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ABSTRACT

Jak/STAT is an important signaling pathway
mediating multiple events in development. We
describe participation of metazoan co-activator
SAYP/PHF10 in this pathway downstream of STAT.
The latter, via its activation domain, interacts with
the conserved core of SAYP. STAT is associated
with the SAYP-containing co-activator complex
BTFly and recruits BTFly onto genes. SAYP is neces-
sary for stimulating STAT-driven transcription
of numerous genes. Mutation of SAYP leads to
maldevelopments similar to those observed in
STAT mutants. Thus, SAYP is a novel co-activator
mediating the action of STAT.

INTRODUCTION

Signaling pathways in metazoans orchestrate complex
developmental events. This process usually requires elab-
orate transcription machinery controlling the expression
of multiple genes. One of important pathways having
a role in all metazoans is the Jak/Stat pathway. It has
multiple functions, being responsible, in particular, for
germ-cell function, morphogenesis and patterning,
as well as for cell differentiation and proliferation (1).
The final effector of the pathway is the family of STAT
transcription activators (2). From a researcher’s stand-
point, Jak/Stat in Drosophila has an advantage of being
simple: it consists of unique receptor dome, Janus kinase
hop, and transcription factor STAT92E (below, referred
to as STAT).

The recruitment of STAT onto chromatin occurs in co-
operation with other factors (3). An important role in
mediating the function of STAT in transcription

activation is played by its C-terminal portion carrying
the activation domain (3.4). Reliably identified co-
activators for the STAT family are histone-modifying
acetyltransferases CBP/p300 (5,6), the GCNS5-containing
complex (7) and chromatin-remodeling factor Brahma
(8-11). In addition, some novel components of the
pathway have been revealed among transcription factors
(12,13). In particular, transcription factors Brahma,
TFIID and SAYP have proved to be positive regulators
of the pathway. SAYP was previously described as a tran-
scription co-activator-mediating gene activation via a
novel mechanism, by coupling chromatin remodeler
Brahma and transcription initiation factor TFIID into
one co-activator complex BTFly (14). SAYP is a
conserved factor in metazoans. Its vertebrate homologue,
named PHF10, shares with SAYP a conserved core con-
sisting of the SAY domain an two PHD fingers (15).
Here, we describe the participation of SAYP in
mediating  STAT-driven  transcription  activation.
Mutation in the gene encoding SAYP manifests itself
similarly to those in the Jak/Stat pathway. Both SAYP
and STAT co-occupy multiple loci in the genome.
We have demonstrated the association of STAT with
the SAYP-containing complex and revealed the domains
mediating this interaction. The presence of SAYP is
important for activation of STAT-dependent genes.
As shown by ChIP analysis, SAYP is recruited onto
STAT-dependent genes together with Brahma and TFIID.

MATERIALS AND METHODS
Experiments with S2 cell culture

Schneider cell line 2 (S2) of Drosophila were maintained at
25°C in Schneider’s insect medium (Sigma) containing
10% FBS (HyClone). Conditions optimal for activation
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of STAT were determined experimentally. Pervanadate
solution (PV) was prepared from sodium vanadate and
hydrogen peroxide and then treated with catalase. Cells
were treated with 100pM PV for 2h (for measuring
mRNA level) or 30 min (for ChIP).

DNA fragments encoding SAYP with 3xFLAG
epitope and STAT (form F, 761 amino acids) with HA
epitope were cloned into pAc5.1/V5-HisB vector
(Invitrogen). The cell line stably expressing tagged
SAYP was established as described (14).

Antibodies and western blot analysis

Antibodies used in this study were described previously
(14,16). Antibodies against STAT (261-456 amino acids
fragment of form F) were raised in rabbits and affinity
purified. These and other antibodies raised in our labora-
tory were used in a 1:500 dilution for western and in
an amount of 5Sug for immunoprecipitation. Antibodies
against fasciclin III, (obtained by C. Goodman) and
beta-tubulin (obtained by M. Klymkowsky) were from
the Developmental Studies Hybridoma Bank.

Genes expression analysis by reverse transcription-PCR

The following STAT-dependent genes were chosen for
analysis: SOCS36E (17); dm [(Drosophila homologue of
vertebrate STAT-dependent c-myc (18)]; buffy and debcl
[Drosophila homologues of vertebrate STAT-dependent
bcl-2 (19)]; slbo (20); eve (21); dpp (22); apontic (23); and
DIAPI (24).

For measuring gene expression, RNA was extracted
with Trizol (Ambion) from five pairs of ovaries
or 3 x10° S2 cells and treated with DNase I. Reverse
transcription (RT) was performed from random
hexanucleotide primers and measured by qPCR. The se-
quences of the primers are given in the Supplementary
Data. As a reference, we used the levels of actin and
histone HI mRNAs, which were stable upon PV
treatment.

ChIP and Quantitative (q) PCR Analysis

The protocol for ChIP with S2 cells was described
previously (25). As a negative control, measurements
at TDNA and ChIP with nonspecific antibodies were
used in each experiment, the signal in the latter case
being at least 10 times weaker than in the former. The
sequences of the primers are given in the Supplementary
Data.

Immunostaining

Ovaries were stained as described (16). Polytene chromo-
somes were stained with rat anti-SAYP, rabbit anti-STAT,
and the corresponding secondary antibodies (Molecular
Probes) following the procedure described previously
(16), fixation with 4% FA was performed for 2min.
Salivary glands were treated with 500 uM PV for 1h.

Gel filtration of nuclear extract and immunoprecipitation

Preparation of the nuclear extract from Drosophila
embryos, gel filtration, and immunoprecipitation were
performed as described (14).

Drosophila genetic crosses

Cultivation of flies and genetic crosses were described
previously (26). Females y’w'e(y)3"!/FM4 and males
carrying Stat92E mutation were selected for crossing.
The mutation was caused by P-clement insertion in the
line 11681 (r°% P{ry*™"2=PZ}Star92E"*|TM3, ryRK
Sb! Ser’). All genetic crosses were carried out at 25°C
and repeated no less than three times. At least 50 flies of
each viable genotype were screened for each strain.

RESULTS
Phenotypic manifestations of SAYP mutation

To check the possibility of SAYP participation in signal-
ing pathways, we thoroughly analyzed the phenotype
of flies with the e(y)3"/ mutation in the gene encoding
SAYP (16). The main molecular manifestation of this
hypomorphic mutation was a lower level of e(y)3 tran-
scripts. Initially, e(y)3"/ was reported to suppress the ex-
pression of yellow’ allele in bristles (27,28). All flies
homozygous for e(y)3*/ had lower viability, homozygous
females were sterile, hemizygous males had a characteristic
bent-leg phenotype and early embryos showed defects in
cell cycle progression (14-16). In addition, the presence of
ectopic longitudinal veins was revealed in the posterior
wing blade (Figure 1A). Such a phenotype was observed
in all flies carrying the e(y)3"/ allele in either homo- or
hemizygous state. It is noteworthy in this context that
STAT also regulates wing venation, with the hypomorphic
mutation Star92E™ resulting in the formation of similar
ectopic longitudinal veins (29).

SAYP is abundant in various cells of the growing ovary,
and females homozygous for e(y)3*/ are sterile (16).
We checked the possible source of female sterility by in-
specting the structure of ovaries in mutant flies. The ovary
of an adult female consists of ovarioles, each representing
an assembly line of developing ovarian follicles (egg
chambers). Each follicle is covered by a monolayer of
follicular cells and contains a pair of specific cells
located at its anterior and posterior poles, named polar
cells; adjacent follicles are connected by a column of stalk
cells (30). Until Stage 2, epithelial follicular cells in the egg
chambers express high levels of Fasciclin IIT (Fas3) (31),
which marks immature proliferating follicular cells in the
germarium. Progressive down-regulation of Fas3 takes
place in the vitellarium after Stage 2, with the level of its
expression in the stalk and polar cells remaining high.

Different degrees of disturbance were revealed in
e(y)3"" mutants. A mild mutant phenotype was
characterized by maldevelopment of follicular cells:
the number of Fas3-positive cells was increased, and
they were detected in follicles of the vitellarium until
stage 4-5 (Figure 1B). Moreover, they appeared to
retain their proliferative potential, as follows from the
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Figure 1. Manifestations of ¢(y)3"/ mutation. (A) Wing venation abnormalities in mutants, compared to wild-type (wt) flies. Arrows indicate the
ectopic longitudinal vein material close to the posterior cross-vein. The bottom row shows images of the posterior cross-vein region at higher
magnification. (B) Ovarioles from wild-type and homozygous mutant flies. Fas3-positive cells in wt flies are detected until stage 2, whereas in mutants
they could be found in follicles of stages 3—4 (arrows). Staining with DAPI (green), Fas3 (red), and merged images are shown. (C) Egg chambers with
several layers of follicle cells (arrows). (D) Fused follicles with invasive follicular epithelium (arrow) and an island of overproliferated follicular cells
(arrowhead). (E) The level of bristle coloring and the frequency of bent leg phenotype in flies carrying the e(y)3 and Star92E mutations.
A combination of both mutations aggravated the mutant phenotype.

fact that egg chambers with several layers of follicular cells epithelial cells within the cysts often showing
and aggregates of these cells were detected (Figure 1C and D). disorganized, invasive growth (Figure 1D).
In extreme cases, we observed the formation of fused Jak/Stat plays an important role in follicle cells differ-

follicles (cysts) at different stages of development, with entiation, and a similar phenotype of fused egg chambers
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has been reported for flies with hypomorphic mutations of
hop (Janus kinase in Drosophila) and STAT92E (32,33).

Finally, we checked the effect of combining of
mutation in e(y)3 and Stat92E. We observed that
amorph Srat92E’# in a heterozygous state enhances
the phenotypic expression of the e(y)3*/ mutation,
which is manifested in almost complete suppression of yel-
low? in bristles and increased frequency of flies with the
bent femur phenotype (Figure 1E). Star92E is expressed at
the stage of pupae and in larval imaginal discs (34,35) and,
therefore, may have a role in the development of this
phenotype.

Thus, we have found that mutations in the genes
encoding SAYP and components of the Jak/Stat
pathway manifest themselves similarly. However, the
described phenotypes are not unique for this pathway,
being also manifested in cases of mutations in other
cascades (36-38). Moreover, the cross-talk of pathways
in development (39) does not allow any unequivocal con-
clusion concerning the participation of SAYP in the Jak/
STAT pathway. That is why we further checked the
STAT-SAYP interaction at the molecular level.

STAT interacts with SAYP

To confirm the interaction of SAYP with STAT biochem-
ically, antibodies against STAT were raised in rabbits,
affinity purified, and their specificity was checked
on both endogenous and recombinant tagged STAT
(Figure 2A).

Gel filtration of the nuclear extract from Drosophila
embryos showed that the elution profiles of SAYP
and STAT partially overlapped. SAYP migrated in frac-
tions 16 and 17 (Figure 2B) as a component of
high-molecular-weight protein complex BTFly including
also Brahma and TFIID (14). A significant proportion
of STAT was also found in these fractions. To confirm
STAT-SAYP association in fractions 16-17, a co-
immunoprecipitation experiment was performed. The
results showed that anti-SAYP antibodies co-precipitated
STAT, and vice versa (Figure 2C). Moreover, antibodies
against STAT were capable of co-precipitating the com-
ponents of Brahma and TFIID (Figure 2D), although to a
lesser extent than SAYP.

To verify the SAYP-STAT interaction, both proteins
with tags were co-expressed in cell culture. HA-tagged
STAT was able to co-precipitate Flag-tagged SAYP, and
vice versa (Figure 2E). It is noteworthy that the strength
of this interaction was lower than that of SAYP-BAP170
and SAYP-TAFS interactions in the stable BTFly
complex (14), as could be expected for a transient activa-
tor—co-activator interaction.

To further study this interaction, we mapped the inter-
acting domains within the proteins. Flag-Gal4-tagged
separate domains of SAYP (described in ref. 14) and the
HA-tagged C-terminal portion of STAT carrying the ac-
tivation domain (AD) of STAT (40) were co-expressed in
S2 cells (Figure 2F). As a result, a fairly strong interaction
of STAT AD with the conserved SAY-PHD fragment of
SAYP was revealed (Figure 2G).

We have previously demonstrated that the SAY domain
interacts with TFIID and Brahma (14). However, the
STAT AD has shown no comparable interaction with
the subunits of endogenous TFIID and Brahma.
Therefore, these factors are unlikely to mediate the
observed STAT AD-SAY-PHD interaction. A relatively
strong association of the two overexpressed proteins indi-
cates that they probably interact with each other directly,
although we cannot exclude that some other protein
mediates their interaction in the lysate.

Thus, a portion of STAT is associated with the
SAYP-containing protein complex, and STAT, via its ac-
tivation domain, can interact with the conserved core of
SAYP.

SAYP and STAT jointly control numerous genes

We assessed STAT-SAYP co-localization in the genome
using preparations of polytene chromosomes from
salivary glands. Both hop and STAT are expressed in
this organ in larvae (35), indicating that the corresponding
pathway is active. Co-immunostaining of chromosomes
with antibodies against STAT and SAYP revealed a sig-
nificant co-localization of these factors, although not
complete (Supplementary Figure S1A). To further
activate STAT in the salivary glands, they were treated
with pervanadate (PV); in this case, the factors showed
an even higher degree of co-localization (Figure 3,
Supplementary Figure S1B). These results showed that
STAT was present in multiple loci of euchromatin,
which were often co-occupied by SAYP.

To directly check the importance of SAYP for the
activity of STAT-dependent genes in vivo, we used the
ovaries of adult flies, in which the Jak/Stat pathway is
active in many cells (32). Several genes were chosen
which are known to be STAT-dependent (see ‘Materials
and Methods’ section). Measurements of the level of gene
expression showed that the reduced content of SAYP
in hypomorphic e(y)3*/ mutants led to a drop in the
expression of the STAT-dependent genes (Figure 3B).
Importantly, the level of hop and STAT expression in
these mutants was not reduced, indicating that SAYP
acted downstream of STAT in the pathway.

We conclude that STAT and SAYP occur together on
multiple sites genome-wide, with the presence of SAYP
being important for the activity of STAT-dependent
genes in the organism.

SAYP is recruited onto STAT-driven genes

To further investigate activation of STAT-dependent
genes, we used Schneider (S2) cell line expressing the com-
ponents of the Jak/Stat pathway (41). Western blot
analysis confirmed that the level of the STAT protein
(relative to the levels of tubulin and TBP) in these cells
was markedly higher than in embryos (Figure 2A), while
the embryo in Drosophila is the stage characterized by
the highest STAT activity (35). Therefore, S2 cells are an
appropriate model for studying the functioning of the
pathway of interest. Treatment of S2 cells with PV,
which causes the accumulation of phosphorylated STAT
in them (42.,43) is used to study short-term gene activation.
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Figure 2. STAT is associated with SAYP-containing complex. (A) Western blot analysis of total proteins from embryos or S2 cells with antibodies
against STAT. To confirm their specificity, lysate of S2 cells expressing HA-tagged STAT was stained with anti-HA antibodies. Staining for tubulin
and TBP is shown as a loading control. (B) Fractions after gel filtration of DNase I-treated nuclear extracts from embryos on Superose 6 were
analyzed for the presence of SAYP and STAT proteins. STAT was detected not only as a free protein (fractions 32-34) but also in association with
high-MW complexes, together with SAYP (fractions 16-17). (C) STAT and SAYP co-immunoprecipitated with each other from gel filtration
fractions 16-17 of the extracts from embryos. IP with pre-immune IgG was used as a negative control. Equal portions of the input (In) and
precipitated (IP) material were tested. (D) Antibodies against STAT co-immunoprecipitated MOR (component of Brahma) and TAF1 (component
of TFIID) from gel filtration fractions 16-17. (E) Recombinant Flag-SAYP and HA-STAT co-immunoprecipitated with each other. Both proteins
were co-expressed in cells, then IP with antibodies against either FLAG or HA was performed. In control IP, only one recombinant protein
was expressed. Equal portions of the input (In) and precipitated (IP) material were tested. (F) Scheme of SAYP and STAT proteins. Boundaries
of the tested regions and the total protein length (number of amino acids) are indicated. (G) Recombinant Flag-Gal4-fusions of SAYP fragments
and the HA-tagged activation domain of STAT were tested for co-immunoprecipitation (the left column). Both proteins were co-expressed in cells,
then IP with antibodies against HA was performed. In control IP, only Flag-tagged recombinant protein was expressed. Recombinant Flag-SP
fragment co-immunoprecipitated HA-AD of STAT and HA-STAT (the right column). Equal amounts of the input (In) and precipitated (IP) material
were tested.

Using this approach, we found that STAT-driven tran-
scription took place in the untreated cell line and that
PV treatment moderately stimulated STAT-dependent
gene expression (see below).

The PV treatment for 2 hours resulted in induction

unchanged (Supplementary Figure S2). To study the role
of SAYP in this process, we changed its content in cells by
either its RNAi knockdown or 5-fold overexpression
(Supplementary Figure S3). The relative level of induction
of STAT-dependent genes by PV proved to be the highest

of STAT-dependent genes, with their expression in
S2 cells increasing several fold (Figure 4A) but the
levels of STAT, SAYP, and BTFly components remaining

in cells overexpressing SAYP and the lowest in SAYP
knockdown cells (Figure 4, Supplementary Figure S4).
It should be noted that the observed changes in gene
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Figure 3. SAYP controls multiple STAT-dependent genes. (A)
Immunostaining of polytene chromosomes with antibodies against
STAT and SAYP shows significant co-localization of these factors.
(B) The levels of expression of different genes in the ovaries of homo-
zygous e(y)3"! mutants relative to those in wt flies, with the ratio for
actin mRNA taken as 1. CG11400 is a SAYP-dependent gene (14)
shown as a control.

activation were not due to changes in the expression of
hop and STAT in the cells (Supplementary Figure S3).
Thus, SAYP has a positive effect on short-term induction
of STAT-dependent genes in S2 cells.

We then directly checked whether SAYP is recruited
onto STAT-dependent genes upon their activation by
ChIP. After the PV treatment, an increase was observed
in the contents of not only STAT but also of SAYP,
TFIID and Brahma components and Polll on the pro-
moters of several genes studied (Figure 4B).

To confirm the positive role of SAYP in this process,
the recruitment of the above factors was measured upon
SAYP knockdown. The results showed that the recruit-
ment of STAT was not impaired, while the contents of
TFIID, Brahma and especially Polll on the promoters
dropped significantly. As shown in our previous study
(14), SAYP knockdown did not affect the total content
of TFIID and PollII but reduced the content of Brahma in
the cells. Testing of the control promoters of housekeeping
genes hsp70 (14) and actin (Supplementary Figure S5)
upon SAYP knockdown showed that the recruitment
of TFIID and Polll was not affected, while the level of
Brahma was reduced to a lesser extent than on
STAT-dependent genes. The increase of STAT signal
after SAYP knockdown may be explained by higher
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Figure 4. SAYP is important for STAT-driven response in S2 cells.
(A) The relative induction of different genes expression (the ratio of
levels of expression after and before 2-h PV treatment) in normal
S2 cells and cells with SAYP overexpression and SAYP knockdown.
(B) The levels of different factors on promoters of genes before and
after PV treatment in normal cells and cells with SAYP knockdown.
The results of ChlIP are shown as the percentage of input, gray staining
shows the levels of the factors on rDNA.

accessibility of the STAT protein to antibodies on the
promoter without co-activators.

The presence of SAYP and BTFly components on
STAT-dependent genes was also checked by ChIP in
early embryos (0—6h), in which STAT is expressed at
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Figure 5. SAYP is recruited onto STAT-dependent genes. (A) The presence of different factors on the promoters of indicated genes in early embryos
(0-6h). The results of ChIP are shown as the percentage of input, gray staining shows the levels of the factors on rDNA. (B) Model of SAYP
participation in the Jak/Stat pathway: STAT, via its activation domain, mediates the recruitment of SAYP and associated BTFly complex, which is a

prerequisite for Polll engagement.

a high level (35). Since STAT was recently shown to be
important for activation of numerous genes in the early
Drosophila embryo (44), we checked several known targets
for this protein. The contents of STAT and SAYP were
found to be elevated relative to those on the promoters of
housekeeping genes (Figure 5A).

Thus, SAYP is recruited onto STAT-dependent genes
and has a role in inducing their expression. Its recruitment
is also important for subsequent engagement of other
co-activators and Polll.

DISCUSSION

We have analyzed the role of co-activator SAYP in the
Jak/Stat pathway in Drosophila and found that SAYP
interacts with STAT and mediates its activation potential
(Figure 5B). SAYP operates as a component of large
protein complex BTFly, which also contains Brahma
and TFIID, and mediates subsequent recruitment of
Polll onto the promoter (14). The results of polytene
chromosome staining and measurement of multiple
STAT-dependent genes testify to genome-wide cooper-
ation of STAT and SAYP in gene activation.

The activation domain of STAT interacts with the
SAY-PHD fragment of SAYP within the BTFly, and
the STAT-BTFly association is not mediated by
Brahma or TFIID. It is noteworthy that the interacting
fragment of SAYP belongs to its conserved core, which is
also found in vertebrate homologues of SAYP (16).
Therefore, the above interaction may also take place in
other species.

This finding broadens the known spectrum of transcrip-
tion factors mediating the effect of STAT on gene expres-
sion. Such a diversity of cooperating factors appears to
provide a basis for the specificity and strength of Jak/
Stat-driven response in different cell types. In particular,
BTFly may serve for rapid induction of transcription, as
proposed previously (15). Indeed, we have observed the
positive effect of SAYP content on short-term induction
after STAT activation. SAYP is also important for Polll

stalling (N.E.V., personal communication), which may
provide for the precision of responses of target genes in
the signaling pathway (44,45). One more point of interest
is the putative role of SAYP in coordinating the crosstalk
between Jak/Stat and other signaling pathways, which
follows from the fact that SAYP is also involved in the
ecdysone cascade (46) and probably in some other
cascades (15).

Mutation of both STAT and SAYP leads to formation
of excess numbers of ovarian follicular cells and ectopic
wing veins. As shown in our previous study (15), SAYP is
abundant in cells with high proliferative potential, and its
mutation results in overproliferation of polar cells in
embryos. Therefore, SAYP may participate in regulation
of proliferation of certain cell types. Interestingly,
PHF10—a vertebrate homologue of SAYP—is required
for proliferation of stem/progenitor cells (47) and fibro-
blasts (48). On the other hand, it has been shown that
STAT also has a role in proliferation and growth
control (49). Therefore, it appears that SAYP and STAT
are jointly involved in regulation of proliferation and dif-
ferentiation of certain cell types during metazoan
development.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online:
Supplementary Figures 1-5 and Supplementary Materials.
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