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ABSTRACT

Recent advances in sequencing technology have
enabled the rapid generation of billions of bases
at relatively low cost. A crucial first step in many
sequencing applications is to map those reads to a
reference genome. However, when the reference
genome is large, finding accurate mappings poses
a significant computational challenge due to
the sheer amount of reads, and because many
reads map to the reference sequence approxi-
mately but not exactly. We introduce Hobbes, a
new gram-based program for aligning short reads,
supporting Hamming and edit distance. Hobbes im-
plements two novel techniques, which yield sub-
stantial performance improvements: an optimized
gram-selection procedure for reads, and a cache-
efficient filter for pruning candidate mappings.
We systematically tested the performance of
Hobbes on both real and simulated data with read
lengths varying from 35 to 100bp, and compared
its performance with several state-of-the-art
read-mapping programs, including Bowtie, BWA,
mrsFast and RazerS. Hobbes is faster than all
other read mapping programs we have tested
while maintaining high mapping quality. Hobbes
is about five times faster than Bowtie and about
2-10 times faster than BWA, depending on read
length and error rate, when asked to find all
mapping locations of a read in the human gen-
ome within a given Hamming or edit distance, re-
spectively. Hobbes supports the SAM output format
and is publicly available at http://hobbes.ics.uci
.edu.

INTRODUCTION

DNA sequencing is an indispensable tool in many areas
of biology and medicine. Recent technological break-
throughs in high-throughput sequencing have made it
possible to sequence billions of bases quickly and
cheaply. For instance, the HiSeq platform from Illumina
can produce 6 billion 100bp reads within only 11days.
The SOLID system from Life Technologies can generate
over 20 GB of DNA sequences per day. These technologic-
al advances have opened the door for personal genome
sequencing, and the creation of a number of new tools
for studying diseases, genomes and epigenomes.

Mapping the reads from high-throughput sequencers to
a reference sequence often represents the first step in the
computational analysis of sequencing data in many appli-
cations. The enormous amount of reads produced from
the sequencers poses a great challenge on the speed and
the accuracy of read alignment programs for two major
reasons. First, the reference sequence can be very large.
For instance, the human genome is about 3 billion base
pairs long. Mapping a billion reads to the human genome
amounts to check 3 x 10'® candidate locations. Second,
due to sequencing errors and/or genetic variations, many
reads map to the reference sequence approximately but
not exactly, and therefore, to map a read to the reference
sequence, read mapping programs should allow a certain
number of mismatches between the read and a candidate
location. Although a number of high-performance read
alignment programs have been developed, it still took
days or even weeks (depending on different mapping
criteria) to align billions of reads to a large reference
genome on a single desktop. As the sequencing technology
is progressing toward generating longer reads, and thus
requiring read-mapping programs to be able to handle
more mismatches, the need for faster and more accurate
read alignment programs is greater than ever.
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Related work

Existing approaches to the read-mapping problem can be
broadly classified into two categories: trie-based methods
and gram-based methods. In the first group, most of the
popular packages use the Borrows-Wheeler Transform
(BWT) (1) and usually FM index (2) to encode their trie,
e.g. Bowtie (3), BWA (4), SOAP2 (5). These packages
have a very small memory footprint (~2thinsp;GB), and
are very efficient for finding a few mappings for short
reads with not too many mismatches. They use backtrack-
ing to allow mismatches during the tree traversal, and
therefore, their performance deteriorates as the read
length and the number of mismatches increase.
BWT-based packages are typically not designed for
finding a large number of mappings per read.

The gram-based methods follow a filter-and-verify
paradigm. Using grams, they first identify a set of candi-
date mappings, and then verify the true distance for those
candidates to remove false positives. The candidate-
generation step is often supported by an inverted index
on grams (from the reads and/or the reference
sequence), leading to a relatively large memory footprint.
Early packages like SSAHA (6) and BLAST (7) had long
mapping times, infeasible for large data sets. Newer
packages like Maq (8), RMAP (9), ZOOM, SHRiMP
(11), RazerS (12), mrsFAST (13), and mrFAST-CO (14)
offer significant improvements, but they do not consist-
ently outperform BWT-based methods. We will show that
Hobbes outperforms both existing gram-based and
BWT-based methods.

Hobbes

Applications may differ in their requirements on a
read-mapping package. Sometimes finding a couple of
mappings per read is sufficient, but other times the appli-
cation may need all mapping positions. For instance, in
RNA-seq applications, due to the occurrence of homolo-
gous genes and multiple RNA isoforms originated from
the same gene, finding all mapping positions will be neces-
sary for quantifying the expression level of a particular
gene isoform (15). Similarly, in ChIP-seq applications,
finding all mapping positions is a necessary step for
characterizing protein binding patterns in repeat regions
of a genome (16,17).

Hobbes is a gram-based read mapper, supports
Hamming and edit distance and is efficient in both of
those situations. Hobbes is about 2-10 times faster than
state-of-the-art packages when finding all mappings per
read, and performs comparably when looking for a few
mappings. Hobbes is also at least as accurate as other
packages.

In the following sections, we identify two performance
bottlenecks of existing gram-based approaches, and make
two major contributions to overcome them: first, we
present a novel technique for judiciously choosing a
small set of grams of each read to generate candidate
mappings. Second, we develop a cache- and CPU-efficient
filter for removing false positive mappings during the tra-
versal of inverted lists.
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MATERIALS AND METHODS

We first discuss how to map reads to the reference
sequence with a given Hamming-distance threshold, and
later extend our solution to support edit distance. Our
approach is based on generating overlapping ¢-grams of
the reference sequence, and constructing an inverted index
of those g-gram positions. To map a read, we generate its
g-grams, and access the inverted index to compute a
superset of all mapping positions. We then remove
false-positive positions by computing the real distance of
the read to the subsequences starting at those positions in
the reference sequence. Next, we summarize the basic
g-gram method focusing on Hamming distance,
although some techniques directly apply to edit distance
as well.

Basic Q-gram method

For a positive integer ¢, the g-grams of a sequence are
all its overlapping substrings of length g. For example,
the 3-grams of a sequence s=TGCCCTA are
G(s)={(1,TGC), (2,GCC), (3,CCC), (4,ccT),
(5,CTA) }.

Approximate subsequence matching using ¢-grams is
based on the following intuition: if two sequences are
similar, then they share a certain number of ¢-grams.
For the Hamming distance this idea has been formalized
as ‘count filtering’ (18).

Count filtering. If two sequences r and s are within
Hamming distance d, then their g-gram sets G(s) and
G(r) share at least the following number of ¢-grams:

T = max(|G(r)|. |G(9)]) — d*q. @D

The lower bound 7 on common grams in the above
equation is based on the observation that a character sub-
stitution can affect at most ¢ grams, and hence d substi-
tutions can affect at most d * ¢ grams.

Gram filtering variants. Other variants of filtering use
multiple patterns based on the pigeonhole principle (19),
non-overlapping grams (6), gapped grams (20,21) or
variable-length grams (22).

Q-gram inverted index. Finding substrings in a reference
sequence that share at least 7" ¢-grams with a given read
can be facilitated with an inverted index on g-gram pos-
itions, explained as follows for Hamming distance.
Figure 1 shows an example of a 5-gram inverted index.
To map a read ACGGTCTTCCCTACGGT within Hamming
distance d = 2 and T = 17— 5+1—2*5 = 3, we first look
up the read’s 5-grams in the inverted index. Notice that
only the grams ACGGT and CGGTC (underlined in the read)
are present in the index. We traverse their inverted lists,
and normalize each element relative to the position of the
corresponding gram in the read. For example, the 5-gram
CGGTC appears at position 2 in the read, so the relative
position of the element on CGGTC’s inverted list is
106 —2+1 = 105. In this way, we can count how many
of the read’s grams are contained in substrings of the ref-
erence sequence starting at a fixed position (position 105,
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Figure 1. Excerpt of a reference sequence and a portion of its 5-gram inverted index. The inverted lists of the 5-grams ACGGT, CGGTC and
ACCCT are shown, each containing a sorted list of positions in the reference sequence at which the respective 5-gram appears.

in this example). The gram ACGGT appears twice in
the read, and we treat each occurrence as a separate
list. Its appearance at position 1 yields a normalized list
of {lI05—1+1=105 118—1+1=118}, and a list
{105—14+1 =92, 118—14+1 = 105} for position 14.
Next, we count the occurrences of each element on the
normalized lists. The positions 92 and 118 are pruned ac-
cording to the count filter, because their occurrences do
not meet the lower bound of 7= 3. Position 105 has a
count of 3, and therefore it is a candidate answer whose
Hamming distance to the read still needs to be computed.

Performance issues of q-gram counting. For a long refer-
ence sequence, the above approach for mapping reads
could suffer from the following performance problems:

(1) CPU intensive gram counting: using all of a read’s
relevant inverted lists for gram counting can be ex-
pensive if there are many of them, or if some of the
lists are very long. The cost of gram counting is
directly related to the total number of elements on
those inverted lists.

(2) Cache misses during candidate verification: CPU
caches are very small but fast memories that act as
intermediaries to main memory. Transferring new
data into the cache (a ‘cache miss’) can last
hundreds of CPU cycles. Accessing random
portions of a very long sequence has low locality,
and hence it can become a performance bottleneck
due to cache misses.

In the ‘Materials and Methods’ section, we present a
new technique to judiciously select a few grams from a
read to overcome the first performance issue. To tackle
the second issue, we develop a novel filter based on aug-
menting the inverted lists with additional information.

Judiciously selecting Q-grams from reads

In this section, we aim to reduce the cost of processing
inverted lists to generate candidate mappings. We present
a new technique to judiciously select a few grams from a
read to minimize the number of corresponding inverted
lists, and the number of inverted-list elements that need
to be considered for mapping the read.

Existing methods for g-gram selection. First, we briefly
summarize the main ideas already developed in the litera-
ture to reduce the number of grams.

Prefix filter. Consider a read s with a gram set G(s) and
the lower bound T in Equation (1). Let the ‘prefix gram
set’ of read s be the |G(s)| — T+ 1 least frequent grams in
G(s), i.e. with the shortest inverted lists. A candidate
mapping must share at least one gram with the prefix
gram set of s, because otherwise it could only reach a
maximum count of 77— 1 (23).

Shortened prefix. Xiao et al. (24) use the positions of
g-grams to reduce the size of the prefix gram set in the
context of edit distance-based joins. Their solution
imposes a global ordering on the grams based on their
frequency to achieve a consistent notion of prefix gram
set across all strings, and constructs a g-gram inverted
index on prefix grams on-the-fly. To improve the
index-construction time (the dominating factor), they
reduce the prefix gram set of each string to the first
i<|G(s)]—T+1 grams in the global ordering which
contain d+ 1 non-overlapping grams, where d is a given
edit distance threshold. Inspired by their work, we develop
a new method to judiciously select a few ¢-grams for
probing our index.

Optimal g-gram prefix selection. Recall that a substitution
can affect at most ¢ grams [Equation (1)]. The insight that
these ¢ affected grams must be overlapping lead us to
develop the following lower bound based on the positions
of g-grams.

LeEmma 1. (PosiTion-BASED PREFIX). Given a sequence s
and its g-gram set G(s), let P be a subset of d+1
non-overlapping g-grams from G(s). Then each sequence
within Hamming distance d of s must have a gram in P.

The intuition of the lemma is as follows. A substitution
at position p can affect at most ¢ overlapping grams,
namely those starting from a position in [p—¢g—1, p].
Since non-overlapping grams are at least ¢ positions
apart from each other, d substitutions can affect at most
d non-overlapping grams. Among d+ 1 non-overlapping
grams, at least one gram remains unaffected by d
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substitutions. Since this analysis is true for every subset P
of d+ 1 non-overlapping grams of G(s), we can generalize
the lower bound as follows.

LemMMmA 2. (GENERALIZED PosITION-BASED PREFIX). A
sequence r within Hamming distance d of sequence s
must share at least k grams with every subset of d+k
non-overlapping g-grams of s.

Optimal prefix selection. We want to select a set of prefix
grams that is optimal in the sense that (i) it refers to a
minimum number of inverted lists and (ii) those inverted
lists have the minimum total number of elements.
The position-based prefix described above satisfies (i),
but a read could have many possible sets of d+ 1 non-
overlapping ¢-grams. To satisfy (ii)) we develop the fol-
lowing dynamic programming algorithm to select that
set of d+1 non-overlapping g¢-grams from the read
(Supplementary Data), which minimizes the total
number of corresponding inverted-list elements.

Subproblem. Let 1 <i<d+1 and 1<;<|G(s)|—d*q be
two integers. Let M(i, j) be a lower bound on the sum of
the lengths of the inverted lists of /i non-overlapping grams
starting from a position no greater than j+ (i — 1)*q. Our
goal is to compute M(d+ 1, |G(s)| — d*q).

Initialization. Let L[p] denote the inverted list correspond-
ing to the g-gram at position p, and L[p]./en its length. We
initialize the row M(0, j) to zero, and the column and
M(i, 0) to infinity.

Recurrence function.

. MG, j—1)

M. j) _mm{M(i— 1,j)+ L[j + (i — 1) % ql.len. @)
ExampLE. Figure 2 shows an example of finding an
optimal g-gram prefix of a read s = GGTCTCACCCTGAAC
TAA, gram length ¢ = 5 and Hamming distance threshold
d=2. An optimal set of positions of the d+1=23
non-overlapping g-grams are highlighted, including the
cell in the matrix from which the g-gram position can be
inferred. For example, ‘4’ is the minimum value in the first
row, and since its first appearance is in Column 2, we can
infer that the first optimal ¢-gram position is at
2+(1 = 1)*q = 2.

Complexity. The complexity of the algorithm for finding
an optimal prefix for a read s with length |s| and Hamming
distance d is O(|s|d). Notice that the actual cost of the
algorithm decreases when we increase d and ¢, because
there are fewer sets of non-overlapping grams to choose
from. For example, in Figure 2 we need to populate 12
matrix cells for a read of length 18. Our experiments show
that the algorithm performs very well for good d and ¢
values in real data sets.

Cache-efficient filtering of candidate mappings

A straightforward implementation of the g-gram-based
filter and verification procedure can lead to poor
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Figure 2. Example of our dynamic programming algorithm for finding
an optimal set of prefix grams for a read GGTCTCACCCTGAACTAA,
gram length ¢ =5 and Hamming distance 4 = 2. Optimal gram pos-
itions are highlighted with a circle, a diamond, and a pentagon.

performance due to cache misses. Since the reference
sequence is often much larger (e.g. 3 GB for the human
genome) than the CPU cache (e.g. 12 MB L3 cache for an
Intel Xeon X5670), each verification of a candidate
position likely causes a cache miss. Since most candidate
positions typically are false positives, paying a cache miss
for fetching an irrelevant substring of the reference
sequence is very wasteful.

In this section, we present a cache- and compute-efficient
filter for removing false-positive candidate mappings
without accessing the reference sequence. The main idea
is to augment the inverted lists with additional filtering
data, such that it is in the CPU cache during the traversal
of an inverted list.

Mapping q-gram neighborhoods to bitvectors. We attach
to each inverted-list element an encoding of its corres-
ponding neighboring characters in the reference sequence
using 1 bit per character. The left-hand side of Figure 3
illustrates this procedure on an exemplary 5-gram at
position 112 in a reference sequence. We use 16 bits to
encode the eight characters to the left and right of the
S-gram ACCCT. Since we only access ACCCT’s inverted
list if ACCCT is also contained in the read we are process-
ing, it is unnecessary to include ACCCT itself in the
bitvector. The size of the bitvectors is a tunable parameter,
and we use 16 bits for this example.

It might seem that using a single bit per character reduces
the filtering capability by 50% because we map strings of a
four-letter alphabet (A, C, T, G) to a two-letter alphabet
(0, 1).But, itis well known that not every character sub-
stitution is equally likely on real data (25). For example,
Table 1 shows the frequency of character substitutions we
gathered in a simple experiment, as follows. For each of the
35 bp reads we computed the optimal gram prefix and tra-
versed the corresponding inverted lists to obtain candidate
mapping positions. Next, we recorded the frequency of
character substitutions during the verification of these can-
didate positions. Since ‘A — G’ and ‘T — C’ are the most
frequent substitutions, our results suggest the following
encoding: A, T= 0 and C, G = 1, such that the characters
of the most frequent substitutions get different bit values.

Apart from representing more characters with a
fixed number of bits, our bitvector encoding also
allows CPU-efficient filtering of candidate positions, as
follows:

Candidate filtering using bitvectors. Let us revisit the
example in Figure 2. After computing an optimal gram
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Figure 3. Adding bitvectors to a ¢g-gram inverted index (left), and pruning candidates mappings with them (right), using a mapping of 4, 7= 0, and
C, G= 1. The left portion shows how to encode the left and right neighborhood of a 5-gram ACCCT at position 112 in the reference sequence as a
16-bit bitvector, mapping 4, 7= 0, and C, G= 1. Both the position 112 and its bitvector »(112) are inserted into ACCCT’s inverted list. The right
portion shows how to prune candidate mappings of a read GGTCTCACCCTGAACTAA from ACCCT’s inverted list. The dark gray boxes indicate invalid
bits we must ignore, based on ACCCT’s position in the read. The light gray boxes highlight the matching g-gram ACCCT.

Table 1. Frequency of character substitutions using 2 million 35 bp
reads on hgl8

Read character hgl8 character No. of substitutions

687276051
1382950075
559937841
395839922
1232657183
393616199

aH-> >
naoaaoH

The results suggest a mapping: A, T=0 and C, G=1.

prefix, we need to traverse their corresponding inverted
lists to find candidate mappings. Suppose we begin with
the list of gram ACCCT, since it is the shortest list of those
in the optimal prefix.

The right-hand side of Figure 3 illustrates how we use
the bitvectors for filtering. Before scanning ACCCT’s
inverted list, we map the read to a bitvector. Next, we
‘shift away’ the bits of the matching g-gram ACCCT in
the read’s bitvector to align the positions of its bits with
those in the reference-sequence bitvectors. Recall that we
omitted the g-gram itself when generating bitvectors for
the reference sequence. This shifting produces invalid bits
at both ends of the read bitvector shown as dark boxes.
These invalid bits represent portions of the bitvectors from
the reference sequence that we cannot use for pruning
candidates. For example, since there are only six charac-
ters to left of ACCCT in the read, we should ignore two of
the 8 bits representing the left neighborhood of ACCCT’s
occurrences in the reference sequence. We generate a
bitmask to remove those invalid bits from each bitvector
in ACCCT’s inverted list.

Now that we have aligned the read’s bitvector with the
bitvectors in the inverted list, and generated a bitmask to
remove invalid bits from those bitvectors, we start scanning
AcccT’s inverted list. For each candidate position, we use
the read’s bitvector and the candidate’s bitvector to
compute a lower bound on the Hamming distance
between their corresponding original sequences, as
follows. First, we do a ‘bitwise-AND’ operation between
the bitmask and the candidate’s bitvector. Then, we do a
‘bitwise-XOR’ operation between the resulting bitvector
and the read’s bitvector to produce a final bitvector.

In the final bitvector, a bit is set to 1 if and only if the
original character at the corresponding position in the
read is different from the corresponding character in the ref-
erence sequence. We prune a candidate if the number of
1-bits in the final bitvector exceeds our Hamming distance
threshold. We determine the number of 1-bits in the final
bitvector with a single CPU instruction, popcount, sup-
ported by most modern CPUs.

In summary, our new bitvector-filtering technique elim-
inates candidate mappings without accessing the reference
sequence, thus avoiding expensive cache misses. In
addition, our filter only requires a handful of CPU instruc-
tions per inverted-list element, namely bitwise-AND,
bitwise-XOR, popcount and a final comparison with
the Hamming distance threshold.

Supporting insertions and deletions

Allowing insertions and deletions (indels) is important for
mapping longer reads, because both sequencing errors and
genetic variations can result in the deletion/insertion of
bases and the chance of this happening increases as reads
become longer. However, finding mappings with indels is
computationally more challenging. Hobbes implements
the following two methods for mapping reads with indels.
Hamming distance tends to be sufficient for shorter
reads, whereas edit distance becomes important for long
reads. Ultimately, the user must decide whether the added
benefit of edit distance offsets its computational cost.

Non-heuristic mapping. To find all mappings of a read
while allowing indels, we can use the optimal prefix
grams as described in the preceding section for generating
candidate mapping positions. However, the bitvector filter
mentioned above is specific to Hamming distance. A
similar filter for indels is possible, and we leave this direc-
tion for future work. To verify a candidate position, we
conceptually consider those substrings with all possible
starting and ending positions (based on the edit-distance
threshold), and compute their edit distances to the read.
For each candidate position, we report the substring with
the lowest edit distance. This approach tends to be very
slow, and the following heuristics can significantly
improve the mapping performance.

Seed extension approach. Again, we begin with the
optimal prefix grams for finding candidate positions.
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Figure 4. Seed extension approach with indels. We prune candidate
positions by applying the bitvector filter on the neighborhood of
matching grams.

Next, we introduce two heuristics to improve perform-
ance: first, we fix the starting position for verification,
but shift it to the left once, if the initial position yielded
no match. Second, we apply the bitvector filter to the
neighborhood of matching grams in the reference
sequence, as show in Figure 4.

Since most differences are due to substitutions, our intu-
ition is that if the neighborhood already has a high
Hamming distance to the corresponding substring in the
read, then the candidate is probably not a match. The filter
could remove valid mappings if those apparent substitu-
tions are caused by inconveniently located indels. On the
other hand, this effect is mitigated by using multiple grams.
It is somewhat unlikely that the neighborhoods of all those
grams have a high Hamming distance for true mappings.
The bitvector-filter threshold on the neighborhood is a
tuning parameter. We found that by setting it to 2/3 of
the original edit distance, we capture most mappings
while retaining high speed.

Letter count filter. Hobbes uses the letter-count filter
described in Ref. (27) to quickly detect whether the two
sequences can be within a given edit-distance threshold
during the verification step. The main idea of the filter is
to count the number of occurrences of each character in
both sequences, and establish a lower bound on the edit
distance between the two sequences using the differences
of those character counts, as follows. We divide the
frequencies of all base pairs into two groups. The first
group contains the base pairs that are more common in
the read, and the second group contains those that are
more common in the candidate. For each group, we
create a sum of the frequency differences of corresponding
base pairs in that group, denoted by A; and A,, respect-
ively. The grouping ensures that an edit operation can
change each A by at most 1, establishing max(A;, A»)
as a lower bound on the edit distance between two se-
quences. For example, consider sequences s, = AAACCTG
and s; = CCCCTTGG, A; = (3 —0) = 3 (4 is more frequent
ins;))and A, =@4-2)+2-1)+Q2-1)=4(C,Gand T
are more frequent in s,). Based on the letter count filter, a
lower bound on the edit distance between s; and s, is
max(3, 4) = 4.

To prune candidates that survive the letter count filter,
we also employ standard g-gram counting.

Supporting paired-end alignment

Hobbes supports the alignment of paired-end reads. Many
next-generation sequencing technologies provide the user
with paired-end reads that contain extra information
about the relative position of two reads with respect to
each other. To align paired-end reads, Hobbes initially
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considers each read of a pair separately and finds the set
of candidate locations for each read. For example, given a
read pair (r, r»), Hobbes first finds the candidate location
sets C; and C, corresponding to read r; and r,, respect-
ively. During the next step, for each candidate ¢, € C;
Hobbes performs verification only if there is a ¢, € C,
that satisfies the paired-end alignment constraints (appro-
priate orientation and distance) with respect to c;.

Hobbes provides the option of reporting the alignments
of each read in a paired-end read separately if no paired
alignments are found.

Implementation details

In this section, we discuss implementation details of
Hobbes.

Treatment of N characters. We ignore g-grams with at
least one N character. As a consequence, our inverted
index does not contain those g-grams. When generating
g-grams for a read, we may generate fewer than d+1
non-overlapping ¢-grams (since we ignore g-grams with
N characters). In our current implementation, we cannot
find any mapping for such a read, although we could rely
on those other ¢g-grams to find some mappings (we leave
this for future work). In all other cases, we treat N’s as
mismatches. Note that we can deal with reads containing
N’s (as long as there are enough non-overlapping
g-grams), and a read can map to substrings in the refer-
ence sequence containing N’s even though the inverted
index does not contain g-grams with N’s (we may reach
such a position via a different, regular g-gram).

Hashing g-grams. We employ a collision-free hash
function to map ¢-grams to integers, as follows. Each
character {A, C, T, G} is encoded as 2 bits, and the
concatenation of all such 2-bits corresponding to a
g-gram forms the g-gram’s hash code. With this scheme,
32-bit integers can support hashing g-grams up to length
32/2 = 16. For longer g-grams, we use 64-bit integers.

Hamming-distance verification. Before computing the
actual Hamming distance between two sequences using a
character-by-character comparison, we do a significantly
faster chunk-by-chunk comparison, typically with a chunk
size of 4 bytes. If more than d chunks differ, then the two
sequences cannot be within Hamming distance d, and we
avoid the character-by-character comparison.

Edit-distance verification. After a candidate passes the
letter count filter, we compute the real edit distance
between two sequences using SeqAn’s (27) implementa-
tion of Myer’s bit-parallel algorithm (28).

Cache prefetching during verification. Our bitvector filter
can dramatically reduce the number of cache misses by
pruning false positives without accessing the reference
sequence. However, the number of surviving candidates
can still be in tens of thousands. Once a candidate has
passed the bitvector filter, we cannot avoid a cache miss
for the distance verification. But we can mitigate the cost
by prefetching a future candidate’s data into the cache,
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thus overlapping the verification of the current candidate
and the data transfer from memory to cache for the future
candidate. We have found that for our CPU architecture
and our set of experiments, the best performance is
achieved when prefetching the data for candidate
number ¢+ 2 before verifying candidate number c.

RESULTS
Implementation and setup

We implemented Hobbes in C++, and compiled it with
GCC 4.4.3. All experiments were run on a machine with
96 GB of RAM, and dual quad-core Intel Xeons X5670
(8 cores total) at 2.93 GHz, running a 64-bit Ubuntu OS.
Note that Hobbes performs best on CPUs that support
the popcount instruction. We used GCC’s built-in func-
tions for popcount and cache prefetching. Hobbes is
freely available at http://hobbes.ics.uci.edu, and can
output its results in SAM format for analysis with
SAMTools.

Other read mappers and data

We compared Hobbes with the following packages:

Bowtie (3) is a BWT-based short read aligner, and is
efficient for finding few mappings per read (1 by default)
with a very small memory footprint. Bowtie performs a
depth-first search on the index and stops when the first
qualified mapping is found.

BWA (4) is also a BWT-based program, and supports
gapped alignment, while Bowtie does not. BWA uses a
backtracking search similar to Bowtie’s to handle
mismatches. By default, BWA adopts an iterative
strategy to accelerates its performance, at the price poten-
tially losing mappings. To report all feasible mappings, we

disable the iterative search (—N option) in our
experiments.
mrsFast (13) and mrFast-CO (14) are recent

gram-based packages for gapped and ungapped align-
ment, respectively. They index both the reference
genome and the reads. mrsFAST wuses an efficient
all-to-all list comparison algorithm, while mrFAST-CO
follows a seed-and-extend strategy.

RazerS2 (12) builds a gram-based index on the reads,
and performs gram counting while scanning over the ref-
erence sequence. RazerS2 has been reported to be very
accurate in finding all mappings for typical read lengths.
We set RazerS2’s max — hit parameter to 300 000 000 to
get all mappings.

Data. We conducted our experiments using reads with 35,
51, 76 and 100 bp. The 35 bp reads are taken from the YH
database (http://yh.genomics.org.cn), the 51 and 76bp
reads come from the DDBJ DNA Data Bank of Japan
(DDBJ) repository (ftp://ftp.ddbj.nig.ac.jp) with entry
DRX000359 and DRX000360, respectively, and the
100 bp reads are from specimen HG00096 of the 1000
genome project (http://www.1000genomes.org/data). In
all cases, we used the human genome with NCBI HG18
as our reference genome. As we do alignments read by
read, the performance of Hobbes is almost linearly
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proportional to the number of reads. So in the following
we mainly test the performance of Hobbes and other read
mappers using datasets with 500K reads randomly chosen
from the above-mentioned databases.

Index construction and memory footprint

We use an inverted index of overlapping ¢-grams on the
reference genome. As described earlier, to avoid cache
misses, we augment the inverted lists with bit vectors rep-
resenting the neighboring characters of the corresponding
g-grams. The index size is linearly dependent on the size of
the reference sequence and the chosen bit-vector size. By
default, Hobbes uses 16-bit vectors, resulting in a total
index size of 21 GB for hgl8. We used bitvector sizes of
16 and 32 bits for our experiments with edit and Hamming
distance, respectively. Using a single thread, it took
Hobbes 20min to build an index on hgl8, whereas
Bowtie and BWA needed 114 and 56 min, respectively.
In addition, Hobbes has a tight-knit multithreaded frame-
work that parallelizes both indexing and mapping. On
multicore machines, users can build an index as large as
hgl8 in a few minutes. Since Hobbes does alignment read
by read, its memory requirement is independent on the
number of input reads.

Results using hamming distance

All mappings. We configured the packages to find all
mappings per read. Table 2 shows the mapping time, the
fraction of reads with at least one mapping, and the total
number of mappings for various read lengths and
hamming distances. We observe that Hobbes is up to
five times faster than other packages (even 100 times
faster than RazerS2), while producing comparable
mappings. For example, on 35bp reads, Hobbes is more
than four times faster than Bowtie*, which is the fastest
among all other listed programs; on 51 bp and 76 bp reads,
Hobbes is about three times faster than our closest com-
petitor BWA. Moreover, Hobbes maps slightly more
reads than BWA in that setting. Among the tested
programs, mrsFAST and RazerS2 consistenly achieved
the best mapping quality. Hobbes delivers a similar
quality, while outperforming mrsFAST and RazerS2 in
mapping speed by a factor of up to 10 and 200,
respectively.

Few mappings. Some applications may require all
mappings per read, and others only a few mappings.
Most tools are optimized for only one of those cases.
For example, Bowtie focuses on finding a few mappings
per read, and is very good at it. Therefore, the comparison
in Table 2 somewhat disfavors those packages not
designed for finding all mappings. To accommodate the
few-mappings use case, Hobbes efficiently supports
finding any number of mappings. Figure 5 shows the
mapping times of BWA, Bowtie and Hobbes for a
varying number of requested mappings per read (k). We
see that Hobbes performs comparably to Bowtie for very
small k, but as k increases Hobbes begins to outperform
other packages by a growing margin.


http://hobbes.ics.uci.edu
http://yh.genomics.org.cn
ftp://ftp.ddbj.nig.ac.jp
http://www.1000genomes.org/data
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Table 2. Results of mapping 500K single-end reads against HGI18
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Read length (Hamming) 35bp (two errors)

51 bp (three errors)

76 bp (three errors) 76 bp (four errors)

Algorithm Time Reads Total Time Reads Total Time Reads Total Time Reads Total
(h:m) mapped mappings (h:m) mapped mappings (h:m) mapped mappings (h:m) mapped mappings
(%) (million) (%) (million) (%) (million) (%) (million)

Bowtie* 0:28  76.61 492.6 0:34  91.93 317.1 0:16  91.44 73.4 NA NA NA

Bowtie 0:54  76.61 492.6 0:50  91.93 317.1 0:18  91.44 73.4 NA NA NA

BWA 0:30  76.61 492.6 0:24  91.61 277.6 0:10  91.36 71.1 0:18  92.47 115.2
mrsFAST 0:43  76.61 492.6 0:59  91.93 317.1 0:50  91.44 73.4 1:10  92.69 127.2
RazerS2 6:38  76.61 488.5 7:58  91.93 316.9 8:58  91.44 73.4 8:08  92.69 127.2
Hobbes 0:06  76.61 492.6 0:08  91.93 317.1 0:03  91.44 73.4 0:07  92.69 127.2

We used Bowtie in its default mode and an optimized mode (Bowtie*) where we set offrate = 0 for maximum speed. Reads mapped: the fraction of
reads with at least one mapping; Total mappings: the total number of mapped locations in the reference; NA: Bowtie does not support >3

mismatches.

Hobbes —6— Bowtie —&—
Bowtie* —8— BWA —%¢—
35 T - -
.30 N
£
E25
£ 20 /
=
o 15 / /
o K
g 10
= 5
O 1 1 1
1 10 100 1000 10000

Number of mappings/read (k)

Figure 5. Maximun number of mappings k per read versus mapping
time on 51bp reads with Hamming distance 3. We omitted RazerS2
due to its long mapping time, and mrsFAST because it only supports
finding all mappings.

Results using edit distance

Supporting edit distance is significantly more challenging
than Hamming distance, and is becoming increasingly im-
portant as reads get longer and tend to contain indels.
Hobbes implements a seed extension approach to align
reads within a given edit distance threshold to take advan-
tage of the two optimization strategies we have developed
(‘Materials and Methods’ section). Although unlike the
Hamming distance mapping, the seed extension
approach cannot guarantee to find all correct mapping
locations, we will show that by using multiple seeds the
mapping quality of Hobbes can be achieved to be nearly
optimal. Bowtie does not support edit distance, so we
compared Hobbes with BWA, mrFast-CO and RazerS2.
We configured the packages to find all mappings per read.

All mappings. Table 3 lists our experimental results. We
observed that Hobbes is about twice as fast as BWA and
mrFast-CO, and over seven times faster than RazerS2.
Notice that the performance gap increases with longer
reads and higher edit distances. On 76 bp reads, RazerS2

could map slightly more reads than the other packages;
however, the mapping took an order of magnitude more
time than Hobbes. The speed of mrFast-CO and BWA
was similar, mapped slightly fewer reads. Hobbes was
about twice as fast as mrFast-CO and BWA while
mapping more reads. On 100 bp reads, RazerS2 had the
best quality but a comparably slow mapping speed; BWA
become slower than RazerS2 and lost quality at the same
time; the quality of Hobbes was very close to RazerS2.
Compared with mrFast-CO, Hobbes could map more
reads and was about 1.5 times as fast. In addition, the
current version of mrFast-CO is limited to edit distance
6, which is problematic for mapping even longer reads,
while Hobbes does not have such a limitation.

Evaluation on simulated data

We simulated reads from the human genome using the
wgsim program (http://github.com/lh3/wgsim), and then
ran Hobbes to map those reads back to the same human
genome. We used the default setting of wgsim, in which
the mismatched bases are chosen randomly with a
mismatch rate of 2% per base, and 15% of polymorph-
isms are indels with their sizes drawn from a geometric
distribution with mean of 1.43.

Since Hobbes is only guaranteed to be exact for
Hamming distance, we use the simulated data to
examine the mapping quality of Hobbes using edit
distance. We use two metrics to measure the accuracy of
mapping: one is the fraction of reads with at least one
mapping and the other is the mapping error rate. We
say a read is aligned correctly if the true location of the
read starts at the same location as one of its mappings.
The mapping error rate is defined to be the fraction of
mapped reads that are aligned incorrectly.

Table 4 shows the performance of Hobbes as
compared to other programs in the case of edit distance.
In terms of speed, Hobbes is the clear winner—about 3.5
times faster than BWA and 6 times faster than RaserS2 for
100 bp reads. In terms of the fraction of reads mapped,
Hobbes is slightly less than the best program,
RaserS2, but the margin is small with a difference of
only 0.02% for both 76bp and 100bp reads. Hobbes


http://github.com/lh3/wgsim
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Table 3. Results of mapping 500K single-end reads against HG18
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Read length (edit distance) 76 bp (four errors)

100 bp (six errors)

Algorithm Time Reads mapped Total mappings Time Reads mapped Total mappings
(h:m) (%) (million) (h:m) (%) (million)

BWA 02:33 94.06 141.1 22:54 92.16 79.4

mrFast-CO 02:45 94.28 1423 03:47 92.39 96.3

RazerS2 12:26 94.32 143.6 17:14 92.50 96.4

Hobbes 01:46 94.30 145.8 02:48 92.47 100.7

Table 4. Results of mapping 500K simulated reads

Read length (edit distance) 76 bp (four errors) 100 bp (six errors)

Algorithm Time Reads mapped Error rate Time Reads mapped Error rate
(h:m) (%) (%) (h:m) (") (")

BWA 01:22 96.05 2.17 07:55 97.09 1.78

mrFast-CO 02:15 97.84 3.43 03:22 99.43 3.63

RazerS2 10:08 97.90 0.98 12:59 99.50 1.15

Hobbes 01:08 97.88 0.22 02:20 99.48 0.22

Table 5. Results of mapping 250K paired-end reads against HG18

Read length (Hamming) 35bp (two errors) 76 bp (three errors) 100 bp (four errors)

Algorithm Time (h:m) Mapped pairs (%) Time (h:m) Mapped pairs (%) Time (h:m) Mapped pairs (%)

Bowtie 0:02 84.58 0:18 80.06 NA NA

Bowtie* 0:20 84.68 0:25 80.06 NA NA

mrsFAST 0:42 84.66 0:42 80.06 0:52 83.40

Hobbes 0:04 84.68 0:02 80.06 0:02 83.44

Mapped pairs: the fraction of read pairs mapped with at least one location satisfying the distance and orientation constraint. Bowtie*: running
with-y option. Some entries contain NA because Bowtie does not support >3 mismatches.

achieves the best mapping error rate of 0.22%. These
results demonstrate that although Hobbes sacrifices
some accuracy for speed, its mapping quality is compara-
tively better than the other packages tested.

Paired-End alignment

We compared Hobbes with other state-of-the-art packages
using paired-end reads.

Hamming distance. For Hamming distance, Hobbes is
guaranteed to find all correct mappings. Table 5 summar-
izes the results of Hobbes and several programs for
mapping reads of various lengths and Hamming distance
thresholds to the human reference genome. We focus on
the speed of mapping since the quality of mapping is
similar among different programs. Hobbes is close to
Bowtie in the 35bp case, but substantially outperforms
Bowtie (11 times faster) when the read length increases
to 76bp and the Hamming distance increases to 3.
Moreover, for the 100-bp case with four errors, Bowtie
was unable to provide answers because of too many
backtracking steps required in the BWT-based algorithm.

Hobbes is 24 times faster than the second-best program,
mrsFAST in this case. These results suggest that
Hobbes outperforms other programs in the Hamming
distance case, especially for long reads while allowing
many errors.

Edit distance. Our performance results are summarized in
Table 6. The fraction of read pairs that can be aligned to
the reference sequence is used as a surrogate of mapping
quality. In terms of the fraction of mapped pairs, Hobbes
is similar to RaserS2, both of which are significantly better
than other programs. In terms of mapping speed, Hobbes
is clearly the fastest in all three cases with big margins—22
times faster than BWA, 3 times faster than mrFAST and
15 times faster than RaserS2 in the 100 bp case.

Application in RNA-seq abundance analysis

In RNA-seq applications, it is important to find all
mapping positions of a read for quantifying the expression
level of a particular gene isoform, due to the occurrence of
homologous genes and multiple RNA isoforms
originating from the same gene. To show the importance
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Table 6. Results of mapping 250K paired-end reads against HG18

Read length (edit distance) 35bp (two errors) 76 bp (four errors) 100 bp (six errors)

Algorithm Time (h:m) Mapped pairs (%) Time (h:m) Mapped pairs (%) Time (h:m) Mapped pairs (%)
BWA®* 1:02 84.93 2:15 84.45 22:48 88.14
mrFast-CO 2:32 78.02 2:32 81.61 03:36 85.96
RazerS2 3:57 84.53 10:52 84.49 15:02 88.18
Hobbes 0:26 85.35 0:21 84.60 0:50 88.37

“The raw number of mapped reads output by BWA are higher with 90.76, 92.60 and 92.66 for 35, 76 and 100 reads, respectively. We removed those
mappings that violated the edit distance constraints.

Table 7. Results of mapping 76 bp RNA-seq reads against 55419 known mouse transcripts, using Hamming distance 3 and a minimum and

maximum insert size of 76 bp and 800 bp, respectively

Reads SRR047951 (21.8 million) SRR047953 (20 million)
Algorithm  Time (h:m)  Reads mapped (%)  Total mappings (millions)  Time (h:m)  Reads mapped (%)  Total mappings (millions)
Bowtie 09:53 40.28 18.399 09:12 42.97 18.883
Hobbes 00:35 40.29 19.157 00:27 42.99 19.393

Table 8. Transcripts with FPKM ratio above 1.5 and 1.2 on 76 bp
RNA-seq reads within Hamming distance 3 against 55 419 known
mouse transcripts

k versus all FPKM ratio Transcriptions above ratio (%)

1.5 1.2
k =1 versus All 42.39 47.12
k =10 versus All 00.92 01.42
k =100 versus All 00.07 00.18

of finding all mappings, we performed a transcript abun-
dance analysis. We used the UCSC genes on the mm9
mouse (NCBI build 37) assembly as target transcripts;
both 76 bp paired-end RNA-seq reads were downloaded
from Gene Expression Omnibus (Series GSE20846). We
compared Bowtie and Hobbes for finding all mappings.
The results in Table 7 show that Hobbes was 17-20x
faster than Bowtie, and could even map slightly more
reads.

Next, we piped the result of Hobbes directly to eXpress
(http://bio.math.berkeley.edu/eXpress), which is a
streaming tool for quantifying the abundances of a set
of target sequences from sampled subsequences. eXpress
estimates the relative abundance by computing the frag-
ments per kilobase per million (FPKM) value. We
compared the FPKM values when finding at most
k ={1,10,100} mappings, with the FPKM when finding
all mappings. To quantify their variation, we computed
the ratio of the k-mappings FPKM to the all-mapppings
FPKM (or its reciprocal). The results are shown in Table
8. We found that among 55 419 target transcripts, the
percentage of transcriptions whose ratio was above 1.5
for k= {1, 10, 100} was 42.39, 0.92 and 0.07%, respect-
ively; there was a lot of variability for £ = 1, meaning the

corresponding FPKM value is a poor estimator. The vari-
ability reduced as we increased & to 100. We included the
corresponding scatter plots in Supplementary Data.

DISCUSSION

Hobbes efficiently supports Hamming and edit distance
while finding all mappings or few mappings per read.
Our experiments have shown Hobbes to be just as
accurate but significantly faster than current read
mapping programs.

Hobbes has a large memory footprint (26 GB in our
experiments), but we believe its speed and mapping
quality outweigh that drawback, especially considering
today’s low memory prices. We plan to reduce Hobbes
memory requirement, possibly via compression, or by par-
titioning our index performing the read mapping one par-
tition at a time (mrsFast and mrFast-CO follow this
approach).

Given today’s trend toward massively multi-core CPUs,
we believe that good multithread support is of paramount
importance. Both Hobbes’ index-construction and
read-mapping procedures support multiple threads and
scale well (Supplementary Data). Some packages like
mrsFast, mrFast-CO and RazerS2 do not support
multithreading at all (we could not find this feature in
their manuals). Other packages have certain limitations,
e.g. in BWA only one of the two steps during read
mapping is parallelizable.

We plan to further optimize Hobbes for the edit
distance-based mapping, and account for read quality
scores.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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