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Abstract
We previously demonstrated that 4-oxoretinol (4-oxo-ROL) activated retinoic acid receptors
(RARs) in F9 stem cells. We showed that 4-oxo-ROL inhibited the proliferation of normal human
mammary epithelial cells (HMECs). To understand the mechanisms by which 4-oxo-ROL
regulates HMEC growth we examined gene expression profiles following 4-oxo-ROL or all-trans
retinoic acid (tRA). We also compared growth inhibition by tRA, 4-oxo-ROL, or 4-oxo-RA. All
three retinoids inhibited HMEC proliferation. Gene expression analyses indicated that 4-oxo-ROL
and tRA modulated gene expression in closely related pathways. The expression of many genes,
e.g. ATP-binding cassette G1 (ABCG1); adrenergic receptorβ2 (ADRB2); ras-related C3
botulinum toxin substrate (RAC2); and short-chain dehydrogenase/reductase 1 gene (SDR1) was
changed after 4-oxo-ROL or tRA. Metabolism of these retinoids was analyzed by high-
performance liquid chromatography(HPLC). In 1 μM tRA treated HMECs all of the tRA was
found intracellularly, and tRA was the predominant intracellular retinoid. In 1 μM 4-oxo-ROL
treated HMECs most 4-oxo-ROL was esterified to 4-oxoretinyl esters, no tRA was detected, and
4-oxo-ROL and 4-oxo-RA were observed intracellularly. In 1 μM 4-oxoretinoic acid (4-oxo-RA)
treated HMECs little intracellular 4-oxo-RA was detected; most 4-oxo-RA was in the medium.
Our results indicate that: (a) 4-oxo-ROL regulates gene expression and inhibits proliferation of
HMECs; (b) 4-oxo-ROL and tRA regulate some of the same genes; (c) more tRA is found in cells,
as compared to 4-oxoretinoic acid, when each drug is added at the same concentration in the
medium; and (d) the mechanism by which 4-oxo-ROL exerts its biological activity does not
involve intracellular tRA production.

Keywords
ABCG1; biomarkers; cell growth arrest; gene expression profiling; gene microarray; HPLC;
normal human breast epithelial cell; 4-oxo-RA metabolism; 4-oxoretinol; retinoic acid; RA
metabolism; retinoic acid receptors; retinoid metabolism; SDR1; transcription; transcriptomics

INTRODUCTION
Retinoic acid (tRA) and some of its synthetic derivatives influence cell growth and
differentiation. At a molecular level, RA and various other synthetic retinoids act via
binding and activating nuclear receptors, the retinoic acid receptors and retinoid X receptors,
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which are transcription factors that directly regulate the transcription of certain “target”
genes (Altucci and Gronemeyer, 2001; Mongan and Gudas, 2007). Retinoids inhibit the
proliferation of many types of cells by regulating the expression of several cell cycle
proteins (Faria et al., 1998a; Li et al., 2004; Love and Gudas, 1994; Niles, 2000a; Teixeira
and Pratt, 1997; Zhou et al., 1997). Retinoids also play important roles during embryonic
development. Vertebrate embryos that were either vitamin A-deficient or exposed to excess
retinoids exhibit extensive abnormalities (Gudas, 1994; Lohnes et al., 1995; Means and
Gudas, 1995; Ross et al., 2000; Smith et al., 1998; Zile, 1998; Zile et al., 2000).

Aberrant signaling in the retinoid signaling pathway is involved during the process of
carcinogenesis. For example, abnormal metabolism of retinoids and the reduced expression
of RARβ have been observed in many malignant cells, as well as in the transition from pre-
malignant lesions to aggressive carcinomas (Arapshian et al., 2000; Love and Gudas, 1994;
Niles, 2000b; Qiu et al., 1999; Sun and Lotan, 2002; Swift et al., 2006; Swisshelm et al.,
1994; Widschwendter et al., 2001; Xu et al., 1994; Yang et al., 2001). The expression of the
gene encoding LRAT (lecithin:retinol acyltransferase) is lower in human breast carcinoma
patient specimens and cell lines as compared to normal breast tissues (Chen et al., 1997;
Sheren-Manoff et al., 2006). LRAT esterifies retinol (vitamin A) in various types of
epithelial cells, including breast epithelial cells (Randolph et al., 1991). Moreover,
postmenopausal breast cancer patients with low plasma retinol showed a poorer prognosis
than those with higher plasma retinol levels (Formelli et al., 2009). Bexarotene (LG1069,
Targretin) and other synthetic retinoid X receptor selective retinoids have shown efficacy in
preventing breast cancer in several animal models (Abba et al., 2009; Abba et al., 2008;
Bischoff et al., 1999; Brown et al., 2008; Gottardis et al., 1996; Li et al., 2008; Liby et al.,
2008; Wu et al., 2002), in inhibiting human breast cancer cell proliferation (Kim et al., 2006;
Wang et al., 2006; Wu et al., 1997), and in clinical trials (Esteva et al., 2003). For these
reasons, retinoids have been regarded as useful therapeutic and chemopreventive agents for
many types of cancers, including human breast cancers (Alberts et al., 1999; Hong and
Sporn, 1997; Li and Brown, 2009; Liby et al., 2007; Lotan, 1996; Miller, 1998; Recchia et
al., 2009; Zanardi et al., 2006).

Among the natural retinoids, all-trans RA (tRA) is thought to be the most biologically
active. Research suggests that other retinoids are also functionally important (Chiu et al.,
2008; Ross et al., 2000). Major natural metabolites of vitamin A (retinol) include 4-
hydroxyretinol, 4-oxoretinol, anhydroretinol, 14-hydroxy-4,14-retroretinol, all-trans retinoic
acid, 4-hydroxyretinoic acid, 4-oxoretinoic acid, and 3,4-didehydroretinoic acid. We
previously showed that 4-oxoretinol (4-oxo-ROL) is not metabolized to tRA and is capable
of activating RARs in F9 cells (Achkar et al., 1996). Studies from our laboratory and others
in Xenopus embryos showed that exogenous 4-oxo-ROL could induce dose-dependent
progressive axial truncation during the embryonic development (Achkar et al., 1996;
Blumberg et al., 1996). Recent research in mouse skin has also shown that 4-oxoretinol was
not converted to tRA and that 4-oxoretinol exerted direct retinoid activity in vivo (Sorg et
al., 2008), confirming these prior studies in amphibians and cultured skin cells (Achkar et
al., 1996; Blumberg et al., 1996) in which we and others showed that the 4-oxometabolites
of retinol were bioactive compounds rather than inactive catabolites. We have also
demonstrated that 4-oxoretinol can induce cell growth arrest and granulocytic differentiation
of cultured human promyelocytic leukemia cells (Faria et al., 1998b), and that 4-oxoretinol
is more effective than tRA in inducing CRABP1 and CRABP2 transcripts in murine
embryonic stem cells cultured without LIF (Lane et al., 1999; Lane et al., 2008).

4-oxo-ROL also inhibited the proliferation of cultured mammary epithelial cells and breast
carcinoma cells, including the estrogen receptor (ER) negative breast carcinoma MDA-
MB-231 line (Chen et al., 1997). Thus, 4-oxo-ROL has the potential to be an alternative
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chemotherapeutic agent for the types of breast cancer that respond poorly to tRA treatment
(Chen et al., 1997). In this research we compared the gene expression profiles of primary
cultures of normal human mammary epithelial cells (HMECs) after tRA or 4-oxo-ROL
treatment. We also examined the uptake and metabolism of tRA, 4-oxo-ROL, and 4-oxo-RA
in the HMECs.

MATERIALS AND METHODS
Materials

All-trans retinoic acid was from Sigma (St Louis, MO). All-trans 4-Oxoretinol (4-oxo-
ROL) was synthesized as described (Achkar et al., 1996) and stored under nitrogen at −70°C
prior to use. Trimethylsilyl diazomethane was purchased from Aldrich (Milwaukee, WI).
HG-U133A oligonucleotide microarray chips were from Affymetrix (Santa Clara, CA).

Cell and Culture Conditions
Normal human mammary epithelial cells (HMECs) were purchased from Clonetics Corp.
(now Lonza) (Walkersville, MD). For maintenance of the cell strain, HMECs were cultured
in 5% CO2 in mammary epithelial growth medium (MEGM) with appropriate supplements
(Clonetics). All experiments were performed using cells between passages 4 and 6.

Cell Proliferation Assays
Proliferation assays were performed as described previously (Hoffman et al., 1996). The
HMECs were plated in 24-well plates at 1 × 104/well and cultured in MEGM with or
without drug treatment. The medium was replaced every other day. The cells were
trypsinized and counted every day using a Coulter Counter through day 6. Triplicate wells
were counted for each time point. The data were analyzed with a Prism program. Data are
presented as the mean ± SD.

cRNA Preparation and Microarray Analysis
HMECs were given fresh medium a day before the addition of tRA or 4-oxo-ROL. The
HMECs were treated with tRA (1μM) or 4-oxo-ROL (1μM) for 24 hrs. Total cellular RNA
was extracted from approximately 0.5 × 107 HMECs using a RNeasy kit (Qiagen, Valencia,
CA). The oligonucleotide HG-U133A gene chips (Affymetrix, Santa Clara, CA) were used
for gene expression analysis. The cRNA synthesis, hybridization, staining, and scanning
were performed using the standard protocol from the manufacturer. The experiments were
repeated. The microarray data were processed using Microarray Suite 5.0 (Affymetrix) and
GeneSpring software 5.1 from Silicon Genetics (Redwood City, CA). The microarrays were
run by the Weill Cornell Microarray Core Facility.

Reverse Transcriptase Polymerase Chain Reaction (RT-PCR)
Total RNA was isolated from the HMECs and the cDNA was synthesized using a RT-PCR
kit from Invitrogen (Carlsbad, CA). The PCR was performed using the following conditions:
twenty-six cycles at 94°C for 20 sec, 57°C for 30 sec, and 72°C for 2 min, with a final
extension at 72°C for 10 min. The gene specific primers for PCR are listed below: for
ABCG1, the upstream primer is 5-CCTGCTGTACTTGGGGATCGGGAACG-3, and the
downstream primer is 5-CCAGCGCGGCAAACAGCACAAAG-3; for ADRβ2, the
upstream primer is 5-ATAGAAGCCATGCGCCGGACCACGAC-3, and the downstream
primer is 5-TAAGGCCTGACACAATCCACACCATC-3; for RAC2, the upstream primer
is 5-TGCCTTC TCATCAGCTACACCACCAA-3, and the downstream primer is 5-
AGCCAGCTTCTTCTCC TTCAGTTTCTC-3; for SDR1, the upstream primer is 5-
TTCAAAGGGCGGACATAGAGAC AGGAT-3, and the downstream primer is 5-
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TTTTGGAACGGGAGGCAGAGCAT-3. The GAPDH (upstream primer 5-
GGGCTCTCCAGAACATCATCC-3; downstream primer 5-CAGCGTCAAAGGTGGAGG
AGTG-3) was used as a control gene. An aliquot of 10 μl from each PCR product (total
50μl) was loaded on a 1.5% agarose gel. The gel images were recorded with a FluorChem
8800 system (Alpha Innotech, San Leandro, CA).

Analysis of Retinoids by High-Performance Liquid Chromatography
The HMECs were cultured and treated with retinoids in 10 ml of MEGM in 100 mm tissue
culture plates. At harvest, the cell density was 2.9 × 106 to 4.3 × 106 per plate. The cells
were washed with PBS twice and scrapped in 0.5 ml cold PBS. An aliquot of 0.5 ml (out of
10 ml) cell culture medium was also saved for extraction of retinoids. The retinoids were
extracted with 350 μl of organic phase from HMECs and the medium in the dark
environment as previously described (Chen et al., 1997; Guo and Gudas, 1998). The high-
performance liquid chromatography (HPLC) was performed using a Waters Millenium
system (WatersCorp., Milford, MA). Each sample (100 μl) was loaded on an analytical 5-
μm reverse-phase C18 column(Vydac, Hesperia, CA) and eluted at a flow rate of 1.5 ml/min.
Two mobilephase gradient systems were used as previously described (Chen et al., 1997;
Guo and Gudas, 1998). Retinoids were detected at the wavelength of 340 nm. Retinoids
were identified by an exact match of the retention time of an unknown peak with the retinoid
standard. The concentrations of the nonradiolabeled retinoids were determined by first
calculating their maximum absorption values. Solution concentrations in mol/liter of the
retinoids were obtained by dividing the measured maximum absorbance by the molar
extinction coefficient ε.

RESULTS
The Growth of HMECs in the Presence of tRA and 4-oxo-ROL

All-trans RA is a known growth inhibitor for many cell types, including HMECs. To
determine whether the HMEC strain was growth inhibited by 4-oxo-ROL treatment, we
added either 4-oxo-ROL (1μM) or tRA (1μM) to the culture medium, and the cell number
was counted each day through day 6. The results indicated that the proliferation of HMECs
was inhibited by addition of either tRA or 4-oxo-ROL to the cell culture medium. On day 6
the HMECs treated with tRA and with 4-oxo-ROL were effectively growth inhibited as
compared to control HMECs (Fig. 1).

Comparison of the Gene Expression Profiles after RA and 4-oxo-ROL Treatment
All-trans RA exerts its biological activities via activation of the nuclear receptors, the RARs.
Once they are bound to retinoid agonists, the RARs and the participating co-regulatory
proteins rapidly alter the expression of their downstream target genes. To identify the
downstream genes regulated by 4-oxo-ROL or tRA we analyzed the gene expression
profiles of HMECs that were harvested at 8 hr or 24 hr following tRA or 4-oxo-ROL
addition. The HG-U133A oligonucleotide gene chips from Affymetrix were used in our
study. Altered mRNA expression (a change in expression over two-fold) was found for a
large number of genes as compared to the control, untreated cells (Fig. 2A and B). We also
compared the gene expression profiles of 4-oxo-ROL versus tRA treated HMECs. For most
genes whose transcripts were present (red dots), the difference in mRNA expression was
similar and less than two-fold (Fig. 2C). The microarray assay was repeated twice. Fifty
eight genes are shown in Fig. 2D and Table 1. The genes were selected from 24 hr treated
HMECs based on the criteria that the expression was changed over two-fold by either tRA
or 4-oxo-ROL as compared to the control, and that the changes were consistent in the
independent microarray analyses. The order of genes is according to the fold-change by
tRA. The genes showing reduced expression are presented as negative numbers. Some genes
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on the list belong to the family of known RA target genes [e.g., short-chain dehydrogenase/
reductase 1 gene (Cerignoli et al., 2002)]. Many genes (e.g., ABCG1 gene) not previously
studied as retinoid regulated also showed a response to RA or 4-oxo-ROL in the microarray
assays.

Gene Expression Analysis by RT-PCR
To confirm and validate the gene expression patterns observed in the microarray analyses
we synthesized gene specific primers and used RT-PCR approaches to examine gene
expression in tRA versus 4-oxo-ROL treated HMECs. The RT-PCR results for four genes,
short-chain dehydrogenase/reductase 1 (SDR1) (Cerignoli et al., 2002); adrenergic receptor
β-2 (ADRB2); ATP-binding cassette G1 (ABCG1); and ras-related C3 botulinum toxin
substrate 2 (RAC2); are shown (Fig. 3A). Similar patterns of expression, as compared to the
microarray analyses, were detected for all four genes. The increased SDR1 mRNA levels
and the decreased ADRβ2 mRNA levels were seen in both RA and 4-oxo-ROL treated
HMECs (Fig. 3B). 4-Oxoretinol treatment resulted in a larger increase in ABCG1 gene
expression (2.1-fold by tRA and 2.5-fold by 4-oxo-ROL at 24 hr; 1.6-fold by tRA and 2.3-
fold by 4-oxo-ROL at 48 hr; 1.6-fold by tRA and 2.1-fold by 4-oxo-ROL at 72 hr), which
agreed with the microarray results.

Analysis of Retinoid Extracts by HPLC
To delineate the mechanisms by which 4-oxo-ROL and tRA regulate gene expression in
HMECs and the intracellular concentrations of these retinoids, we extracted the retinoids
from the control, tRA treated, 4-oxo-ROL treated, and 4-oxo-RA treated HMECs. We also
extracted the retinoids from each corresponding cell culture medium. All of the samples
were subjected to the HPLC analysis.

Control HMECs
In untreated, control HMECs we could not detect any retinoids in the cellular extracts (Fig.
4A) or in the cell culture medium (Fig. 4B). The limit of detection in these assays was 0.7
pmol of retinol, which is equivalent to 70 nM in 1 × 107 cells, assuming a cell volume of 1
pl (Chen and Gudas, 1996; Chen et al., 1997).

tRA treated HMECs
In HMECs cultured in the presence of 1 μM tRA for 24 hr, tRA (retention time: 22.24 min)
was the only intracellular retinoid (Fig. 4C, indicated by arrow) and only 20% of the tRA
remained in the medium (Fig. 4D, indicated by arrow). Thus, 80% of the 1 μM tRA was
associated with or taken up by the HMECs, resulting a ~1.4 mM intracellular concentration
of tRA (assuming a cell volume of 1 pl). In contrast, the medium concentration of tRA was
103 nM at 24 hr.

4-oxo-ROL treated HMECs
In HMECs cultured for 24 hr in the presence of 1 μM 4-oxo-ROL, multiple peaks were
observed (Fig. 4E). The major intracellular retinoids were 4-oxoretinyl esters (multiple
peaks between 48 min to 60 min; intracellular concentration = 1.3 mM), 4-oxo-ROL
(retention time = 18.84 min, indicated by arrow with double stars; intracellular concentration
= 145 μM), and 4-oxo-RA (retention time = 10.43 min, indicated by single star; intracellular
concentration = 34 μM) (Table 2). All-trans RA was not detected in 4-oxo-ROL treated
HMECs (for tRA, the limit of detection in these assays was 0.4 pmol, which is equivalent to
40 nM in 1 × 107 cells, assuming a cell volume of 1 pl) (Fig. 4E). When the HPLC tracing
was examined at high resolution, two minor peaks (Fig 4J, peaks a′ and b′) were identified

Liu et al. Page 5

J Cell Physiol. Author manuscript; available in PMC 2012 March 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in the 4-oxo-ROL treated HMECs. These peaks are all-trans-4-hydroxy-ROL (peak a′) and
13-cis-4-hydroxy-ROL (peak b′) according to our previous study (Achkar et al., 1996).

In the cell culture medium of 4-oxo-ROL treated cells, 4-oxo-RA was the major retinoid at
24 hr (Fig. 4F, star). The medium concentration of 4-oxo-RA was 226 nM. Under our
experimental conditions (2.9 × 106 cells treated in 10 ml of cell culture medium),
approximately 96% of the 4-oxo-RA produced by HMECs from 4-oxo-ROL was in the
medium (Fig. 4F, star). A small amount of 4-oxo-ROL (medium concentration = 61 nM)
(Fig. 4F, double star) was also detected in the medium. 4-Oxoretinyl esters were not
detected in the cell culture medium (Fig. 4F).

4-oxo-RA treated HMECs
4-Oxo-RA is an agonist for the retinoic acid receptors (Idres et al., 2002). In HMECs
cultured for 24 hr in the presence of 1 μM 4-oxo-RA the intracellular concentration of 4-
oxo-RA was 60 μM, and the medium concentration was 493 nM (Fig. 4G and H). The
intracellular 4-oxo-RA was less than 5% of the total 4-oxo-RA (Table 2); most of the 4-oxo-
RA was in the medium.

DISCUSSION
Target Genes of tRA and 4-oxo-ROL

We examined the effects of 4-oxo-ROL and tRA on gene expression and the proliferation of
the normal human mammary epithelial cells (HMECs). Studies on changes (Table 1) in
transcript levels indicate that a large number of genes are targets of tRA or 4-oxo-ROL in
HMECs. The target genes are involved in various biological functions. Some are associated
with the regulation of cell proliferation and differentiation. For example, the leukemia
inhibitory factor (LIF) gene is up-regulated by both tRA and 4-oxo-ROL in HMECs. LIF
inhibits the proliferation of normal breast epithelial cells by arresting cell growth in the G0/
G1 phase (Grant et al., 2001). The prostate differentiation factor, which is a member of the
transforming growth factor-β (TGF-β) superfamily, is up-regulated by tRA and 4-oxo-ROL.
It is expressed in various tissues and functions as a regulatory factor for cell growth and
differentiation (Paralkar et al., 1998). Many other target genes, such as Id-1H (inhibitor of
DNA binding 1, dominant negative helix-loop-helix protein)(Hara et al., 1994), cyclin A1
(Yang et al., 1999), RGC-32 protein (Badea et al., 2002), cullins (Kipreos et al., 1996; Pause
et al., 1997), and prohibitin (Wang et al., 2002) are also associated with cell proliferation
and differentiation. These target genes may mediate the cell growth arrest in response to
retinoids. The SDR1 gene is also up-regulated by 4-oxo-ROL and tRA (Table 1, Fig. 3A).
Since SDR-1 protein is capable of reducing retinal to retinol (Haeseleer et al., 1998; Napoli,
2001), the induction of SDR-1 mRNA by 4-oxo-ROL and RA may be involved in the
homeostasis of retinoids in HMECs as well as in neuroblastoma cells (Cerignoli et al.,
2002).

Other target genes of 4-oxo-ROL or tRA include nuclear proteins (e.g., pirin), signal
transduction proteins (e.g., inositol 1,4,5-triphosphate receptor type I and MAP kinase-
interacting serine/threonine kinase 2), proteases and protease inhibitors (e.g., cathepsin H,
kallikrein 7, serine protein inhibitor), and genes associated with the carcinogenesis (e.g.,
early growth response 1 gene, tumor necrosis factor superfamily member 10, and
transforming growth factor, beta receptor II). Many of these genes have previously been
shown to be important in different stages during the development of carcinomas.

A significant overlap is found among most of the genes regulated by tRA and 4-oxo-ROL.
Many genes are similarly regulated by tRA versus 4-oxo-ROL (Table 1, Fig. 3), indicating
that tRA and 4-oxo-ROL modulate gene expression through closely related, but not identical
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pathways. We and others reported previously that all-trans retinol and tRA increase
CYP26a1 transcript levels but that 4-oxo-ROL does not increase CYP26a1 mRNA levels as
much as tRA in embryonic stem cells (Lane et al., 1999; Lane et al., 2008). 4-Oxo-ROL also
does not induce CYP26a1 mRNA in epidermal cells in mice (Sorg et al., 2008). However,
we showed that 4-oxo-ROL is more potent than tRA in terms of increasing CRABP1 and
CRABP2 mRNA levels in embryonic stem cells cultured in the absence of LIF (Lane et al.,
2008). Neither tRA nor 4-oxo-ROL induced CYP26a1 mRNA to a level > 2-fold in the
HMECs (Table 1).

The metabolism of tRA vs. 4-oxo-ROL in HMECs
The addition of 1 μM tRA to the cell culture medium results in a high concentration of tRA
within the HMECs (Fig. 4 and Table 2). Since tRA is known to be the most active ligand of
RARs and since it is also the only retinoid found at detectable levels in the tRA treated
HMECs, there is little question that exogenously added tRA is responsible for the
modulation of gene expression and the growth arrest of HMECs. Additionally, tRA is not
metabolized to a significant degree by HMECs; at 24 hr we can account for almost 100% of
the tRA added to the cell culture at time 0 – 80% is in the cells, and ~20% is in the medium
(Fig. 4C and D)

4-Oxo-ROL was identified as a major intracellular polar retinoid after 4-oxo-ROL treatment
(Fig. 4). 4-Oxo-ROL selectively binds and activates certain subtypes of RARs and serves as
a natural ligand of RARs in some cells (Achkar et al., 1996; Blumberg et al., 1996). It was
previously demonstrated by our laboratory that 4-oxo-ROL, but not tRA, is a major product
of retinol metabolism in murine F9 cells, and that the 4-oxo-ROL functions as an active
ligand in F9 cells (Achkar et al., 1996). Two minor polar retinoids, all-trans-4-hydroxy-
ROL and 13-cis-4-hydroxy-ROL (peak a′ and b′ shown in Fig 4J) are also detected in 4-oxo-
ROL treated HMECs. Although they are active metabolites (Achkar et al., 1996), their
intracellular concentration is relatively low and not comparable to other active ligands, such
as 4-oxo-ROL. At 24 hr after 4-oxo-ROL (1μM) addition, the majority of the 4-oxo-ROL is
metabolized to 4-oxo-retinyl esters in HMECs (Fig 4E, multiple peaks between 48 min to 60
min). The functions of these 4-oxo-retinyl esters have not been characterized in detail. Our
results show that some of the 4-oxo-ROL is oxidized to 4-oxo-RA in HMECs (Fig. 4E).
Although 4-oxo-RA can activate the RARs (Gaemers et al., 1996; Idres et al., 2001; Idres et
al., 2002; Pijnappel et al., 1998; Pijnappel et al., 1993; Sani et al., 1996; Sonneveld et al.,
1999), our data show that most of the 4-oxo-RA produced from 4-oxo-ROL is not present
within HMECs. Instead, the majority of 4-oxo-RA is in the cell culture medium (Fig. 4,
Table 2).

The oxidative pathway for retinol in normal human mammary epithelial cells is different
from that in the mouse F9 cells. In the HMECs, all-trans retinol can be metabolized to tRA,
and this metabolic pathway is important for the growth arrest of HMECs during all-trans
retinol treatment (Hayden et al., 2001; Taibi et al., 2008). In contrast, in human breast cancer
this conversion of retinol to retinoic acid does not occur, and retinol is metabolized to 4-oxo-
ROL in MCF-7 breast cancer cells (Chen et al., 1997). Although the oxidation pathway that
converts retinol to RA is lost in human breast carcinoma MCF-7 and MDA-MB-231 cells
(Mira et al., 2000), inhibition of cell proliferation in these two cell lines by 4-oxo-ROL was
demonstrated (Chen et al., 1997).

Our results show that when HMECs are treated with 4-oxo-RA, the intracellular
concentration of 4-oxo-RA at 24 hr after drug addition is 60 μM, which is only
approximately 4% of the intracellular concentration of tRA (1.4 mM) detected in tRA
treated HMECs (Table 2). The mechanism for the differential uptake of 4-oxo-RA and tRA
in HMECs is not clear. It is known that two cellular retinoic acid binding proteins, CRABP1
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and CRABP2, are important for transporting and binding tRA in the cytoplasm (Chen et al.,
2003; Fiorella et al., 1993; Noy, 2000). Like tRA, 4-oxo-RA binds to the CRABPs with a
high affinity (Fiorella et al., 1993; Fiorella and Napoli, 1991). We have recently generated
Cyp26a1 knockout embryonic stem cells. These Cyp26a1−/− cells can’t metabolize tRA to
4-oxo-RA (only a small amount after RA addition) and they don’t fully differentiate. These
data suggest a role for both tRA and 4-oxo-RA in the stem differentiation process in terms
of transcriptionally activating different subsets of genes {Langton, 2008 #127}.
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Abbreviations

ABCG1 human ATP-binding cassette, sub-family G, member 1

ADRβ2 human adrenergic receptor, beta-2

HMEC human mammary epithelial cell

HPLC High-performance liquid chromatography

4-oxo-RA all-trans 4-oxoretinoic acid

4-oxo-ROL all-trans 4-oxoretinol

RA tRA, retinoic acid

RAC2 human ras-related C3 botulinum toxin substrate 2

RARs retinoic acid receptors

RT-PCR reverse transcription polymerase chain reaction

RXR retinoid X receptors

SDR1 short-chain dehydrogenase/reductase 1

tRA all-trans retinoic acid
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Figure 1. Inhibition of HMEC growth by tRA and 4-oxo-ROL
HMECs were grown in MEGM or MEGM supplemented with tRA (1μM) or 4-oxo-ROL
(1μM). The medium was changed every other day during the experiment. Cell numbers were
counted each day and represented as the mean ± SD (n=3).
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Figure 2. Comparison of gene expression profiles after tRA or 4-oxo-ROL treatment
Total RNA was extracted from control, tRA treated (1 μM, 24 hrs), and 4-oxo-ROL treated
(1 μM, 24 hrs) HMECs. A standard microarray analysis was performed as described in
Materials and Methods. This microarray experiment was performed twice, with different
RNA preparations, at both 8 hr (not shown) and 24 hr after drug addition. A: Comparison of
gene expression in the tRA treated vs control HMECs. The green lines indicate the changes
of 2, 4, 8, and 16-fold (from inside to outside) in expression. Red dots represent the
transcripts present; blue dots represent marginal transcripts; yellow dots represent absent
transcripts. B: Comparison of gene expression in 4-oxo-ROL treated vs control HMECs; C:
Comparison of gene expression in 4-oxo-ROL treated vs tRA treated HMECs. D: The
hierarchical clustering of the fifty-eight genes whose expression was changed two-fold or
more by either RA or 4-oxo-ROL. (The expression level in the control HMECs was
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arbitrarily set as 1.0 for each gene. Green, decreased expression; Red, increased
expression.).
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Figure 3. Time course of gene expression examined by RT-PCR in tRA or 4-oxo-ROL treated
HMECs
The mRNA levels of SDR1, ADRβ2, ABCG1, and RAC2 genes in 1 μM tRA treated and 1
μM 4-oxo-ROL treated HMECs were examined by RT-PCR (28 cycles) (panel A). All RT-
PCR experiments were performed three times and results within 15% were obtained. The
results from all three experiments were quantitated relative to GAPDH. These genes are
starred (*) in Table 1 (panel B). Quantitative data are shown as mean ± standard deviation
(panel B). The y-axes are arbitrary units.
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Figure 4. Analysis of retinoids in HMECs treated with tRA, 4-oxo_ROL, or 4-oxo-RA for 24
HMECs were given fresh medium 24 hr before addition of 1 μM tRA, 1 μM 4-oxo-ROL, or
1μM 4-oxo-RA. Intracellular retinoids were extracted with 350 μl of organic solvent from
the control and HMECs treated with retinoids at 24 hr after drug addition. (The cell number
for the 4-oxo-RA treatment was 4.3 × 106 cells; the cell number for the other treatments
were 2.9 × 106 cells). Retinoids were also extracted from each corresponding cell culture
medium (0.5 ml out of 10 ml), so only 5% of the total amount is shown in the tracing. An
aliquot of 100 μl of each sample was subjected to HPLC analysis. This experiment was
performed three times with similar results (within 10%); one experiment is shown. A:
HMECs, control. B: medium, control. C: HMECs, tRA treated (24 hr). Peak of tRA is
indicated by arrow. D: medium, tRA treated (24 hr). Peak of tRA is indicated by arrow. E:
HMECs, 4-oxo-ROL treated (24 hr). Peak of 4-oxo-RA is indicated by arrow with *. Peak
of 4-oxo-ROL is indicated by arrow with **. Multiple peaks from 48 min to 60 min
(bracketed) are 4-oxo-ROL esters. F: medium, 4-oxo-ROL treated (24 hr). Peak of 4-oxo-
RA is indicated by arrow with *. Peak of 4-oxo-ROL is indicated by arrow with **. G:
HMECs, 4-oxo-RA treated (24 hr). Peak of 4-oxo-RA is indicated by arrow. H: medium, 4-
oxo-RA treated (24 hr). Peak of 4-oxo-RA is indicated by arrow. (There was a slight shift in
the retention times for 4-oxo-RA in panel G versus H; the identities of the 4-oxo-RA peaks
were also confirmed by treatment with trimethyl diazomethane, which shifts these peaks to
the retention time of the ester (data not shown)). I: Retinoid Standards: peak a: 4-oxo-RA,
retention time = 10.43 min; peak b: 4-oxo-ROL, retention time = 18.84 min; peak c: tRA,
retention time = 22.24 min; peak d: all-trans retinol, retention time = 31.38 min. J: Lower
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concentrations of two polar retinoids were observed in the 4-oxo-ROL treated HMECs. peak
a′: all-trans-4-hydroxy-ROL; peak b′: 13-cis-4-hydroxy-ROL. Bottom of figure: chemical
structures of 4-oxoretinol and 4-oxoretinoic acid.
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Table 1

Effects of tRA and 4-oxo-ROL on Gene Expression of HMECs

Gene Genbank Accession Fold-change by tRAa Fold-change by 4-oxo-ROLb

* ATP-binding cassette, sub-family G (WHITE), member 1 NM_004915 7.02 8.13

prostate differentiation factor AF003934 4.46 4.64

inhibitor of DNA binding 1, dominant negative helix-loop-
helix protein

D13889 4.39 4.08

* short-chain dehydrogenase/reductase 1 NM_004753 4.32 3.88

leukemia inhibitory factor (cholinergic differentiation
factor)

NM_002309 4.15 4.42

cathepsin H NM_004390 4.06 2.70

lipocalin 7 NM_022164 3.50 3.58

thioredoxin interacting protein NM_006472 3.48 3.26

basic helix-loop-helix domain containing, class B, 3 AB044088 3.47 3.61

interleukin 15 NM_000585 3.31 1.96

SOCS box-containing WD protein SWiP-1 NM_015626 3.26 1.90

uridine phosphorylase NM_003364 3.24 2.73

transcobalamin I (vitamin B12 binding protein, R binder
family)

NM_001062 3.16 2.99

ADP-ribosylation factor-like 4 NM_005738 2.99 2.70

kallikrein 7 (chymotryptic, stratum corneum) NM_005046 2.83 2.70

inositol 1,4,5-triphosphate receptor, type 1 NM_002222 2.64 2.07

transforming growth factor, beta receptor II (70/80kDa) NM_003242 2.59 1.96

Pirin NM_003662 2.55 2.19

2′-5′-oligoadenylate synthetase-like AF063612 2.50 2.39

cyclin A1 NM_003914 2.50 2.07

GABA(A) receptors associated protein like 3 AF180519 2.45 1.13

MAP kinase-interacting serine/threonine kinase 2 NM_017572 2.43 2.04

insulin-like growth factor binding protein 6 NM_002178 2.33 2.24

early growth response 1 NM_001964 2.32 2.87

tumor necrosis factor (ligand) superfamily, member 10 NM_003810 2.32 2.67

RGC32 protein NM_014059 2.29 1.67

growth factor receptor-bound protein 14 NM_004490 2.25 2.12

adducin 3 (gamma) NM_019903 2.21 2.03

periplakin NM_002705 2.18 1.81

cullin 4B NM_003588 2.15 2.30

tumor necrosis factor receptor superfamily, member 6b,
decoy

NM_003823 2.13 1.83

potassium intermediate/small conductance calcium-
activated channel, subfamily N, member 4

NM_002250 2.12 1.77

chromosome 1 open reading frame 24 AF288391 2.11 1.72

angiopoietin-like 4 NM_016109 2.10 1.84

MAD, mothers against decapentaplegic homolog 3
(Drosophila)

NM_005902 2.06 2.47
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Gene Genbank Accession Fold-change by tRAa Fold-change by 4-oxo-ROLb

DKFZP586N0721 protein NM_015400 1.87 2.25

cullin 2 U83410 −1.50 −2.71

translin NM_004622 −1.60 −2.42

gem (nuclear organelle) associated protein 4 NM_015487 −1.61 −2.31

NS1-associated protein 1 AF037448 −1.71 −2.34

keratin 16 (focal non-epidermolytic palmoplantar
keratoderma)

AF061812 −1.82 −2.30

chemokine (C-X-C motif) ligand 1 (melanoma growth
stimulating activity, alpha)

NM_001511 −1.86 −2.40

prohibitin NM_002634 −2.09 −2.44

high-mobility group box 3 NM_005342 −2.10 −2.22

PRO0233 protein NM_014121 −2.16 −1.48

four jointed box 1 (Drosophila) NM_014344 −2.16 −2.74

peptidylprolyl isomerase F (cyclophilin F) BC005020 −2.18 −2.90

epsin 3 NM_017957 −2.20 −1.95

phosphomannomutase 2 NM_000303 −2.33 −2.28

heat shock 70kDa protein 1B NM_005346 −2.36 −2.67

transgelin NM_003186 −2.39 −2.86

60S acidic ribosomal protein PO NM_016183 −2.43 −1.66

heparan sulfate (glucosamine) 3-O-sulfotransferase 2 NM_006043 −2.45 −2.38

cadherin 11, type 2, OB-cadherin (osteoblast) D21254 −2.45 −2.81

* adrenergic, beta-2-, receptor, surface NM_000024 −2.53 −2.00

a disintegrin-like and metalloprotease (reprolysin type) with
thrombospondin type 1 motif, 1

AK023795 −2.98 −4.67

follistatin NM_006350 −3.03 −2.85

serine (or cysteine) proteinase inhibitor, clade B
(ovalbumin), member 2

NM_002575 −3.56 −3.40

The cRNAs were synthesized from control HMECs and the HMECs treated with tRA (1μM) or 4-oxo-ROL (1μM) for 24 hrs. The oligonucleotide
HG-U133A gene chips (Affymetrix, Santa Clara, CA) were used for gene expression analysis. The microarray data were processed using
GeneSpring software 5.1 from Silicon Genetics (Redwood City, CA).

a,b
The average fold change in mRNA expression of two experiments in presence of tRA(a) or 4-oxo-ROL(b) as compared to control.

*
RT-PCR was performed for these genes.
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