for the failure of
XPC-RAD23B to bind and trigger NER at dA-AL
lesions. These observations lend further support for the
current model of substrate recognition in NER positing
that local thermodynamic destabilization of duplexes by
lesions is recognized by XPC-RAD23B, initiating NER,
followed by verification of the presence of a bulky lesion
by the XPD helicase subunit of TFIIH, with the help of
other factors (58,59). The availability of an NMR struc-
ture of a dA-ALII residue in DNA (Lukin, M. et al., ac-
companying paper) provides some insight into why this
lesion may fail to bind XPC-RAD23B. The ALII moiety
is intercalated in the duplex and takes up the position of
the T residue paired to A. The T residue is displaced from
the helical stack, assuming a defined position in the major
groove. The planar ALII polycyclic ring system engages in
substantial stacking interactions with the two neighboring
bases. Therefore, although dA-ALII adducts cause some
destabilization of the duplex, it appears that the strong
stacking interactions and stable structure of the T
residue opposite the lesion disfavor binding of
XPC-RAD23B by blocking insertion of the principal rec-
ognition motif of XPC, a B-hairpin, into the duplex
(27,60). It will be interesting to determine how dG-ALII
adducts influence structural features of DNA duplexes
and how they interact with NER proteins to provide a
molecular basis for shorter persistence of these adducts
in cells. It would also be desirable to demonstrate more
directly that dA-ALII adducts are repaired by TC-NER,
but TC-NER is notoriously difficult to study in vitro (61),
and such studies are beyond the scope of the present
manuscript.

In conclusion, our studies provide a mechanistic basis
for the lack of repair of dA-ALII adducts by GG-NER
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and explain why such adducts persist in tissues of humans
decades after exposure, and why dA mutations in patients
with AA-induced upper urothelial cancer are almost
exclusively located on the non-transcribed strand of the
TP53 tumor suppressor gene.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1-4.
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