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ABSTRACT

Alternative splicing (AS) coupled to nonsense-
mediated decay (NMD) is a post-transcriptional
mechanism for regulating gene expression. We
have used a high-resolution AS RT-PCR panel to
identify endogenous AS isoforms which increase
in abundance when NMD is impaired in the
Arabidopsis NMD factor mutants, upf1-5 and
upf3-1. Of 270 AS genes (950 transcripts) on the
panel, 102 transcripts from 97 genes (32%) were
identified as NMD targets. Extrapolating from
these data around 13% of intron-containing genes
in the Arabidopsis genome are potentially regulated
by AS/NMD. This cohort of naturally occurring
NMD-sensitive AS transcripts also allowed the
analysis of the signals for NMD in plants. We show
the importance of AS in introns in 5 or 3UTRs in
modulating NMD-sensitivity of mRNA transcripts.
In particular, we identified upstream open reading
frames overlapping the main start codon as a new
trigger for NMD in plants and determined that NMD
is induced if 3-UTRs were >350nt. Unexpectedly,
although many intron retention transcripts possess
NMD features, they are not sensitive to NMD.
Finally, we have shown that AS/NMD regulates the
abundance of transcripts of many genes important
for plant development and adaptation including
transcription factors, RNA processing factors and
stress response genes.

INTRODUCTION

Alternative splicing (AS) is an important mechanism to
control gene expression and increase the proteome com-
plexity of higher eukaryotes (1-3). Regulated AS drives
developmental pathways and responses to environmental
pressures. Following transcription, splicing of the exons
requires removal of introns by assembling a large RNP
complex, the spliceosome, with five snRNPs and about
180 proteins (4). Splice site selection has to be precise
but consensus sequences defining splice sites are degener-
ate and how a splice site is selected from many similar sites
within a transcript remains a major question. In many
cases, specific splice sites are used in all transcripts (con-
stitutive splicing) while in alternative splicing, other splice
sites are used to various extents giving rise to alternate
transcripts with variable sequences. It is now well estab-
lished that in addition to splice sites, sequence elements
within exons and introns, termed either splicing enhancers
or silencers are binding sites for splicing factors which
either enhance or repress splicing depending on their
activities (5,6). These splicing regulators are, for
example, SR and hnRNP protein families, and other
cell-, stage- or tissue-specific proteins involved in consti-
tutive and alternative splicing which establish the splicing
code and determine which splice site is selected (7-10). The
regulation of alternative splicing is brought about by the
relative levels of the RNA-binding proteins determining
how efficiently different splice sites are used to generate
more than one spliced mRNA from one gene.
Alternatively spliced mRNA variants can produce func-
tionally different protein isoforms with altered amino acid
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sequences and protein domains resulting in changes in
activity, localization, interaction partners or post-
translational modifications (1,11). In addition, alternative
splicing can regulate mRNA levels through the targeted
degradation of specific AS isoforms by nonsense-mediated
decay (NMD) (see below). In particular, alternative
splicing can result in mRNAs with premature termination
codons (PTCs) which could give rise to truncated proteins
which are detrimental to cell survival and energy costly for
the cell. RNA quality control mechanisms have evolved
at all levels of gene expression to identify and remove
aberrant RNA transcripts. One of the best investigated
mRNA quality control mechanisms is NMD which
degrades mRNAs which possess a premature termination
codon (PTC+) and other physiological mRNAs without a
PTC such as transcripts with long 3’-UTRs [reviewed in
(12-18)]. Despite great advances in understanding of the
NMD pathway, it is apparent that not every PTC triggers
NMD and that this pathway controls the abundance of
certain mRNAs which do not contain known NMD
features, arguing that not all the factors inducing NMD
have been identified yet.

Several features of NMD-sensitive, PTC" transcripts
have been elucidated and have led to models of how
PTCs are recognized and degradation triggered. In the
current model for mammals, NMD initiates the rapid
decay of a transcript if translation termination is per-
turbed [reviewed in (12-18)]. Efficient translation termin-
ation of the ribosome is proposed to involve the
interaction of the release factor, eRF3, and poly(A)
binding proteins (PABP) on the poly(A) tail of the
mRNA. If this interaction is prevented or impaired by,
for example, an unusually long 3'-UTR, the eRF3 on
the ribosome will bind UPF1 which then recruit UPF2
and UPF3, all core NMD proteins. This functional
NMD complex (which includes many other proteins)
then elicits the phosphorylation of UPF1 and rapid deg-
radation of the transcript. This ‘long 3’UTR’ mechanism
is characteristic for transcripts in invertebrates and yeast.
In mammals, the NMD response triggered by a ribosome
terminating at a PTC is stimulated by UPF3 associated
with a downstream exon-junction complex (EJC) which is
deposited on the mRNA 20-25nt upstream of a spliced
exon—exon junction (19,20). In the course of splicing the
EJC complex binds the NMD factors UPF2/UPF3 which
can then associate with a ribosome terminating at a
PTC upstream of the EJC which has recruited UPF1 in
the SURF complex (SMG1-UPF1-eRF1-eRF3) (21). On a
normal, non-PTC-containing mRNA, the EJC is removed
in the first round of translation (22) except when the
EJC is located in the 3'-UTR. This is consistent with the
observation that introns in the 3’-UTR may significantly
enhance NMD. Thus, in mammals, both the length of
the 3-UTR and the presence of an EJC complex down-
stream of a PTC can trigger NMD. However, the recent
demonstration in Drosophila that EJCs are not deposited
at each splice junction such that only some introns are
able to trigger intron-dependent NMD (23) suggests that
NMD may rely more widely on long 3’UTR signals.

The NMD pathway in plants is as yet not well
characterized (24,25). Plants possess orthologues of the
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key eukaryotic NMD proteins, UPF1, UPF2, UPF3 and
SMG-7 (but not SMG-1, SMG-5 or SMG-6) and these
have been shown to be involved in degrading mRNAs
with PTCs (26-31). Efforts to determine the rules for
NMD substrates suggest that like mammals, plants are
able to recognize different types of PTC-containing tran-
scripts (Figure 1¢). Firstly, it was shown that both long
3-UTRs and introns located in 3'-UTRs are signals
for efficient NMD (30,32-34). This indicates that like
in invertebrates and yeast, the distance between a stop
codon and the PABP on the poly(A) sequence is import-
ant and that translation termination is also likely to
require the interaction of the release factor-containing
ribosome with PABP. Secondly, EJC components, which
are required for the intron-based NMD mechanism
proposed for mammalian NMD, have been demonstrated
to be similarly important in plants (28). Furthermore,
upstream open reading frames (WORFs) of more than
35 amino acids can trigger NMD in plants (35).

Alternative splicing in plants is an important regulatory
process for plant development and for the response of
plants to environmental factors. However, its frequency
of occurrence has been grossly underestimated largely
due to low depth of sequencing and relatively few avail-
able ESTs. The most recent estimate based on next gener-
ation sequencing is that about 42% of intron-containing
genes undergo alternative splicing (36) and this is still
likely to be a significant underestimate. In humans, over
95% of genes undergo alternative splicing and more
importantly around 20-30% of alternatively spliced
transcripts contain PTCs and are potentially turned over
by NMD (37-40). The importance of the link between AS
and NMD has been highlighted by the regulation of func-
tional transcript levels of key splicing factors such as
SR proteins and PTB through alternative splicing via
conserved splice sites (41,42). Conservation of alternative
splice sites to produce PTC-containing transcripts has also
been demonstrated for SR protein genes in lower and
higher plants (43) and more generally, NMD seems to
play a regulatory role in gene expression using alternative
spliced transcripts (27). The best characterized examples
of gene regulation by AS/NMD in plants are GRP7
and GRP8, components of a slave oscillator coupled to
the circadian clock. These glycine-rich RNA-binding
proteins bind their own pre-mRNAs inducing AS which
produces NMD-sensitive transcripts thereby auto- and
cross-regulating their mRNA levels (44.,45). Other
examples of such regulation are SR protein genes (46),
polypyrimidine tract binding protein (PTB) (47),
possibly SUPPRESSOR OF OVEREXPRESSION OF
COl (48) and riboswitch-regulated alternative splicing
controlling NMD (49).

The definition of the rules of NMD in plants have
mainly relied on mutations in a small number of model
transcripts and it is necessary to examine how these
features correspond to those in NMD-sensitive endogen-
ous transcripts. As about 78% of alternative transcripts in
Arabidopsis introduced in-frame PTCs more than 55nt
upstream of exon junction, it was speculated that NMD
is a widespread mechanism for regulating gene expression
(36), however this has not been experimentally addressed.
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Figure 1. Analysis of alternatively spliced NMD substrates. (A) Schematic figure of RT-PCR panel analysis (see ‘Materials and Methods’ section).
(B) Venn diagram of the number of transcripts which increase significantly in upf mutants and cycloheximide treatment. (C) Venn diagram of the
number of genes with splice isoforms which increase significantly in upf mutants and cycloheximide treatment. (D) General features of transcripts
which trigger NMD: (i) long 3'-UTR; (ii) PTC—long 3’-UTR; (iii) splice junction downstream of authentic stop codon (3’-UTR intron); (iv) PTC—
downstream splice junctions and long 3’-UTR; (v) uORFs in 5-UTR. Endogenous transcripts regulated by NMD contain long 3’-UTRs, introns in
the 3’-UTR where the splice junction is >50-55nt from the authentic stop or UORFs (i, iii and v, respectively). Transcripts which contain PTC in the
coding region or 5-UTR (uORF) also generate long 3’-UTRs with or without downstream splice junctions (ii, iv and v, respectively). Exons—open
boxes; UTRs—black rectangles; thin lines—introns; diagonal lines—splicing events; stop sign—PTC or authentic termination codon.

Two previous studies performed genome-wide transcrip-
tome profiling of NMD-defective plants using tiling
and expression microarrays (31,50) and found that only
about 1% of plant protein-coding genes were up-regulated
in NMD-deficient plants. These arrays have limited ability
to distinguish AS transcripts in contrast to the splicing-
sensitive microarrays successfully used in animals (51-53),
and it is therefore necessary to thoroughly investigate
the fate and characteristics of endogenous plant AS
transcripts turned over by NMD.

In the absence of splicing-sensitive microarrays for
plants, we have used a high-resolution RT-PCR system
(54) which is able to detect multiple AS transcript isoforms
simultaneously and obtained isoform-level measurements
from strong, but still viable mutant alleles (26,27) of the
NMD protein genes, UPFI and UPF3, and cycloheximide
(an inhibitor of translation and thus of NMD) treated
plants. To address the link between AS and NMD we
(1) investigated the effect of NMD impairment on a popu-
lation (~950) of endogenous alternatively spliced tran-
scripts, (ii) identified NMD-sensitive AS isoforms from
significant changes in the ratio of AS isoforms,
(1i1) identified the characteristics of AS transcripts which

trigger NMD, and (iv) identified transcripts which contain
NMD features but which are insensitive to NMD. Our
results demonstrate that alternative splicing and NMD
affect a broad range of different genes in Arabidopsis
and regulate expression of these genes via targeted degrad-
ation of specific AS transcripts using different mechanisms
depending on the position of the AS event in the gene.

MATERIALS AND METHODS

Plant material, growth conditions, treatments and
RNA isolation

Wild-type (ecotype Col-0) and UPF mutant Arabidopsis
plants were used for the analysis. UPF mutants, upfI-5
and upf3-1, (26) were a gift from Brendan Davies
(Centre for Plant Sciences, University of Leeds, UK).
Plants were grown in vitro on plates containing germin-
ation medium (55). Plants were maintained in 16-h light/
8-h dark cycle at 22°C. Three week old plants were
transferred into liquid half-strength Murashige and
Skoog medium (56) and infiltrated with either 20 uM
cycloheximide or the same volume of dimethylsulfoxide



as a control. Samples of cycloheximide-treated plants
were collected after S5h (27). RNA was isolated using
RNeasy Plant Mini Kit (Qiagen).

High-resolution alternative splicing RT-PCR panel and
data analysis

The original panel (54) was expanded to 289 primer pairs
by identifying alternative splicing events which were either
published, annotated in The Arabidopsis Information
Resource (TAIR8—http://www.arabidopsis.org/) or in
the Alternative Splicing in Plants database (ASIP—
http://www.plantgdb.org/ASIP/). Primer pairs where one
primer is fluorescently labelled were designed as described
previously (54). Primer pairs used are listed in
Supplementary Table S1. RT-PCR analysis was per-
formed as described carlier (54). In brief, the reverse tran-
scription reaction was carried out with total RNA using
oligo-dT primers and the first-strand cDNA was aliquoted
into microtitre plates, and PCR with the gene/alternative
splicing event-specific primers performed using 24 cycles.
We have previously shown that 24 cycles was still in the
linear amplification range for various splicing substrates
using [**P]-labelling (57) and for a number of the AS
primers used here to amplify transcripts of different abun-
dance and size (54). The high-resolution RT-PCR system
is capable of detecting multiple different AS transcripts
from a gene, distinguishing alternative splicing events
involving small size differences in transcripts (as few as
2-3nt) and identifying small but significant changes
in the ratios of alternatively spliced variants. The AS
variants for each of the genes are amplified simultaneously
by the same primers in the same reaction. The different AS
isoforms wusually have substantial common sequence
which will reduce variation in amplification efficiency. In
addition, if there are differences in amplification efficiency
among particular AS isoforms, these differences will occur
in the PCR reactions with wild-type, mutants and
cycloheximide treatment. Electropherograms produced
by the ABI 3730 genotyping software identified the exact
size of the RT-PCR products for each primer pair. Peak
areas for each RT-PCR product were extracted from the
three reps, ratios of the different peaks were calculated
generating a mean and standard error for each AS tran-
script as a percentage of the total transcript across the
three reps.

Statistical analysis

The response to genotype, treatment and genotype
by treatment interaction was assessed by analysis of
variance (ANOVA). Each peak of each primer was
analysed separately assuming a completely randomized
design with three replicate values for each treatment com-
bination. Response was measured as the percentage con-
tribution of a particular isoform to the total transcripts
measured and ANOVA was carried out after an angular
transformation of the percentage values. In addition to
assessing the significance of genotype and treatment
main effects and their interaction, three specific com-
parisons (contrasts) were made: wild-type versus
upfl-5, wild-type versus upf3-1 and wild-type versus
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cycloheximide treatment. Residual plots were used to
monitor the ANOVA assumptions of approximate nor-
mality and equality of variance. For the small number
of cases where these assumptions did not hold either the
response levels were all very low (or all very high) or the
differences between treatments were so large as to render
the ANOVA redundant.

In the analysis of the direct comparisons (above and
Table 1) P-values were determined. In the subsequent
analysis, we focussed on those transcripts which showed
a significant percentage increase or decrease with a 3%
difference between the means of wild-type plants and
mutants/cycloheximide-treated plants. This level of differ-
ence was selected because we previously determined that
when comparing variation in technical reps in the AS
RT-PCR system, the majority of transcripts showed a
standard error of the mean of <3% (54).

Sequencing analysis of AS RT-PCR products

Many RT-PCR products corresponded to unknown splice
variants. To identify these products, RT-PCR reactions
were purified using Agencourt AMPure beads (Beckman
Coulter Genomics) and re-amplified prior to cloning into
pGEM-T. Clones with differently sized inserts were
identified by colony PCR and sequenced by standard
procedures. Sequences were analysed either by using
ClustalW or spliced alignments generated by GeneSeqer
(http://www.plantgdb.org/tool/GeneSeqer/)  (58). An
in-house Perl script was used to parse the output from
GeneSeqer for categorizing the annotations of alternative
splicing events.

RESULTS

Analysis of alternative splicing coupled to nonsense-
mediated decay using a high-resolution RT-PCR panel

To analyse the levels of alternatively spliced isoforms in
mutants in the NMD protein genes, UPFI and UPF3,
and to investigate the link between AS and NMD in
Arabidopsis thaliana, we have exploited an alternative
splicing RT-PCR panel. This unique high-resolution
system is very sensitive and capable of detecting small
but significant changes in alternative splicing at single
nucleotide resolution (54) (Figure 1A). It detects different
AS variants from the same gene/region simultaneously,
variants containing more than one AS event and novel
AS transcripts (Supplementary Figure S1). The AS RT-
PCR panel used here consists of 289 primer pairs covering
different alternative splicing events in 270 genes, and
3 control primer pairs (Supplementary Table S1). The
AS events were selected from publications or from plant
alternative splicing databases without prior knowledge
of NMD-sensitivity with the exception of GRP7 and
GRP8 (Figure 2). The AS events were mainly from
genes encoding transcription factors, RNA-interacting
proteins (including splicing factors) and stress-related
proteins and included many important regulatory genes.
The relative levels of AS isoforms were compared between
wild-type, the two upf mutants and cycloheximide treat-
ment (see Figures 2 and 3 and Table 1 for examples). The
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Table 1. Selected AS transcripts which increase significantly in upf mutants and/or cycloheximide treatment
Primer Gene ID Name Band AS event NMD features Mean ratio of transcripts
pair size
(bp) wt  upfl-5 upf3-1 CHX
7 Atlg55310 At-SCL33 361 E4 Alt3'ss(+162) PTC™; ds ST 0.15  0.19 0.32 0.47
7 Atlg55310 At-SCL33 364  E4 Alt3'ss(+165) PTC"; ds SJ 0.02 0.03 0.05 0.08
or AE (165)
7 Atlg55310 At-SCL33 293 Unknown Unknown 0.05 0.08 0.09 0.07
21 At2g37340 At-RS27Z33 341 E3 Alt3'ss(+218) PTC"; ds SJ 0.04 0.07 0.13 0.20
86 At4gl6845 VRN2 396 IR2(170); PTC™; ds ST 0.07  0.09 0.12 0.13
ES Alt3'ss(—4);
E5 AltS'ss(+22)
90 At4g39260 GRP8/CCRI1 316  El Alt5'ss(+158) PTC™; ds ST 0.03  0.05 0.12 0.14
109 Atlg77080 MAF]I 118  E4 Alt3'ss(—38) PTC"; ds SJ 0.14  0.22 0.29 0.19
118 At2g02960 Zinc finger (C3HC4) protein 233 E2 Alt3'ss(+37) uORFs; uORF(26aa) 0.03 0.05 0.07 0.07
118 At2g02960 Zinc finger (C3HC4) protein 237  E2 Alt3'ss(+41) uORFs; uORF(26aa) 0.04 0.05 0.07 0.07
118 At2g02960 Zinc finger (C3HC4) protein 240  E2 Alt3'ss(+44) uORFs; uORF(26aa) 0.02 0.02 0.03 0.02
118 At2g02960 Zinc finger (C3HC4) protein 289  E2 Alt3'ss(+92) uORFs; uORF(26aa) 0.25 0.30 0.33 0.51
125 At2g46790 APRRY/TLI 251 E2 Alt5'ss(+8) PTC™; ds ST 022 032 0.47 0.37
131 At2¢38880 NF-YBI/HAP3a 373 E6 Alt5'ss(+62) 3'UTR intron 0.21 0.26 0.30 0.41
194 At3g49430 At-SR34a 366 11 AE(224) uORFs; uORF(61aa) 0.07 0.21 0.35 0.30
195 At3g01150 At-PTB2a 156  E8 AltS'ss(—47) PTC"; no ds SJ - possible 0.10 0.12 0.16 0.19
long 3UTR
196 At3g01150 At-PTB2a 268 12 AE(102) PTC™; ds ST 0.11 0.17 0.25 0.37
202 At3g13570 At-SCL30a 351 13 AE(161) PTC"; ds SJ 0.18  0.30 0.48 0.52
204 At3g53500 At-RS2732 376 E3 Alt3'ss(+218) PTC"; ds ST 0.09 0.11 0.25 0.40
205 At3g61860 At-RS31 556 12 AE(393) PTC™; ds ST 0.01 0.04 0.10 0.27
206 At2g21660 GRP7/CCR2 349 ElAItS’ss(+166) PTC"; long 3'UTR 0.02  0.07 0.16 0.13
213 At5g53180 At-PTB2b 198 I3 AE(58) PTC™; ds ST 0.08 0.12 0.19 0.31
213 At5g53180 At-PTB2b 201 13 AE(61) PTC™; ds ST 0.06  0.09 0.14 0.22
217 Atlgl6610 SR45 175 FS no reason for NMD 0.68 0.71 0.72 0.77
218 At2g30260 U2B” 134 E2 Alt5”ss(—35) PTC™; ds ST 0.05 0.09 0.19 0.17
219 At4g25500 At-RS40 382 12 AE(257) PTC™; ds ST 0.14  0.33 0.54 0.34
220 At3g55460 At-SCL30 590 13 AE(449) PTC"; ds SJ 0.01 0.05 0.11 0.08
220 At3g55460 At-SCL30 673 Unknown Unknown 0.01 0.02 0.05 0.13
223 At2g29210 Splicing factor PWI 202 E6 Alt3'ss(+50) PTC"; ds SJ 0.36  0.36 0.59 0.63
domain-containing protein
237 Atlg07830 RPL29 family 123 E2 Alt3'ss(—70) uORFs; uORF(31aa) 0.01 0.02 0.03 0.02
237 Atlg07830 RPL29 family 273 El AltS'ss, predicted uORFs 0.02  0.05 0.09 0.07
241 At1g02090 FUSS5/CSN7/COP15 119  E8 Alt3'ss(—17) PTC™; ds ST 0.15  0.27 0.29 0.30
249 Atlg72560 PSD/Exportin-t 174  E13 Alt5'ss(+25) 3’UTR intron 0.04 0.15 0.04 0.05
259 At3g17090 PP2C group D 214 E2 Alt3'ss(+17) PTC"; ds SJ 0.07 0.11 0.23 0.14
284 At4g33060 CYPS57 290 15 AE(87) PTC™; ds ST 026 0.34 0.49 0.71
284 At4g33060 CYPS57 295 15 AE(92) PTC™; ds ST 0.05 0.06 0.08 0.11
306 At2g46830 CCAl 218 FS No reason for NMD from 0.79 0.85 0.87 0.89
AS event—other AS/NMD
events known
309 At5g65060 MAF3 223 E4 Alt3'ss(—38) PTC"; ds SJ 0.19 0.35 0.42 0.38
309 At5g65060 MAF3 219  E4 Alt3'ss(—38); PTC™; ds ST 0.04 0.06 0.08 0.07
E5 Alt3'ss(—4)
311 At5g65080 MAF5/AGL68/FCL1 462  ES5 Alt3'ss(—4) PTC™; ds ST 0.76  0.82 0.80 0.75
343 At3g29160 AKINII 159 FS No reason for NMD from 027 0.27 0.34 0.40
AS event—other AS/NMD
events known
344 At3g29160 AKINII 195  E9 Alt3'ss(—5) PTC™; ds ST 0.08 0.12 0.17 0.15
363 At5g24270 SOS3/CBL4 337  ES AltS'ss(+29) PTC"; ds SJ 0.06 0.08 0.13 0.25
370 At5g35410 SOS2/CIPK24 120 E9 Alt3'ss(+5) PTC"; ds SJ 042 049 0.59 0.63
374 At4g36960 RRM-containing protein 399 IR1(172) uORFs; uORF(73aa) 0.05 0.15 0.32 0.09
375 At3g20270 lipid-binding serum 195 FS uORFs; uORF(22aa) 0.54  0.62 0.64 0.59
glycoprotein family
protein
384 At4g02200 At-Dil9-5 149  E2 AltYss(+32) PTC"; ds SJ 0.06 0.13 0.21 0.22
384 At4g02200 At-Dil9-5 110 Unknown Unknown 0.01 0.01 0.02 0.04

Values are mean values from three biological reps and significance is P <0.1 (see text). En Alt5’ss and En Alt3'ss—alternative 5’ splice site and al-
ternative 3’ splice site in exon, where n is the exon number. The number in brackets indicates the number of nucleotides added (+) or removed (—)
from the exonic sequence. IRn—retention of intron, where n is intron number [number in brackets indicates the size (nt) of the intron]. In AE—
alternative (cryptic) exon created in an intron, where n is the intron number [number in brackets indicates the size(s) of the alternative exon(s)].
Exons and introns are numbered with respect to the TAIR reference splice variant. FS—fully spliced; PTC —transcript containing premature
termination codon(s); ds SJ—presence of downstream splice junction(s). Numbers in bold—significant percentage difference >3%; numbers in
bold italic—significant percentage difference <3%. Full data set is presented in the Supplementary Table S2. Note that Arabidopsis SR proteins
are named according to the recently proposed nomenclature (77).
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Figure 2. Regulation of GRP7 and GRPS by alternative splicing and NMD. (A) GRP7 and (B) GRPS are known to be regulated by AS/NMD.
Figures show the GRP7 and GRPS gene and transcript structures and the alternative splicing events in the introns: alternative 5 splice sites generate
AS isoforms which increase in abundance in the upf7-5 and upf3-1 mutants as illustrated on scans generated from the ABI 3730 data by GeneMapper
(transcripts are arrowed). The significant increases in NMD-sensitive transcript abundance are shown in histograms of the ratio of normally spliced
and alternatively spliced isoforms (shaded). Significance: ***P< 0.01; **0.01 > P <0.05. For diagram key see legend to Figure 1.

upf1-5 and upf3-1 mutants are impaired in NMD and have
severe growth phenotypes but are viable (26,27).
Translation is required for NMD (22,59) and the transla-
tion inhibitor, cycloheximide, leads to accumulation of
NMD-sensitive transcripts in plants (27). Therefore a
5 hour cycloheximide treatment was used to inhibit trans-
lation and thereby NMD (27). Consequently, AS isoforms
which are targets of NMD are expected to increase in their
levels in the upf mutants and cycloheximide-treated plants.
Three biological replicates were analysed for each, and
significant changes in alternative splicing ratios were
determined by statistical analysis (see ‘Materials and
Methods’ section).

High frequency of novel alternatively spliced transcripts
in regulatory plant genes

Based on publications or plant databases the majority of
AS events were expected to generate two alternative
transcripts. However, the number of observed RT-PCR
products varied among the different amplified regions
from a single product to as many as 15 different alterna-
tively spliced products. Just over 950 RT-PCR products
were observed using the 289 primer pairs and therefore
approximately 350 new transcripts were discovered.
To identify the nature of the novel AS transcripts,

cloning and sequencing of RT-PCR products was
carried out (for examples of analysis see Supplementary
Figure S1). In addition, many were identified by RNA-Seq
(our unpublished data). In general, our data shows an
increase of AS frequency in our gene set by one third
compared to presently annotated events. The identifica-
tion of so many novel products illustrates that far more
alternative splicing occurs in Arabidopsis than is currently
known.

Identification of endogenous alternatively spliced targets
of nonsense-mediated decay

Our high-resolution RT-PCR system allowed the deter-
mination of the ratio of AS transcript variants for each
gene region amplified. Mean ratios of AS products
obtained with the upf mutants and cycloheximide treat-
ment were compared to the wild-type values to identify
the particular AS isoforms which increased significantly
when NMD is impaired. Significance was determined at
the P < 0.1 level, although for the vast majority significant
changes in AS isoform levels, the P-value was consider-
ably smaller (Supplementary Table S2). Of the >950 tran-
scripts in the study, 638 showed no significant change in
the transcript ratios between wild-type, mutants or
cycloheximide-treated plants. Of the 313 RT-PCR
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Figure 3. Genes with AS isoforms which increase in upf mutants. (A) At4g25500—SR protein gene, At-RS40. (B) At4g33060——cyclophilin 57,
CYP57. (C) At4g02200—drought-induced protein gene, At-Dil9-1. For all, the gene and transcript structures and relevant splicing events are
shown. AS isoforms which increase in the upf mutants are labelled with arrows on ABI3730 scans and the ratios of transcripts are shown in
histograms and significant increases are indicated. Significance: ***P <0.01; **0.01 > P <0.05. For diagram key see legend to Figure 1.

products that showed a significant change, 165 increased
in amount in at least one of the wupf mutants or
cycloheximide treatments (Figure 1B; Supplementary
Table S2). Thirty-three transcripts increased in both
mutants and cycloheximide-treated plants (Figure 1B).
A total of 106 transcripts were increased in one or other
mutant while 59 showed a significant increase only in the
cycloheximide-treated plants. Cycloheximide is used
widely as an NMD inhibitor but as cycloheximide is
a general translational inhibitor, other RNA degradation
pathways or cellular processes might also be affected by
this treatment and impact on transcript levels. Therefore,
the 106 transcripts which increased in the upf mutants and
the 165 which increased in mutants and cycloheximide
treatment represent a range of naturally occurring
alternatively spliced transcripts which are putatively
turned over by NMD and make up 11-17% of the total
transcripts analysed and 16-25% of the alternatively
spliced transcripts analysed.

We found that 87 and 121 genes of the 270 AS genes on
the panel (FigurelC; Supplementary Table S3) had at least
one AS isoform with increased abundance in the wupf
mutants or in the mutants plus CHX treatment, respect-
ively, suggesting that ~32% and 45% of AS genes
are regulated by NMD to some extent. At least 42%
(9273 genes out of 22302) of intron-containing genes in
Arabidopsis are alternatively spliced (36). With the caveat
that our gene set may contain some bias, we can extrapo-
late to suggest that around 13-18% of intron-containing
genes may be regulated by AS and NMD in Arabidopsis.

GRP7 and GRPS are genes encoding components of
a slave oscillator and are known to be auto- and
cross-regulated by alternative splicing and NMD (44,45)
and were included as controls. For both genes, the AS
isoform which is turned over by NMD increased

significantly as expected. The GRP7 isoform increased sig-
nificantly in both mutants and cycloheximide treatment
(Figure 2A; Table 1, primer pair 206) and significant
increases in the GRPS isoform were observed in upf3-1
and cycloheximide treatment (Figure 2B; Table 1, primer
pair 90). These results demonstrate that the AS RT-PCR
panel is able to detect significant changes in AS isoforms
due to NMD. Other examples of AS/NMD transcripts
are shown in Figure 3. At-RS40, an SR protein gene,
CYP57, a peptidyl-prolyl cis-trans isomerase gene, and
the drought-induced protein 19-like 1 gene, At-Dil9-5,
have alternative splicing events which introduce PTCs
and increase significantly in mutants and cycloheximide
treated plants. In general, the increase in levels of the
NMD-sensitive AS isoforms in the mutants and after
cycloheximide treatment varied with different genes.
Interestingly, the steady state levels of the AS transcripts
turned over by NMD varied greatly in wild-type plants
from being virtually undetectable to tens of percent of
the transcripts from a gene (Figure 3B and C; Table 1
and Supplementary Table S2). Thus, AS/NMD transcripts
from different genes are differentially abundant in
wild-type plants which reflects the different efficiency of
alternative splicing and rates of turnover by NMD. This
analysis shows that coupled AS/NMD can influence gene
expression significantly and that even low abundant alter-
native transcripts (at steady state level) might turn over
a quite significant proportion of the RNA produced
from a gene.

upf1-5, upf3-1 and cycloheximide treatment impair
nonsense-mediated decay to different degrees

More transcripts (102 transcripts) increased significantly
in the wupf3-1 mutant than in wupfl-5 (47 transcripts)
while 136 transcripts increased significantly in the
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cycloheximide-treated plants (Figure 1B). This suggests
that in terms of NMD impairment, the upf3-1 allele is
stronger than the upfi-5 allele which conforms to the
severity of the phenotype of the particular mutants
which was described previously (26,27,31) and that
UPF3 transcripts are up-regulated in upfi-5 (60). In
addition to the described late flowering phenotype, we
have observed that both upf7-5 and upf3-1 mutants have
accelerated senescence and again upf3-1 showed the
stronger phenotype (Supplementary Figure S2). Some
transcripts only increased with cycloheximide treatment
and were not visible in the wild-type or mutant plants.
Thus, cycloheximide has a much stronger effect on the
number of transcripts which increased in abundance and
on the degree of increase than wupf3-1 with the smallest
increases being seen in upf1-5 (Supplementary Tables S4
and S5). Some transcripts did not follow this pattern
suggesting perhaps differential or additional functions of
the two different NMD factors in different mechanisms
of NMD (28). There was substantial overlap between
transcripts which increased in abundance in cycloheximide
treatment and in the mutants (Figure 1B). In addition,
we analysed 11 transcripts which increased only in the
cycloheximide treatment in detail and the majority
showed NMD characteristics (PTCs/downstream splice
junctions or uORFs) (Supplementary Table S2). This
suggests that AS transcripts which increase in the
cycloheximide treatment are turned over by NMD with
the caveat that some transcripts may be turned over by
other degradation pathways.

Features of alternatively spliced transcripts which are
sensitive to nonsense-mediated decay

Previously, 1% of plant protein-coding genes was shown
to have increased transcript levels in NMD-deficient
plants using tiling arrays but the features of the AS tran-
scripts which were NMD targets were not specifically
investigated (50). The 165 endogenous AS isoforms
which show significant increases in levels in the mutants
and cycloheximide-treated plants (Table 1; Supplementary
Table S2) are expected to be turned over by NMD and
therefore should contain NMD signals. To identify the
NMD features, each transcript which increased signifi-
cantly in at least one of the mutants and 11 of the tran-
scripts which increased only in cycloheximide-treated
plants (117 transcripts in total) was characterized in
terms of whether they contained PTCs, had splice junc-
tions downstream of the authentic stop codon or PTCs,
had long 3’-UTR sequences or contained an upstream
ORF (Figure 1D). In addition, other AS events in the
same gene (annotated in TAIRS) and novel RT-PCR
products for which sequence was generated were
analysed. Of the 117 transcripts, the sequences of 8
remain elusive and could not be characterized. Of the
remaining 109 transcripts, 94 (86%) clearly contained
NMD features. This includes a major group of 74 tran-
scripts containing PTCs more than 50-55nt upstream of
splice junctions and long 3’UTRs, classical features of
NMD substrates (61). The NMD-sensitivity of a further
nine transcripts could be explained on the basis of long
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3’-UTRs and/or where the distance between the authentic
stop codon and splice junction of an intron in the 3’-UTR
was changed due to alternative splicing. In addition, the
alternative splicing events of 12 genes (14 transcripts)
involved introns in the 5-UTR which affected the
presence or absence, length and position of uORFs.
In 11 of these transcripts, the presence of one or more
uORFs correlated with NMD. Finally, for the remaining
12 transcripts, the AS event monitored did not explain the
turnover by NMD but of these, four genes had known AS
events elsewhere in the transcripts which could generate
NMD. The remaining transcripts could ecither be genes/
transcripts which have unknown NMD-inducing AS
events elsewhere in the gene or may represent genes
where changes in AS isoform levels are due to secondary
effects on mRNA accumulation. Therefore, the vast
majority of the endogenous NMD-sensitive transcripts
analysed had characteristic features of NMD substrates
in plants.

Alternative splicing in 3'-UTRs modulates
nonsense-mediated decay

It is not widely appreciated that alternative splicing in the
untranslated regions of a gene (which does not create a
PTC) may induce NMD sensitivity and be a mechanism
of fine regulation of transcript abundance. Also, little is
known about the consequences of AS of such UTR
introns. We have identified two genes in our panel where
AS occurred in 3-UTR introns and thus did not create a
PTC, but at least one AS isoform in each gene was sensi-
tive to NMD. Alternative splicing in the 3-UTR of
At2g38880 (NF-YBI/HAP3A transcription factor) and
Atl1g72560 (PAUSED/Exportin-t) generated two and
three isoforms, respectively, with different sensitivity to
NMD (Figure 4). Only the isoforms with a distance
>50-55nt from the authentic stop codon were subjected
to NMD (Table 1). Thus, alternative splicing can affect
the distance between the authentic stop codon and down-
stream splice junction in 3’-UTRs and determine whether
a transcript is turned over by NMD.

The position of PTCs defines the length of 3'-UTRs
which can trigger nonsense-mediated decay

Current models for NMD suggest that the length of the
3-UTR (distance between the stop codon or PTC and
3’-end of the transcript—long 3’-UTR) can be one of the
triggers of NMD (Figure lc). For all of the analysed AS
transcripts containing PTCs, we analysed the distance
between the first PTC and the 3’-end of the transcript
(Figure 5; Supplementary Table S2). These distances
appeared to show a bimodal distribution with the
majority (58 transcripts) being longer than 600nt and
twenty transcripts (from 16 genes) shorter than 550 nt.
When these latter transcripts were examined, two-thirds
were from genes with relatively short coding sequences
(500-720 bp) and all but five had splice junctions down-
stream of the PTC such that they conformed to expected
features of NMD substrates. The five transcripts without a
downstream splice junction had PTC to 3’-end distances
of 366, 370, 440nt and two transcripts had 441 nt and
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Figure 4. Alternative splicing of introns in the 3-UTR influences
turnover of AS isoforms by NMD. Exon-intron structures of genes
and transcripts of (A) At2g38880—NF-YBI1 transcription factor,
NF-YBI/HAP3a and (B) Atlg72560—PSD/exportin-t. Alternative
splicing of the 3’-UTR introns in these genes generate transcripts
with different distances between the authentic stop codon and down-
stream splice junction consistent with the 50-55nt rule where distances
>50-55nt trigger NMD. Stop codon to splice junction distances are
indicated along with whether the AS isoform is turned over by NMD
or not. For diagram key see legend to Figure 1.

assuming that there are no other AS events in the genes
causing NMD, these could represent ‘long 3’-UTR’ tran-
scripts. We also determined the distance between the au-
thentic stop codon and 3’-end of the gene in the normally
spliced transcripts from the same genes. The mean
distance was 242 nt and the majority of transcripts were
in the range of 22-350nt (Figure 5). Eight fully spliced
transcripts (from 7 genes) had a 3-UTR of >350nt
ranging from 354 to 718 nt. Taken together, these data
suggest that long 3-UTRs which trigger NMD in
Arabidopsis mRNAs are in general >350nt but there are
exceptions where transcripts with longer 3'-UTRs do not
show evidence of NMD.

uORFs overlapping the main start codon induce
nonsense-mediated decay

Previous studies in Arabidopsis suggest that uORF can
trigger NMD (35,60). Preliminary features of such
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Figure 5. Distribution of stop codon to 3’-end distances. Distribution
of frequency of distances in nucleotides (nt) between the first premature
termination codon and the 3’-end of the transcript (shaded) compared
to the distance between the authentic stop codon and 3’-end of the
transcript of cognate genes (unshaded).

uORFs were defined using model constructs as being the
first uORF in a transcript, at least 10nt from the 5-end
and longer than 35-50 amino acids (35). However, the
uORF in AtMHX was only 13 amino acids long and
affected mRNA levels and translational efficiency (60).
In addition, the link between AS in 5UTRs and the
presence, size, and positions of uUORFs which may then
trigger NMD has never been investigated in plants or
in endogenous transcripts. In our study, we identified
12 genes with alternative splicing of 5-UTR introns
where transcripts increased significantly in upf mutants
and/or cycloheximide treated plants. uORFs of between
3 and 123 amino acids were present in the fifteen different
AS isoforms of these genes.

Seven genes had uORFs with the interesting unifying
feature that the AS isoforms turned over by NMD con-
tained an uORF which overlapped the translation start
site of the main ORFs (Figure 6A—C; Supplementary
Figure S3; Table 1). For example, in the zinc finger
protein gene (At2g02960), alternative splicing produces
six different AS transcripts through use of multiple alter-
native 3’ splice sites (Figure 6A). Four of these produce
a 26 amino acid uORF which overlaps the AUG transla-
tion start site of the main ORF and all four are NMD
sensitive. The fully spliced transcript and two shorter
alternatively spliced isoforms contained short uORFs
which do not overlap with the AUG. AS in the 5YUTR
of At3g49430 (At-SR34a) generated three new uORFs of
13, 30 and 61 amino acids (Figure 6B). The stop codon of
the 61 amino acid uORF overlapped the AUG of the main
ORF and this transcript is NMD sensitive. Similarly,
the fully spliced product of At3g20270 contains a uORF
of 22 amino acids where the stop codon of the uORF lies
downstream of the AUG of the main ORF (Figure 6C)
and is NMD sensitive whereas the other AS transcripts
without this feature are NMD resistant. Other examples
of genes showing this phenomenon are shown in
Supplementary Figure S3. Taken together, our analysis
shows that many transcripts containing a uORF which
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Figure 6. Alternative splicing of introns in the 5-UTR affects the
presence, size and position of uORFs and influences turnover of AS
isoforms by NMD. Exon-intron structures of genes and transcripts of
(A) At2g02960—zinc finger transcription factor, (B) At3g49430—SR
protein gene, At-SR34a, and (C) At3g20270—Ilipid-binding serum
glycoprotein gene. These examples illustrate alternative splicing events
in 5-UTR introns which generate uORFs which overlap the main ORF
and correlate with NMD. (A) four of the AS isoforms contain a 26
amino acid uORF (A-D) which overlaps the translation start site of the
main ORF and correlates to NMD; (B) an uORF of 61 amino acids
overlaps the authentic translation start codon in the AS product; and
(C) uORF1 overlaps the translation start of the main coding sequence
in the fully spliced transcript while in the alternatively spliced isoform
the stop codon of uORF?2 lies upstream of the main translation start
site. Shaded rectangles below transcripts—uORFs; FS—fully spliced;
AS—alternatively spliced. Sequences below the figures show the
relationship between the stop codon of uORFs and the translational
start AUG of the main ORF. For diagram key see legend to Figure 1.
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overlaps the authentic start codon are subject to NMD
and identifies a new feature of uORFs which is capable
of inducing NMD in plants. The analysis also indicates
that not all features of uORFs which trigger NMD have
been resolved as we find examples where there is no cor-
relation of the presence of uORFs of between 43 and
92 amino acids and NMD (see ‘Discussion’ section).

Splice isoforms with retained introns are not sensitive
to nonsense-mediated decay

Intron retention is the most abundant type of alternative
splicing in plants—41% (62). In general, due to the
UA-richness of plant introns, most intron retention
events create PTC transcripts. These transcripts are con-
sidered as potential targets of NMD as it has been shown
in other organisms that transcripts with retained introns
are turned over by NMD (63). Of the 90 characterized AS
transcripts which increased in one or both of the upf
mutants, only four had retained introns (Supplementary
Table S2) suggesting that IR transcripts were under-
represented. We therefore examined all of the readily
detectable intron retention events on our panel where
the IR transcripts made up at least 2% of the total. Of
the 29 such IR transcripts, nineteen contained PTCs with
downstream splice junctions and/or had long 3’-UTRs
(all >400nt) and therefore have features of typical
NMD substrates (Table 2; Figures 1D and 7). Despite
containing these NMD signals, these intron retention
isoforms did not increase in abundance in the upf
mutants and/or cycloheximide treatment suggesting that
they are not turned over by the NMD pathway.
Interestingly, in a number of these genes, other alterna-
tively spliced transcripts were produced which contained
PTCs and were subject to NMD. In two cases in par-
ticular, the other AS events involved the same in-
tron as the retained intron (Figure 7A and B). In
At5g37055 (SEF—SERRATED LEAVES AND EARLY
FLOWERING), there are three different intron retention
transcripts involving introns 1 and 2, all containing PTCs,
none of which is a target of NMD (Figure 7C). However,
use of an alternative 3’ splice site in exon 3 generates a
PTC+ transcript which is turned over by NMD (Figure
7C and Table 2). A further example is At5g24270, coding
for SOS3—SALT OVERLY SENSITIVE 3, a
calcineurin-like protein, where retention of intron 5 was
NMD resistant while use of an alternative 5 splice site in
the next intron, also creating a PTC, significantly up
regulated the Ilatter transcript in upf3-I and
cycloheximide-treated plants (Figure 7D and Table 2).
The first PTC generated in these two transcripts are only
30nt apart (Figure 7D) arguing against a position effect of
the PTC. Thus, transcripts from the same gene which
generate PTCs in very similar positions either through al-
ternative splicing or intron retention events can be differ-
entially sensitive to NMD. It appears that if a transcript is
generated where an intron has not been spliced (retained
intron) then the transcript is not NMD sensitive.

Besides the above PTC+ NMD-insensitive events, six
other IR transcripts were effectively PTC- and were not
targets of NMD (Supplementary Table S6). In these


http://nar.oxfordjournals.org/cgi/content/full/gkr932/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr932/DC1
http://nar.oxfordjournals.org/cgi/content/full/gkr932/DC1

2464 Nucleic Acids Research, 2012, Vol. 40, No. 6

Table 2. PTC", NMD-insensitive intron retention transcripts and NMD-sensitive AS transcripts from the same genes

Primer GenelD Name Exon Primer  AS event Transcript wt  upfl-5 upf3-1 NMD
pair no. sites
50 At5g43910 pfkB-type 12 Ex8-10 FS 0.58 0.46 0.39
carbohydrate IR9 PTC"; ds SJ 0.05 0.05 0.04 No NMD
kinase family E10 Alt 3'ss(—19) PTC"; ds SJ 0.35 0.48 0.56 NMD
protein
346 At4g23260 CRKI18 7 Ex1-3 FS 0.09 0.09 0.17
IR1 PTC"; ds SJ 0.90 0.90 0.82 No NMD
unknown (245 bp) 0.00 0.00 0.01 NMD
316 At2g28550 TOEI 8 Ex1-4 FS 0.93 0.94 0.96
IR2 PTC"; ds SJ 0.07 0.06 0.04 No NMD
312 At5g13790 AGLI15 8 Ex1-7 FS 045 0.47 0.47
IR2 and IR3 PTC"; ds SJ 0.06 0.06  0.07 No NMD
363 At5g24270 SOS3/CBL4 8 Ex4-7 FS 0.83 0.82 0.77
ES Alt5'SS(+29) PTC"; ds SJ 0.06 0.08 0.13 NMD
IR4 PTC"; ds SJ 0.03 0.03 0.02 No NMD
unknown (299 bp) 0.02 0.02 0.03 NMD
unknown (330 bp) 0.00 0.01 0.01 NMD
313 At5g37055 SEF 4 Ex1-4 FS 0.79 0.78 0.77
IR1 and IR2 PTC"; ds SJ 0.03 0.03 0.03 No NMD
IR1 PTC"; ds SJ 0.13 0.13  0.12 No NMD
IR2 PTC"; ds SJ 0.01 0.01 0.01 No NMD
E3 Alt 3'ss(—11) PTC"; ds SJ 0.02 0.04 0.05 NMD
372 Atlg76460 RRM-containing 7 Ex1-3 FS 0.88 0.84 0.79
protein IR1 PTC"; ds SJ 0.03 0.03 0.02 No NMD
E2 Alt 3'ss(+9) PTC"; ds SJ 0.04 0.05 0.07 NMD
E2 Alt 3'ss(+54) PTC"; ds SJ 0.05 0.08 0.12 NMD
345 Atl1g49730 protein kinase 9 Ex4-7 FS 0.89 0.81 0.77
IR6 PTC"; ds SJ 0.02 0.03 0.03 No NMD
E7 Alt 3'ss(+37) PTC"; ds SJ 0.08 0.16 0.21 NMD
321 At4g27410 RD26 3 Ex1-3 FS 0.93 0.92 0.93
IR1 PTC"; ds SJ 0.02 0.02 0.02 No NMD
325 At2g47890 Zn finger 4 Ex1-4 FS 0.92 0.93 0.88
(B-box type) IR3 C-terminal change 0.06 0.06 0.10 No NMD
protein IR2 PTC"; ds SJ 0.01 0.01 0.01 No NMD
373 At3gl13224 RRM-containing 6 Ex4-5/6 FS 0.90 0.89 0.90
protein IR5 PTC"; long 3 UTR (1395nt) 0.10 0.11 0.10 No NMD
335 At5g66210 CPK28 13 Ex11-13 FS (I12 in 3’ UTR) 0.01 0.01 0.01
IR11 and IR12 PTC"; long 3UTR (686nt) 0.90 0.91 0.90 No NMD
ES12 C-terminal change 0.02 0.02 0.01 No NMD
326 Atl1g69250 NTF2 8 Ex6-8 FS 0.92 0.92 0.94 **
IR6 PTC"; long 3'UTR (415nt) 0.08 0.08 0.06 No NMD
333 At3g16800 PP2C 6 Ex4-6 FS 0.97 0.97 0.97
IRS PTC"; long 3UTR (469 nt) 0.03 0.03 0.03 No NMD
317 At2g28550 TOEI 8 Ex6-8 FS 0.97 0.98 0.98
IR7 PTC"; long 3UTR (493 nt) 0.02 0.02 0.01 No NMD
366 At5g25610 RD22 4 Ex1-3 FS 0.97 0.95 0.97
IR2 PTC"; dsSJ 0.03 0.05 0.02 No NMD
374 At4g36960 RRM-containing 13 Ex1-3 FS 0.84 0.74 0.61
protein IR1 (5 UTR) PTC'; uORF in 5 UTR 0.05 0.15 0.32 NMD
IR2 PTC"; ds SJ 0.11 0.10 0.07 No NMD

Primers are positioned in the exons indicated and amplify across at least two introns. En Alt5’ss and En Alt3'ss—alternative 5" splice site and
alternative 3’ splice site in respective exon, where n is an exon number. The number in brackets indicates the number of nucleotides added (+) or
removed (—) from the exonic sequence. IRn—retention of intron, where n is an intron number. The number in brackets indicates the size (nt) of the
intron. Exons and introns are numbered with respect to the TAIR reference splice variant. FS—fully spliced; PTC+—transcript containing premature
termination codon(s); ds SJ—presence of downstream splice junction(s); Numbers in bold—significant difference >3%; numbers in bold italic—
significant difference <3%.

transcripts, the introns were either (i) in frame (no PTC),

(Supplementary Tables

S2 and So6).

One of these

(i1) towards the end of the transcript such that the PTC
was close to the authentic stop and would lead to a change
in C-terminal sequence, (iii) in the 5-UTR with uORFs
which do not trigger NMD, or (iv) there was no evidence
of an intron at the suggested position in the transcript.
Only four intron retention transcripts increased sig-
nificantly in the mutants and/or cycloheximide treatment

(At4g36960) retained intron 1 in the 5UTR which
generated an uORF overlapping the authentic translation
start site and therefore is expected to trigger NMD. In the
other cases, potential NMD-causing AS events may
occur elsewhere in the gene.

In conclusion, our analysis suggests that plant tran-
scripts with retained introns are usually not targets for
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Figure 7. Intron retention transcripts are not turned over by NMD. Schematic figures of genes which produce detectable intron retention transcripts
and other alternatively spliced transcripts with different NMD phenotypes: (A) Atlg76460; (B) At1g49730; (C) At5g37055 and (D) At5g24270. Below
each gene, structures of transcripts in the amplified region are shown and display different alternative splicing events. Data for each transcript is
shown alongside (—: no change; +, ++ and +++: transcript level increases significantly in upf mutants with P <0.1; 0.01 > P <0.05 and P <0.01,
respectively. For diagram key see legend to Figure 1. Grey lines below introns labelled IR—retained introns; FS—fully spliced; AS—alternatively

spliced.

NMD provided there is no other alternative splicing event
which produces features for NMD in the transcript.

DISCUSSION

Alternative splicing is a major determinant in the produc-
tion of variant mRNA transcripts some of which contain
PTCs and might be targeted by NMD. This pathway has
a significant impact on the expression of genes involved
in plant development and adaptation [reviewed (24,25)].
This raises the important questions of how frequently the
expression of plant genes is regulated by coupled AS/
NMD and what are the structural features of endogenous
NMD substrates. Using a high-resolution RT-PCR
system we have examined a large population of 950
endogenous transcripts from 270 genes and have
characterized over 100 NMD-sensitive AS transcripts in
detail. This represents the most extensive and accurate
analysis of AS and AS/NMD in endogenous transcripts
in plants. We demonstrate (i) a previously unknown
high overall prevalence of AS and AS/NMD; (ii) that
NMD-sensitive transcripts are readily detected in
wild-type plants often representing substantial propor-
tions of the total transcripts of a gene; (iii) that AS in
5-UTRs and 3’-UTRs regulates transcript levels by ren-
dering them NMD sensitive; (iv) that uORFs overlapping

the start codon can trigger NMD; and (v) that transcripts
with intron retention events in plants do not trigger NMD
even though they possess classical features inducing
NMD.

Coupling AS to NMD is a frequent event in plant
gene expression

In the course of our analysis we have discovered an
unexpectedly high number of novel AS transcripts. This
follows from the sensitivity of the RT-PCR system which
can detect transcripts of <1% of the total transcripts of a
gene; on the other hand, many of the novel transcripts
were abundant but not represented in databases. Thus,
clearly much more AS is occurring in Arabidopsis than is
currently estimated and annotated, especially considering
that we have assessed AS/NMD only in plants at one
developmental stage (3 week old) and have not taken
into account many developmental stage-, tissue- or
condition-specific AS events.

Genome-wide analyses in eukaryotes have shown that
up to 20% of the transcriptome can be affected by NMD
[reviewed in (12,53,64)] and that around 20-30% of alter-
natively spliced transcripts in humans contain PTCs and
are potential targets of NMD (37). In plants, little
is known about the contribution of NMD to regulation
of gene expression. A recent genome-wide tiling array
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analysis in Arabidopsis found that only around 1% of
plant protein-coding genes were affected (50) while
an RNA-Seq analysis which showed that 42% of
Arabidopsis genes underwent AS predicted that around
78% of AS isoforms could be putative targets of NMD
(36). By comparing our AS/NMD gene set to those
detected using expression/tiling arrays (31,50) we found
only two genes in common (data not shown) and, in
addition, known AS/NMD substrates such as GRP7 and
GRPS or SR genes (45,46) were not detected using expres-
sion or tiling arrays (31,50). Similarly, very little overlap in
NMD-affected gene sets was found in Drosophila when
comparing expression microarray and splicing-sensitive
array results (53). This discrepancy is most likely due to
the sensitivity and resolution of the AS RT-PCR panel
which is able to detect significant changes in individual
transcript levels which would not be detected in micro-
array experiments where the usual cut-off is >1.5-2-fold.

In this study, 11-17% of the total number of transcripts
and 16-25% of the alternatively spliced transcripts
analysed were potential NMD substrates suggesting that
about 32-44.8% of AS genes are regulated by NMD.
Extrapolating from these values and the estimate of
the frequency of AS (36), about 13-18% of Arabidopsis
intron-containing genes are potentially regulated by
AS/NMD. This compares well to the 14% and 20%
reported for Drosophila and Caenorhabiditis elegans
(64,05).

Features of NMD-sensitive transcripts in plants

Rules for NMD in plants have been established based on
the behaviour of a small number of genes or artificial
constructs (28,32-35). While the general principles of
intron-based and long 3’-UTR dependent NMD have
been described (Figure 1C), little investigation of this
behaviour in endogenous NMD-sensitive transcripts has
been performed until now. Here, we determined the
features of individual AS transcripts and found that the
majority of AS/NMD transcripts (~85%) contained
PTCs with downstream splice junctions and/or long
3’-UTRs and therefore comply with existing NMD rules.
In plants the average length of the 3’-UTR is 241 nt (66)
and our results show that a ‘long 3'-UTR’ capable of trig-
gering NMD in Arabidopsis is usually >350nt. A similar
estimate was obtained using NMD-test constructs where
instead of the 3’-UTR length, the distance between a PTC
and the authentic stop codon was defined previously as
around 300 nt (34). In addition, however, we identified a
number of exceptions where transcripts with 3’-UTRs
>350nt were not turned over by NMD suggesting that
additional yet unidentified features are involved in trigger-
ing NMD.

Our results demonstrate that alternative splicing of
introns in either the 3'-UTR or 5-UTR can determine
whether transcripts of endogenous genes are targets of
NMD or not and thereby regulate transcript levels. We
identified two genes where AS in 3’-UTR introns rendered
AS transcripts NMD-sensitive by increasing the distance
between the authentic stop codon and the splice junction
to more than 50nt. This agrees with the rules for EJC

complexes trigging NMD (Figure 1D). Interestingly,
one of the genes showing regulation by AS/NMD in a
3-UTR intron is the NF-YBI1 transcription factor
subunit involved in photoperiod-regulated flowering and
in drought stress responses, and whose over-expression
leads to increased drought resistance (67).

Alternative splicing of introns in 5-UTRs can change
the length and sequence of the 5-UTR or remove the
authentic AUG (again altering the 5-UTR) and thereby
affect the presence/absence, number, size and position of
uORFs. In human, polymorphisms or mutations which
create or remove UORFs can suppress mRNA and
protein levels and cause disease (68). uORFs in 5-UTR
regions can affect gene expression by different mechan-
isms: encoding an active peptide, affecting translational
efficiency or reducing transcript levels by triggering
NMD (68-70). In eukaryotes, ribosomes generally load
onto mRNAs at the 5-end and scan to the first AUG
translation start codon. If an uORF is translated, the
uORF stop codon might be recognized as a PTC (with
the additional features of creating a long 3’-UTR and
the high likelihood of downstream splice junctions) and
thereby targeting the transcript to the NMD pathway.
Around 20% of plant genes contain uORFs (35,71) but
their fate in terms of whether they are translated or
scanned through, trigger NMD or allow re-initiation of
translation is not known. We found a strong correlation
between presence of an uORF which overlapped the AUG
of the main ORF and NMD most likely triggered by
generating a long 3'-UTR and downstream splice junc-
tions. We also found other genes where the presence of
‘fully upstream’ uORFs correlated with activation of
NMD which indicates inefficient reinitiation of translation
of their main ORFs. However, other AS transcripts con-
tained short uORFs and/or ‘long” uORFs (e.g. 43, 55 and
92 amino acids) which did not trigger NMD. Thus,
the factors which determine whether or not particular
uORFs activate NMD are clearly complex and poorly
understood. With around 20% of Arabidopsis genes
containing uORFs and the frequent occurrence of AS in
5-UTRs, AS/NMD involving uORFs is likely to be
important in regulation of expression of many plant genes.

Retained introns do not trigger NMD

Besides identifying NMD-sensitive AS transcripts, we also
identified AS transcripts which contained NMD signals
but which were immune to NMD. A comprehensive
analysis of AS/NMD in mammalian tissues indicated
that not all characteristics of NMD-targeted RNAs have
been identified and that not all RNAs containing known
NMD features are in fact turned over by NMD (52).
Surprisingly, we found that the majority of intron reten-
tion transcripts which we analysed were not turned over
by NMD despite containing PTCs, downstream splice
junctions and long 3’-UTRs. However, transcripts from
the same gene with other types of alternative splicing
events in the same or nearby intron which generated
PTCs in very similar positions were sensitive to NMD.
This unexpected finding is in contrast to current assump-
tions that plant transcripts with retained introns and PTCs



are subject to NMD as such transcripts have been found
on ribosomes (72,73), a prerequisite for NMD. More
importantly, in other organisms transcripts with retained
introns and PTCs are subjected to NMD suggesting a dif-
ferent strategy in plants as intron retention transcripts
avoid the NMD machinery and have a different fate
[see below; (63,74)]. In addition, our clear demonstration
that intron retention events which create a PTC are NMD
insensitive may explain the high frequency of IR events
identified in plants where it constitutes the major AS
event.

We previously detected aberrant mRNAs in the nucle-
olus of Arabidopsis of which around 80% were intron
retention events (75). We also found UPF2 and UPF3 to
localize to the nucleolus and hypothesized that this may be
the site of assembly of NMD factors onto aberrant
mRNAs prior to NMD. From the data presented here,
IR transcripts avoid NMD and their accumulation in
the nucleolus may therefore have a different function.
Although the current model of NMD in mammals is
that PTCs are recognized in the pioneer round of transla-
tion as the mRNA exits the nuclear pore, it is not clear
whether this model applies to plants. However, if transla-
tion is required for NMD, one possible explanation is
that transcripts containing introns or intron fragments
are recognized as aberrant prior to export by virtue of
proteins binding to the UA-rich intron sequences (75)
and therefore do not connect with the NMD machinery.
Further research will be needed to determine the fate
of different plant PTC-containing transcripts in terms of
their intranuclear and intracellular localization, dynamics
and transport and how and why intron retention
transcripts escape NMD in plants.

Significance of AS/NMD for plant gene expression
pattern

The endogenous NMD-sensitive transcripts showed great
variation in their steady state levels (i.e. levels detectable in
wild-type plants) and in the degree of increased abundance
in the different mutants and cycloheximide treatment.
This variation is likely to reflect gene-specific differences
in transcription levels, frequency of AS producing the
different isoforms, or tissue-specific AS occurring only in
particular organs or cell types. In addition, the
transcript-specific efficiency of NMD turnover could
reflect features of the transcripts such as position of
PTC and downstream splice junctions, length of 3’-UTR
and RNA secondary structure. Importantly, for some
genes, non-productive mRNAs (PTC-containing; unable
to produce full-length protein) which includes transcripts
targeted by NMD and transcripts which are NMD-
insensitive such as intron retention transcripts, form a
significant proportion of steady state levels of transcripts
in wild-type plants. One consequence is that traditional
expression microarrays are unable to distinguish between
productive and non-productive mRNAs and therefore
functional transcript abundance for these genes is
over-estimated. Clearly, alternative splicing information
must be integrated with transcriptional data to provide
true measures of gene expression.
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The coupling of AS and NMD is an important general
mechanism in gene expression regulation. It modulates the
relative levels of mRNA isoforms from a gene which are
either productive (protein-coding) or unproductive AS
variants and thereby regulates protein levels. Recent
examples of plant genes regulated or putatively regulated
by AS/NMD in plants are GRP7/8 and SOC! (involved in
the circadian clock and flowering control, respectively),
SR and PTB protein splicing factors (involved in a
range of developmental and stress response processes)
and HSF2A (a heat shock factor) (43-48.,76). Here,
despite only around 270 genes being analysed, AS/NMD
has been identified in 121 genes (Tablel; Supplementary
Table S3) playing central roles in cellular processes: tran-
scription factors, splicing factors, RNA-binding proteins,
RNA helicases, spliceosome and exon junction complex
proteins, tRNA export, signal recognition particle
and ribosomal proteins. Components of developmental
pathways also show NMD-mediated turnover of AS tran-
scripts, for example, different MAF genes and VRN2
(flowering time) and CCAl and PRR9 (core circadian
clock). Finally, a number of genes involved in signalling
and stress response pathways undergo AS/NMD: the
calcium-dependent salt stress signalling pathway protein
genes SOS2 and SOS3, phosphatases and kinases (e.g. the
SNF-like protein kinase, AtK/N1) and various tempera-
ture, drought and salt response factors (e.g. SRF2,
HSF2A4). The identification of many genes in a wide
range of processes and pathways suggests that AS/NMD
is a widespread regulatory mechanism in plants.

ACCESSION NUMBERS

The Arabidopsis Genome Initiative numbers for UPFI
and UPF3 are At5g47010 and At1g33980. AGI locus iden-
tifiers of genes analyzed in this article are listed in
Supplementary Table S1.

SUPPLEMETARY DATA

Supplementary Data are available at NAR Online:
Supplementary Tables S1-6, Supplementary Figures S1-3.
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