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Abstract

Here we present the development and implementation of a genome-wide reverse genetic screen in the budding yeast,
Saccharomyces cerevisiae, that couples high-throughput strain growth, robotic RNA isolation and cDNA synthesis, and
quantitative PCR to allow for a robust determination of the level of nearly any cellular RNA in the background of *5,500
different mutants. As an initial test of this approach, we sought to identify the full complement of factors that impact pre–
mRNA splicing. Increasing lines of evidence suggest a relationship between pre–mRNA splicing and other cellular pathways
including chromatin remodeling, transcription, and 39 end processing, yet in many cases the specific proteins responsible
for functionally connecting these pathways remain unclear. Moreover, it is unclear whether all pathways that are coupled to
splicing have been identified. As expected, our approach sensitively detects pre–mRNA accumulation in the vast majority of
strains containing mutations in known splicing factors. Remarkably, however, several additional candidates were found to
cause increases in pre–mRNA levels similar to that seen for canonical splicing mutants, none of which had previously been
implicated in the splicing pathway. Instead, several of these factors have been previously implicated to play roles in
chromatin remodeling, 39 end processing, and other novel categories. Further analysis of these factors using splicing-
sensitive microarrays confirms that deletion of Bdf1, a factor that links transcription initiation and chromatin remodeling,
leads to a global splicing defect, providing evidence for a novel connection between pre–mRNA splicing and this
component of the SWR1 complex. By contrast, mutations in 39 end processing factors such as Cft2 and Yth1 also result in
pre–mRNA splicing defects, although only for a subset of transcripts, suggesting that spliceosome assembly in S. cerevisiae
may more closely resemble mammalian models of exon-definition. More broadly, our work demonstrates the capacity of
this approach to identify novel regulators of various cellular RNAs.
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Introduction

The coding portions of most eukaryotic genes are interrupted by

non-coding introns which must be removed prior to the translation

of their messenger RNAs (mRNA). Removal of introns from pre–

mRNAs is catalyzed by the spliceosome, a large and dynamic

ribonucleoprotein complex comprised of five small nuclear RNAs

(snRNAs) and at least 100 proteins [1]. Much of our knowledge

about the components that comprise the spliceosome as well as

their mechanisms of action has been derived from experiments

using the powerful genetic tools available in the budding yeast,

Saccharomyces cerevisiae. Indeed, although the RNA2 – RNA11 genes

originally identified in Hartwell’s forward genetic screen preceded

the discovery of splicing [2], the mechanistic characterizations of

these genes, since renamed PRP2 – PRP11, underlie current

models of the splicing pathway. Importantly, because the core

components of the spliceosome are highly conserved between

budding yeast and humans, the mechanistic details derived from

work in yeast have been instrumental in understanding mecha-

nisms of pre–mRNA splicing in higher eukaryotes.

The modern view of pre–mRNA splicing acknowledges the

integrated role of the spliceosome with several other aspects of

RNA processing. Whereas the historical view of splicing

envisioned a cascade of temporal events initiated by transcription,

followed by polyadenylation, and finalized with splicing and

export of mRNAs from the nucleus, it is now clear that these

pathways are not independent from one another but rather are

functionally coupled. Strong evidence in both yeast and higher

eukaryotes demonstrates that recruitment of the spliceosome to

intron-containing transcripts occurs co-transcriptionally [3–6],

mediated at least in part by physical associations between the C-

terminal domain (CTD) of RNA polymerase II and the U1 snRNP

[7]. A growing body of evidence also indicates that the landscape

of chromatin modifications encountered by transcribing polymer-

ase molecules can dictate the activity of the spliceosome at various

splice sites. For example, recent work has identified an enrichment
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of methylated lysine-36 in the histone H3 protein specifically

within exonic sequences, suggesting a possible mechanism for

facilitating the identification of intron-exon boundaries [8,9].

Similarly, the rate of transcription by RNA polymerase II, which

can be impacted by chromatin marks, has also been shown to be

critical for dictating alternative splicing decisions [10]. Further-

more, it is also clear that splicing is coupled to downstream steps in

RNA processing. For example, the yeast Ysh1 protein [11,12],

which is the homolog of CPSF73, the mammalian endonuclease

required for 39 end processing, was originally identified as Brr5 in

a cold-sensitive screen for mutants defective in pre–mRNA

splicing [13]. Consistent with this observation, recent evidence

suggests that transcriptional pausing near the 39 end of genes is a

critical component of pre–mRNA splicing efficiency [14]. Despite

the increasing evidence of the interconnectivity of these pathways,

in many cases the mechanistic details which underlie these

functional relationships remain unclear. Our understanding of

these mechanistic connections would benefit from a more

complete understanding of the complement of factors through

which splicing is connected to these cellular processes.

A variety of recent genome-wide approaches have provided

important insights into the connections that exist between the

spliceosome and other cellular processes. Two powerful approach-

es, Synthetic Genetic Array (SGA) Analysis [15] and Epistatic

MiniArray Profiling (E-MAP) [16], leverage genetic tools available

in yeast to systematically generate millions of double-mutant

strains and then carefully quantitate their cellular fitness to

determine an interaction score for every pair-wise mutation. On

the basis of strong positive or negative genetic interaction scores

these approaches have been successfully used to infer functional

relationships between many cellular pathways, including several

with pre–mRNA processing [17,18]. Simultaneously, improve-

ments in proteomic methodologies have enabled the direct analysis

of protein complexes in organisms as diverse as humans and yeast,

allowing for an assessment of all of the stably-bound proteins

involved in pre–mRNA splicing in many organisms [19,20]. While

the combination of these and other approaches has provided a

global picture of many of the cellular factors that influence the

splicing pathway, either directly or indirectly, an important

question remains about the functional significance of these factors

in the splicing of specific transcripts. Indeed, it has long been

known that certain transcripts require the activity of unique

accessory factors to facilitate their splicing [21]. Moreover, recent

work supports the idea that different transcripts can have a greater

or lesser dependence upon the activity of core spliceosomal

components for their efficient splicing [22,23].

Here we present the results of a novel approach that

complements the genetic and physical approaches of others by

allowing for a direct functional assessment of nearly every gene in

the S. cerevisiae genome in the pre–mRNA splicing process. For this

work, we developed automated methods that enabled the isolation

of total cellular RNA from about 5500 unique strains, each of

which contained a mutation in a single gene, and all of which were

examined during exponential growth in liquid medium. Using a

high-throughput quantitative PCR (QPCR) assay, the relative

cellular level of nearly any RNA can be readily determined in the

background of each of these strains. By assessing the levels of

several different pre–mRNA species, we were able to identify not

only those factors which are necessary for the splicing of many

transcripts, but also factors that are specifically required for the

splicing of a subset of intron-containing genes. Whereas our study

specifically examines the levels of several cellular pre–mRNAs, the

approach described herein can be easily adapted to study the level

of nearly any RNA molecule of interest under a wide variety of

cellular growth conditions.

Results

A high-throughput method for measuring cellular levels
of specific RNA species

To identify the comprehensive network of cellular factors that

lead to a change in splicing efficiency, we developed a high-

throughput reverse genetic screen that allowed us to readily assess

changes in pre–mRNA levels in the background of ,5500

Saccharomyces cerevisiae strains, each of which contained a mutation

in a single gene. The library of strains contained deletions of non-

essential genes [24] as well as conditional mutations in essential

genes [25], accounting for mutational access to over 93% of

known yeast genes. Using a liquid-handling robot, protocols were

developed (see Materials and Methods) that allowed for the

simultaneous collection of each of these strains under exponential

growth conditions in liquid medium in 384-well plates. Total

cellular RNA was isolated robotically from each of these strains

using a phenol extraction protocol [23] followed by a glass-fiber

purification step [26]. After converting this RNA into cDNA using

a random-priming strategy, QPCR was used to directly measure

the level of a given RNA species within each strain. Because of the

inherent variability between the samples in the cell collection,

RNA isolation, and cDNA synthesis steps, the levels of six different

RNA species were measured in each of the samples in order to

calculate a normalization constant. On the basis of this

normalization constant, the relative level of virtually any cellular

RNA species can be determined in each of the mutant strains.

As an initial test of our approach we sought to identify the full

complement of factors involved in pre–mRNA splicing by

determining the relative levels of unspliced U3 small nucleolar

RNA (snoRNA) present in each of the mutant strains. The U3

snoRNA is unique in the S. cerevisiae genome in that it is the only

known non-coding RNA that is interrupted by a spliceosomal

intron [27]. Nevertheless, the U3 transcript has been widely used

historically as a splicing reporter, owing to its relatively high basal

expression level and the strong accumulation of U3 precursor

Author Summary

The coding portions of most eukaryotic genes are
interrupted by non-coding regions termed introns that
must be excised prior to their translation. The excision of
introns from precursor messenger RNA (pre–mRNA), is
catalyzed by the spliceosome, a large macromolecule
composed of both RNA and protein components. Several
studies have uncovered connections between pre–mRNA
splicing and other RNA processing pathways such as the
remodeling of chromatin structure, transcription, and
processing events that take place at the 39 end of the
transcript. To date, however, the full complement of
factors that function to couple splicing to other processes
in the cell remains unknown. Here, we have developed a
novel screening methodology in the budding yeast,
Saccharomyces cerevisiae, that allowed us to individually
examine nearly all of the ,6,000 genes to determine
which factors functionally impact splicing. We identified
mutations in components that function at either the 59 or
39 end of a gene. Most of these components have
previously established roles in other aspects of gene
expression, including chromatin remodeling and cleavage
and polyadenylation processes, and their identification
here provides the first evidence for their roles in coupling
these pathways.

Genome-Wide Connections with Pre-mRNA Splicing
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levels observed in the background of canonical splicing mutants

[13,28,29]. As shown in Figure 1, the U3 precursor levels are

unaffected in the vast majority of the strains examined, with levels

varying by less than 1.35-fold from one another for 95% of the

strains. Indeed, only ,200 of the ,5100 strains that passed our

quality filters (see Materials and Methods) showed a change in the

relative U3 precursor levels of more than ,30% from the median

value (,0.35 in log2-transformed space), consistent with our

expectation that mutations in most genes will have little or no

effect on cellular pre–mRNA splicing efficiency. The tight

distribution of relative U3 precursor levels seen within this dataset

demonstrates the high precision with which these measurements

can be made, and suggests a low false discovery rate for our

approach.

Known spliceosomal components dominate the top
subset of mutations

To characterize the data generated by this approach we sought

to define the biological significance of those strains that showed

increased levels of U3 precursor. As an initial analysis, we

examined the U3 precursor levels in those strains containing

mutations in known splicing genes. Using the GO PROCESS:

RNA Splicing as a guide [30], a total of 71 strains in our library were

classified as containing mutations in canonical splicing factors

(Figure S1), of which 68 passed our quality filters for the U3

precursor dataset (see Materials and Methods). A strong

overrepresentation of these splicing factors can be seen within

the set of strains showing an enrichment of U3 precursor

(Figure 1A). Of the 68 strains containing splicing mutations that

passed our quality filters: 53 are found within the top 200 strains

(p = 9.28E-64, Fisher’s exact test); 38 are found in the top 50

strains (p = 1.33E-66); and the top 14 strains all belong to this list

(p = 1.27E-27). Taken together, these data argue strongly that the

candidates identified by this approach will be characterized by a

high true positive discovery rate.

By contrast, out of the 68 strains containing mutations in known

splicing factors for which we obtained high quality data, 15 failed

to show an enrichment of U3 precursor levels in this dataset,

suggesting either that mutations in these genes don’t cause an

increase in U3 precursor levels (true negative), or that our

approach incorrectly failed to detect the accumulation of unspliced

U3 (false negative). To better resolve these possibilities we chose to

more completely examine the global splicing fitness of some of

these strains using splicing-sensitive microarrays. For every intron-

containing gene in the genome, these custom-designed micro-

arrays contain at least three probes (Figure 2A) that allow us to

distinguish between spliced and unspliced isoforms [31]. We used

these microarrays to assess the global splicing defects of four

mutants: two canonical splicing mutants that showed strong U3

precursor accumulation (snt309D and lsm6D, Figure 2B), and two

that showed little or no accumulation (mud2D and cus2D,

Figure 2C). As expected, and consistent with previous work from

others [32], the snt309D and lsm6D strains demonstrate a broad

splicing defect, with most intron-containing genes displaying an

increase in precursor levels accompanied by a decrease in the

amount of spliced mRNA. By contrast, the global splicing profiles

of the mud2D and cus2D strains are markedly different. In the cus2D
background, few intron-containing genes display a splicing defect:

very little precursor accumulation is observed, and there is little if

any detectable loss in mature mRNA. The mud2D mutation does

cause a splicing defect for some intron-containing genes, whereas

little change in splicing efficiency is seen for many others. Notably,

as seen in Figure 2D, the microarrays of both the snt309D and

lsm6D strains show a strong accumulation of U3 precursor levels,

whereas the mud2D and cus2D strains show almost no accumula-

tion, consistent with our QPCR screen results. It is worth noting

that in our experience the behavior of the U3 transcript differs

from the other intron-containing genes in that every splicing

mutation we have examined that causes an increase in the U3

precursor levels also results in an increase in the total level of U3; the

reason for this apparent discrepancy is currently under investiga-

tion. Nevertheless, these microarray data demonstrate that our

failure to detect an increase in U3 precursor levels in the mud2D
and cus2D strains does not represent a failure of the approach, but

rather that these are true negative results.

Assessing transcript-specificity of the mutants
To better assess the total complement of genes that can impact

the splicing of any precursor transcript, we chose to expand our

analysis by measuring the precursor levels of several additional

intron-containing genes. We chose to examine four ‘canonical’

intron-containing genes (RPL31B, UBC13, TUB3 and TEF5) that

vary in terms of intron size, transcriptional frequency, biological

function, and the presence or absence of an intron-encoded

snoRNA. In spite of these differences, these transcripts are similar

to one another in so much as they each contain splice site and

branch point sequences that conform to consensus sequences. In

addition to these four genes, we chose to examine two intron-

containing genes (YRA1 and REC107/MER2) that are known to be

poorly spliced under standard growth conditions [21,33,34]; as

such, we expected the behavior of these two transcripts to be

distinct from the efficiently spliced transcripts. For all six of these

genes, the precursor levels were measured in all ,5500 strains. As

an initial analysis of this data set, we considered the behavior of the

71 strains containing mutations in spliceosomal components

(Figure 3). As expected, precursor accumulation can be detected

for each of the canonical intron-containing transcripts in the

background of nearly all of the splicing mutations. While all four

canonical precursors accumulate in the mud2D background,

consistent with our microarray data, no precursor accumulation

is detected for any of these transcripts in the cus2D strain

(Figure 3B). In addition, several of the splicing mutants that failed

to cause an increase in the U3 precursor levels do cause a splicing

Figure 1. A subset of gene disruptions causes an increase in the
unspliced levels of U3 snoRNA. A. The relative level of U3 snoRNA
precursor in 5122 strains, ordered from the highest to lowest. Red data
points highlight the strains containing mutations in a factor within the
GO PROCESS: RNA Splicing category (see Figure S1). To the right, a box
and outlier plot for the same dataset. B. False color representation of
both the A (left) and B (right) biological replicates. The values are
ordered from high to low, mirroring the data in (A).
doi:10.1371/journal.pgen.1002530.g001

Genome-Wide Connections with Pre-mRNA Splicing
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defect for these other transcripts. Importantly, the behavior of the

Rec107 and Yra1 pre–mRNAs within this subset of strains differs

significantly from that seen for the canonically spliced transcripts.

Splicing of the Rec107 pre–mRNA shows a strong accumulation

in the upf1D and upf2D strains (Figure 3C), consistent with its

known degradation via the nonsense-mediated decay pathway

[35]. Because the Rec107 pre–mRNA does not engage the

spliceosome during vegetative growth [21], no precursor accumu-

lation is expected in strains containing spliceosomal mutations.

Likewise, the Yra1 pre–mRNA shows a strong accumulation in

the edc3D strain [34], consistent with its previously characterized

cytoplasmic degradation pathway. The failure to detect Yra1 pre–

mRNA accumulation in strains containing spliceosomal mutations

presumably reflects the inherently high levels of unspliced Yra1

transcript present in a wild type cell. Taken together, these data

strongly support the capacity of this approach to successfully

identify mutations that impact pre–mRNA splicing with low false

positive and false negative rates of discovery.

Global splicing efficiency is impacted by many cellular
mutations

To expand our analysis beyond previously characterized

splicing factors, we sought to identify novel mutations that caused

an increase in precursor levels in most, if not all, of our canonical

intron-containing genes. By determining the rank order of

precursor accumulation in each strain for each of the five

canonical splicing substrates (U3, Rpl31b, Tef5, Tub3, and

Ubc13 precursors), a composite rank order of each strain was

calculated as the average of these independent measurements

(Figure 4). Remarkably, while the majority of the mutations

examined cause little or no change in precursor levels of these four

transcripts, the subset of mutations which do cause detectable

increases in precursor levels is larger for some of the coding

mRNAs than was seen for U3. Interestingly, although there is

variation in the number of strains that cause pre–mRNA

accumulation of the different transcripts, with Tub3,Te-

f5,Ubc13,Rpl31b, strong overlap can nevertheless be identified

across the four transcripts. For example, the majority of the strains

that cause an increase in the Tub3 pre–mRNA also display an

increase in the pre–mRNA levels of the other three transcripts. By

contrast, many strains cause a strong accumulation of the Ubc13

and Rpl31b pre–mRNAs without causing a significant change in

the Tub3 or Tef5 pre–mRNA levels.

Because the absolute levels of the Rpl31b, Tef5, Tub3 and

Ubc13 pre–mRNAs are significantly lower than the U3 precursor

levels in most strain backgrounds (Table S1), we considered the

possibility that these results reflected a technical artifact associated

with measuring the cellular levels of low abundance RNA species

in certain strain backgrounds. Importantly, however, the relative

levels of the Rec107 pre–mRNA, whose normal cellular level is

Figure 2. Not all mutations in splicing factors result in defective splicing for all intron-containing genes. A. Splicing-sensitive
microarrays contain probes that target precursor (P), mature (M), and total (T) mRNA levels. B. Global splicing profiles of the snt309D and lsm6D
strains, showing a strong splicing defect for both mutants. C. Global splicing profiles of the mud2D and cus2D strains, illustrating different splicing
defects for these mutants. Whereas many transcripts show a splicing defect in the mud2D strain, many continue to be efficiently spliced. Similarly,
most intron-containing genes show no splicing defect in the cus2D strain. D. The behavior of specific transcripts in the different mutant backgrounds.
E. Locations within the U3 precursor dataset of the mutant strains for which microarrays are shown in (B) and (C).
doi:10.1371/journal.pgen.1002530.g002

Genome-Wide Connections with Pre-mRNA Splicing
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Figure 3. Mutations in most known splicing factors lead to increased precursor levels of canonical splicing substrates. Relative levels
of the indicated RNAs are shown in the background of all strains containing mutations in known splicing factors. The biological replicates (A and B)
are shown for each RNA. Precursor levels for all transcripts are ordered based on the average expression values of U3 precursor, from high to low
values. Gene disruptions are indicated on the left (-ts indicates a temperature sensitive allele). Insets to right indicate the location of the data in the
U3 precursor dataset. A. Mutations that lead to an increase in the U3 snoRNA. B. Mutations that do not affect U3 precursor levels but may affect the
levels of other intron containing genes. C. The increase of Rec107 precursor levels seen in the ufp1D and upf2D backgrounds, and the increase of Yra1
precursor levels seen in the edc3D background are consistent with their well-characterized degradation pathways.
doi:10.1371/journal.pgen.1002530.g003

Genome-Wide Connections with Pre-mRNA Splicing
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similar to these other pre–mRNAs, is largely unchanged in the vast

majority of the strains examined (Figure 4). Likewise, an analysis of

the cellular levels of the Faa1 mRNA, an intronless gene whose

transcript abundance is of a similar magnitude as the Rpl31b,

Tef5, Tub3 and Ubc13 pre–mRNAs, also shows a nearly constant

level in all of the examined strains, further suggesting that there is

no inherent bias in detecting low level transcripts. Finally, the Yra1

pre–mRNA, which is inefficiently spliced and has a higher

endogenous level than most pre–mRNAs, also shows very little

change in the examined strains. Taken together, these results

strongly support the conclusion that the levels of the Rpl31b, Tef5,

Tub3 and Ubc13 pre–mRNAs are increased in these strains.

Increases in precursor levels correlate with a decrease in
splicing efficiency

Because our approach, as described so far, directly measures the

cellular levels of precursor RNA but does not directly determine

the efficiency of splicing per se, those mutations which cause an

increase in the precursor levels could be doing so simply by

increasing the transcriptional frequency of these genes rather than

by directly impacting their splicing. To distinguish this possibility

from a true splicing defect, we chose to directly calculate the

splicing efficiency of the Tef5 transcript by measuring the total

cellular level of Tef5 mRNA by QPCR in each strain and using

this value to calculate the ratio of unspliced:spliced RNA in the

cell, a classical measure of splicing efficiency. Consistent with a

splicing rather than transcriptional cause for precursor accumu-

lation, the measured levels of total Tef5 transcript showed little

variation across nearly the entire set of strains (Figure S2). Indeed,

nearly every strain that showed an increase in Tef5 pre–mRNA

levels also showed a decrease in the splicing efficiency of the Tef5

transcript (Figure 4), suggesting that those mutations affect the

splicing of this transcript rather than its transcription. These results

strongly suggest that the increased pre–mRNA levels observed in

these strains largely reflect changes in pre–mRNA splicing.

To assess the functional significance of the strains displaying

increased pre–mRNA levels, we sought to rule out the possibility

that mutations which cause a change in overall cellular fitness

might indirectly lead to a decrease in overall splicing efficiency. To

test this, we compared our precursor accumulation levels with

recently described strain fitness data calculated for each of the

*5000 non-essential genes [36]. This comparison yielded no

correlation between precursor accumulation and cellular fitness

(Figure S2), suggesting that cellular growth rate alone is insufficient

to explain the observed increase in pre–mRNA levels.

Assessing the statistical significance of the precursor
accumulation

While the precursor accumulation seen for each of the canonical

transcripts in the known splicing mutants lends strong empirical

support for the overall robustness of our approach, additional

analysis was needed to assess the statistical significance of the data

we generated. Towards this end, we employed a statistical

approach originally developed for analysis of microarray data

called Significance Analysis of Microarrays [37], or SAM (see also

Materials and Methods). We chose this software because,

conceptually, the data generated by our QPCR approach are

orthogonal to those from a microarray experiment: whereas a

microarray experiment examines the behavior of thousands of

mRNAs in a single strain, here we examine the behavior of a

single RNA in thousands of different strains. Because similar

concerns regarding multiple hypothesis testing apply to both types

of data [38], we used this software as a tool for assessing the quality

of our data. The results of our SAM analysis were consistent with

the qualitative results seen in Figure 4, in so much as the number

of strains causing a statistically significant increase in the levels of

each precursor species varied depending upon the precursor

mRNA in question. A total of 224 strains caused a statistically

significant increase in the Rpl31b pre–mRNA levels, 209 strains

caused a significant increase in Ubc13 pre–mRNA levels, 146

strains caused a significant increase in U3 precursor levels, 83

strains caused a significant increase in Tef5 pre–mRNA levels, and

78 strains caused a significant increase in Tub3 pre–mRNA levels.

The complete list of SAM-identified strains for each RNA species

is provided in Table S2. Importantly, many of the SAM-identified

strains are found to cause a significant enrichment of the precursor

levels of all five of these RNAs, including the majority of strains

with mutations in canonical splicing factors.

Interestingly, for some of the species examined, a small number

of strains were identified which showed decreased levels of precursor

RNA. In certain instances these reflected expected outcomes: a

Figure 4. Increases in precursor levels correlate with a decrease
in splicing efficiency. A. Relative levels of the indicated RNAs are
shown in the background of 5334 strains. The data are ordered from
high to low values based on a composite rank order, determined on the
basis of the expression levels of the five canonical splicing substrates. B.
The relative splicing efficiency of the Tef5 transcript in each of these
strains, calculated as the relative Tef5 precursor levels divided by the
relative Tef5 total RNA levels. C. The relative levels of the low
abundance Rec107 pre–mRNA and Faa1 transcripts are shown along
with the inefficiently spliced Yra1 pre–mRNA, none of which shows a
similar pattern to the splicing defects seen in (A).
doi:10.1371/journal.pgen.1002530.g004

Genome-Wide Connections with Pre-mRNA Splicing
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large decrease in the Ubc13 precursor was identified in the ubc13D
strain, for example. However, in other cases these may indicate

important biological phenomena. For example, both the xrn1D
and the tfg2D strains cause a significant decrease in the U3

precursor levels. We have previously shown that deletion of the

Xrn1 nuclease paradoxically leads to decreases in many precursor

RNAs [39], although the mechanism by which this occurs remains

unknown. Likewise, it is unclear whether the decreased precursor

resulting from deletion of the TFIIF component Tfg2 reflects an

overall decrease in transcription of this gene, or whether this in

fact reflects increased splicing efficiency perhaps resulting from a

decreased transcription elongation rate [10].

Top screen candidates predict specific links between
splicing and several pre–mRNA processing pathways

To better characterize the factors that impact pre–mRNA

splicing, we examined our lists of SAM-identified candidates for

factors that are not canonical components of the spliceosome. As

an initial approach, we asked whether any functional categories of

proteins were statistically overrepresented within this set of strains.

For this analysis, we ordered the strains according to the largest

precursor accumulation that they affected for any of the RNA

species. We then used the GO::Term Finder program [40] to identify

overrepresented classes of genes. As expected, when considering

the 50 strains that caused the largest precursor accumulations, a

strong enrichment for splicing factors was seen with 30 out of 50

strains containing mutations in genes belonging to the GO

PROCESS: RNA Splicing category (p = 1.3E-40 with Bonferroni

correction). Interestingly, when the top 100 strains are considered,

significant enrichment can also be seen for strains with mutations

in factors belonging to the GO PROCESS: Chromatin Remodeling

category, with eight different mutants causing precursor accumu-

lation (arp5D, arp8D, bdf1D, npl6D, rsc2D, rsc9-ts, vps72D, and yaf9D;

p = 1.5E-03). Expanding our analysis to the top 200 candidates

increases the enrichment of this category to include twelve factors

(adding arp6D, swc5D, swr1D, and taf14D; p = 1.8E-04). Interest-

ingly, within the top 200 candidates, significant enrichment is also

seen for the GO PROCESS: RNA Catabolic Process category, with

13 different factors being present (ccr4D, dis3-ts, dbr1D, kem1D,

lsm2-ts, lsm6D, lsm7D, prp18D, rrp6D, rtt101D, ski3D, ssn2D, and

upf3D; p = 8.5E-03). Whereas some of these factors, such as lsm2-ts,

lsm6D, lsm7D, and prp18D are known to directly function in pre–

mRNA splicing, the identification of many of these factors

presumably reflects their defects in degradation pathways for

unspliced pre–mRNAs.

One of the top factors we identified that bridges chromatin

remodeling with transcription initiation is the bromodomain factor

Bdf1. Bdf1 is a member of the SWR1 complex and, along with its

homolog Bdf2, has been shown to interact with the TFIID

component of RNA polymerase II [41]. Moreover, BDF1 and

BDF2 have been demonstrated to be genetically redundant with

one another. Whereas our SAM analysis indicated that the bdf1D
caused a statistically significant accumulation of most of the

canonical precursor species in our experiments, the bdf2D strain

showed little or no detectable increase in the levels of any of the

precursors tested (Figure 5A), and was not considered by SAM

analysis to be significant for increases in any of the precursor

RNAs. To better characterize the global splicing profile of these

two mutants, we again turned to our splicing-sensitive micro-

arrays. Remarkably, a dramatic splicing defect can be seen in the

bdf1D strain for most intron-containing genes, as evidenced by an

increase in the precursor transcript levels with a concomitant

decrease in the mature and total transcript levels (Figure 5A). By

comparison, the bdf2D mutation has almost no effect on cellular

splicing, strongly corroborating the specific identification of Bdf1

in our screen. To better assess the mechanism by which Bdf1

impacts pre–mRNA splicing, we monitored U1 snRNP recruit-

ment in the background of wild-type, bdf1D, and bdf2D strains

using chromatin immunoprecipitation coupled to QPCR (ChIP-

QPCR). As seen in Figure S3, these experiments show that the

deletion of Bdf1 but not of Bdf2 decreases the occupancy of

U1snRNP at several intron-containing genes, suggesting impair-

ment of co-transcriptional spliceosomal recruitment in the bdf1D
strain. A more comprehensive ChIP-Seq experiment will be

required to fully characterize the global landscape of genes

impacted by the deletion of Bdf1 and further characterize the roles

of Bdf1 and Bdf2 in transcription and splicing.

We also chose to further examine several factors that our screen

identified that are more classically connected with chromatin

remodeling. The lower panels of Figure 5B and 5C show the

locations within our U3 precursor dataset of all of the strains

containing mutations in components of the SWR1 complex, and

the RSC complex, respectively. Notably, mutations in many but

not all of the components of these complexes cause a splicing

defect of the U3 transcript. Moreover, each of the five precursor

species that we examined shows a slightly different susceptibility to

the different components of these complexes. We chose to examine

the global splicing defects of strains containing mutations in two of

these components: Vps72, a member of the SWR1 complex; and

Rsc9, a member of the RSC complex. Splicing-sensitive micro-

arrays of the vps72D and rsc9-ts strains, respectively, reveal a

splicing defect in each strain (Figure 5B and 5C). However, unlike

the bdf1D strain, the vps72D and rsc9-ts strains cause a splicing

defect in only distinct subsets of intron-containing genes.

Interestingly, the affected subsets of transcripts are neither

completely overlapping nor completely independent of one

another; rather the microarray data are consistent with our

QPCR data in suggesting that mutations in specific chromatin-

modifying components can result in aberrant splicing of specific

pre–mRNA transcripts.

While an ontology-based approach can successfully identify

entire pathways that display enrichment, we were also interested in

considering those factors which showed strong pre–mRNA

accumulation but whose functional categories were not statistically

over-represented at the top of our dataset. Remarkably, while the

GO PROCESS: RNA 39 end Processing wasn’t significantly

overrepresented as a category within our dataset (9 out of top

200, p = 0.09), several strains with mutations in factors belonging

to this category resulted in a strong, statistically-significant

accumulation of multiple precursor species. Included among these

were: yth1-ts, a zinc-finger containing protein that is the homolog

of human CPSF-30; cft2-ts, the homolog of human CPSF-100; and

fip1-ts, a component of the polyadenylation factor PF I. To further

examine the global splicing defects of each of these mutants,

microarrays were performed comparing mutant and wild type

behavior after shifting them to both elevated and reduced

temperatures. Of the three mutants, the profile seen in the yth1-

ts mutation most closely resembles a canonical splicing defect, with

more than half of the genes showing an increase of precursor and

loss of mature RNA (Figure 6A). Interestingly, the splicing defect is

strongest at reduced temperatures even though this strain has only

a subtle low-temperature growth defect (not shown). By compar-

ison, neither the cft2-ts nor the fip1-ts strains showed a strong

splicing defect at low temperature (not shown), but each mutant

was characterized by an unusual phenotype at elevated temper-

atures. As seen in Figure 6B and 6C, two distinct types of behavior

are seen in the cft2-ts and fip1-ts mutants, respectively, that are

largely defined by whether or not the affected transcript encodes a
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ribosomal protein gene (RPG). For a subset of the non-RPG

transcripts a canonical splicing defect is apparent, consistent with

our QPCR results. Interestingly, the subset of affected non-RPG

transcripts is different between the two mutant strains. By

comparison, nearly all of the RPG transcripts show a dramatic

increase in both the mature and total mRNA levels, with little or

no detectable change in precursor levels. The strong increases

caused by these mutants suggest that the RPG transcripts may be

subject to regulatory control at their 39 ends. Interestingly, while it

has long been known that RPG introns are, in general, longer than

non-RPG introns [42], whereas the second exons of RPGs tend to

be shorter than non-RPGs [5], we nevertheless find no strong

correlation between either intron or second exon length and the

strength of the splicing defect seen for these 39 end mutants (data

not shown). The mechanisms by which these 39 end factors impact

pre–mRNA splicing are currently under investigation.

Top screen candidates do not cause changes in the
cellular mRNA levels of most spliceosomal components

In considering the mechanisms by which candidate factors may

be functioning, we sought to determine whether any of the

candidates we examined might be indirectly affecting pre–mRNA

splicing by changing the cellular levels of known spliceosomal

components. Although our splicing-sensitive microarrays were

Figure 5. Mutations in chromatin remodeling factors can impact splicing in a global or transcript-specific manner. Splicing sensitive
microarrays of candidate factors (A) bdf1D and bdf2D, (B) vps72D, and (C) rsc9-ts, as compared to the phenotypes of known splicing mutants snt309D
and lsm6D. For each panel, the asterisk indicates the strain by which the data have been organized using hierarchical clustering, with the other data
sets in those panels sharing an identical gene ordering. The orange bar highlights the location of specific subsets of transcripts showing splicing
defects. The bottom insets show the location of each of the candidates within the U3 precursor dataset. Also, the locations of each of the
components of the SWR complex are shown in blue, and each of the components of the RSC complex are shown in green.
doi:10.1371/journal.pgen.1002530.g005
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designed primarily to interrogate the splicing status of the ,300

intron-containing genes in S. cerevisiae, they also contain probes

against all ,6000 protein-coding genes and ,200 RNA genes,

including the spliceosomal snRNAs. Figure S4 shows the relative

RNA levels for each of the canonical spliceosomal components,

including the snRNAs, in the background of each of the different

strains we examined, as determined from our microarray analyses.

While these results positively recapitulate the expected changes (for

example, the decreases in Snt309 and Lsm6 mRNA levels in the

snt309D and lsm6D strains, respectively), with only a few

exceptions, most spliceosomal components appear unchanged in

most of the mutants we examined. Importantly, the transcript

encoding the Mud1 protein showed dramatic mis-regulation in

both the yth1-ts and cft2-ts strains, increasing by more than 10-fold

in each background. To test whether Mud1 overexpression might

be causing the splicing defects observed in these strains, a strain

was constructed where the wild type Mud1 transcript was encoded

on a high-copy plasmid. As seen in Figure S5, in spite of the over

30-fold increase in Mud1 levels in this strain, there is no detectable

change in pre–mRNA splicing. Therefore, while the mis-

regulation of Mud1 levels in these 39 end mutants suggests that,

similar to its human homolog, Mud1 levels in yeast may be subject

to negative regulation via its 39 end processing [43], it nevertheless

appears that the splicing defect observed in these strains is not a

consequence of Mud1 overexpression.

Interestingly, several of the strains, including bdf1D, yth1-ts, cft2-

ts, and fip1-ts, showed an ,2-fold increase in the levels of both the

U1 and U2 snRNAs. Although spliceosomes function as an

equimolar complex of all five snRNAs, the total cellular levels of

the snRNAs vary: in yeast, the U2 snRNA is the most abundant

[44], while in mammals the U1 snRNA is most abundant [45].

While recent work demonstrates the cellular defects associated

with decreased levels of snRNA [46], it is less clear whether

increases in their levels will impart a defect on global splicing.

Nevertheless, because each of these strains shows a similar increase

in these snRNA levels but distinct splicing defects, it seems unlikely

that the changes in snRNA levels alone can explain the observed

splicing phenotypes. However, it is not inconceivable that small

changes in levels for one or more of these transcripts could lead to

the observed splicing defects. As such, additional work will be

necessary to determine the functional consequences of these

mutations.

Discussion

A high-throughput, reverse genetic approach to measure
the cellular levels of specific RNA species

Here we present the results of a global survey designed to

identify the full subset of cellular factors in the budding yeast,

Saccharomyces cerevisiae, that impact the efficiency of pre–mRNA

splicing. As a complement to other recently described genetic and

physical genome-wide approaches, in this work we have developed

an approach that allows for a direct readout of the accumulation of

specific RNA species in the background of thousands of different

mutant strains. An important strength of a genome-wide screen

such as this is its unbiased approach. By directly measuring the

splicing efficiency of endogenous transcripts, this method avoids

bias generated using reporter constructs. Moreover, the ability to

examine numerous different transcripts allowed us to distinguish

the natural variation in the spliceosomal factors that are required

for efficient splicing of different intron-containing transcripts.

Indeed, by systematically examining the precursor levels in the

background of each strain, mutations can be identified which

result in a change in splicing efficiency regardless of their

previously described functions. In the work described here,

mutations in scores of genes with no previously known role in

splicing were identified, some of which impacted the splicing of all

five canonical transcripts examined and some of which impacted

only a subset of them. While some of these factors have been

further characterized and discussed here, many have not (see

Table S2). To be sure, as is the case with all genetic screens, it is

impossible on the basis of these screen data alone to ascribe a

direct role for any of these candidate factors in the splicing

pathway. Rather, the identification of these different factors can be

seen as generating a rich dataset from which hypotheses can be

generated and tested for their mechanistic underpinnings.

The 59 end: Connecting splicing with chromatin
remodeling and transcription initiation

Beyond known splicing factors, the most highly over-represent-

ed set of factors identified in this work function in chromatin

remodeling. One particularly interesting mutation that was

identified was the bdf1D mutant. In budding yeast, Bdf1 has been

demonstrated to play a role precisely at the interface of

transcription initiation and chromatin remodeling. Based in part

on its physical interaction with the Taf7 subunit of TFIID, yeast

Bdf1 has been proposed to function as the missing C-terminal

portion of the higher eukaryotic TAFII250 [41], the largest subunit

of the TFIID complex. More recently, it has become clear that

Figure 6. Mutations in 39 end processing mutants result in
transcript-specific splicing defects. Splicing sensitive microarrays
for the cleavage and polyadenylation factor mutants yth1-ts (A), cft2-ts
(B), and fip1-ts (C). For each panel, the data have been independently
organized using hierarchical clustering. The orange bar highlights the
location of specific subsets of transcripts showing splicing defects.
doi:10.1371/journal.pgen.1002530.g006
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Bdf1 interacts with Swr1 and functions in recruiting the entire

SWR1 chromatin remodeling complex to nucleosomes. A recent

genome-wide study demonstrates that Bdf1 is enriched on the +1

and +2 nucleosomes of actively transcribed genes [47], and that it

coincides with the localization of Vps72, another component of

the SWR1 complex, and another component which was identified

in our screen (Figure 5).

Remarkably, we demonstrate here that the splicing of nearly

every intron-containing gene is negatively affected in a bdf1D
strain, and that the quantitative defect seen in this mutant rivals

that seen for canonical splicing mutants. Given its role in global

gene expression, one possible explanation for our results in the

bdf1D strain is that the transcription of some key splicing factor is

repressed by this mutation, causing a decrease in splicing

efficiency. Indeed, early work on Bdf1 from the Séraphin lab

suggested a role in global transcription, including transcription of

the spliceosomal snRNA genes [48]. However, our microarray

analyses show essentially normal RNA levels of all known splicing

components in the bdf1D strain (see Figure S4). Moreover, our

microarray data assessing the snRNA levels themselves are entirely

consistent with Séraphin’s original observations and demonstrate

that none of the five wild type snRNAs are decreased in cellular

level during growth at 30uC in the bdf1D mutant; rather, there are

subtle increases in the U1 and U2 snRNA levels. Importantly, our

ChIP-QPCR experiments in the bdf1D strain demonstrate a

decreased occupancy of the U1 snRNP on all four intron-

containing genes we tested, suggesting the intriguing possibility

that Bdf1 plays a direct role in connecting pre–mRNA splicing

with chromatin remodeling and transcription initiation.

In considering such a role for Bdf1, it is important to note that

the yeast BDF1 gene has a close sequence homolog in the BDF2

gene. These two genes are genetically redundant, in so much as

both single gene deletions are viable but the double mutant bdf1D/

bdf2D is lethal. Moreover, it has been shown that these two genes

evolved from a single ancestral gene following a whole-genome

duplication event [49]. Yet surprisingly, unlike the bdf1D strain,

the bdf2D strain showed no signs of a splicing defect either in our

screen or when examined by splicing sensitive microarrays.

Moreover, unlike the bdf1D strain, there was no apparent decrease

in U1 snRNP ChIP-QPCR signal in the bdf2D strain. In

considering a mechanism whereby Bdf1 connects transcription

initiation and chromatin remodeling with pre–mRNA splicing, it is

worth noting that, unlike human genes, the majority of yeast genes

do not contain an intron. As such, co-transcriptional recruitment

of the spliceosome is unnecessary for most yeast genes. We are

intrigued by the possibility that, in the time since the duplication

event, Bdf2 has evolved to a point where it retains the capacity to

recruit RNA polymerase but has lost the ability to efficiently

connect splicing with transcription. Such a scenario would explain

the differences observed between the bdf1D and bdf2D microarrays

and U1 snRNP ChIP-QPCR data. It would also likely explain the

previously published results that Bdf1 shows higher sequence

conservation with the C-terminal domain of human TAFII250

than does Bdf2 [41]. Given such a model for the divergence of

Bdf1 and Bdf2 functions, the differences in protein sequence

between these two proteins may prove informative for deciphering

the mechanism of Bdf1 activity.

The 39 end: Connecting splicing with cleavage and
polyadenylation

In addition to the over-representation of factors marking the 59

end of genes, our screen identified a number of factors involved in

the 39 end processing of mRNAs. Splicing-sensitive microarrays

confirm a broad splicing defect in a mutant of Yth1, the homolog

of human CPSF30, and transcript-specific splicing defects in

mutants of Cft2 and Fip 1, the homolog of human CPSF100 and a

component of the polyadenylation factor complex PF I, respec-

tively. In higher eukaryotes, components of the 39 end processing

machinery have been shown to physically associate with

components of the U2 snRNP [50] and U2AF65 [51]; moreover,

in vitro studies demonstrate a functional link between the pre–

mRNA splicing and 39 end processing pathways [52]. The

interactions between these two pathways in mammalian systems

have led to the proposal that the 39 end machinery plays an

important role in terminal exon definition. Whereas the exon-

definition model for mammalian spliceosome assembly posits that

internal exons are defined by interactions between U1 and U2

snRNP components across an exon [53], definition of terminal

exons is achieved by interactions between the 39 end processing

machinery and the U2 snRNP (Figure 7A), imposing a functional

connection between the pathways. Yet because of the relatively

short length of S. cerevisiae introns, and the limited number of genes

that are interrupted by multiple introns, splicing in yeast has long

been considered to proceed through a model of intron-definition.

Nevertheless, the Keller lab recently demonstrated that some

conditional alleles of YSH1/BRR5 lead to a decrease in splicing

efficiency [54]. Our demonstration here of pre–mRNA splicing

defects in the background of additional mutants in 39 end

processing mutants suggests the intriguing possibility that some of

the basic interactions that facilitate exon-definition in higher

systems may also be present in budding yeast. Indeed, further

characterizing the mechanism by which these 39 end processing

factors are affecting splicing in yeast may provide important

insights into the mechanisms by which exon-definition is

accomplished in higher eukaryotes.

A global perspective
An important strength of an approach such as this is the

genome-wide perspective that it provides. Figure 7B shows a

model of an idealized transcript along with the functional location

of a subset of the factors that have been examined in our screen. It

is striking to note that many of the factors identified here function

both during transcription initiation (Bdf1 and others) and

termination (Yth1, Cft2, Fip1, and others), thereby defining the

beginning and ends of the first and last exons, respectively. In this

work, we have identified not only those factors whose disruption

leads to a functional defect in splicing efficiency, but in many cases

the specific transcripts whose splicing is affected.

More broadly, the work presented here demonstrates the

feasibility of quantitating cellular RNA levels in the background of

large mutant strain collections. While our current approach

examined splicing efficiency in the context of optimized growth

conditions, a similar approach could be applied to identify factors

necessary for efficient splicing under varying cellular or develop-

mental growth states. Likewise, although our work focused on the

levels of several pre–mRNA species, this methodology should be

directly applicable to assessing the levels of nearly any cellular

RNA of interest.

Materials and Methods

High-throughput strain handling
All experiments were performed using haploid strains. To assess

the function of non-essential genes, the mat a version of the

haploid deletion library from Open Biosystems [55] was used

(referred to herein as non-essential strains). Likewise, to assess the

function of essential genes, a collection of strains provided by the

Hieter lab [25] was used (referred to herein as essential strains). In
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addition, a collection of strains containing previously characterized

mutations in core spliceosomal components was used (from here

on considered a part of the essential strains set). A complete list of

the strains used in this work is included in Table S3. Unless

otherwise indicated, all strains were grown in rich medium

supplemented with 2% glucose (YPD) [56]. When appropriate,

strains were recovered from frozen glycerol stocks on solid

medium supplemented with 200 mg/ml G418 grown at either

30uC (non-essential strains) or 25uC (essential strains). A manual

pinning tool (V&P Scientific, cat.#: VP384FP6) was used to

transfer cells from solid medium into 384-well microtiter plates

(Greiner BioOne, cat.#: 781271) for growth in liquid media.

Liquid cultures were grown in an Infors HT Multitron plate

shaker at 900 rpm with 80% constant humidity. Breathable

adhesive tape (VWR, cat.#: 60941-086) was used to seal the plates

and reduce evaporation.

Because the growth rates of the strains being used vary

significantly [36], an approach was developed to enable the

systematic collection of a similar number of rapidly dividing cells

for each strain. An initial liquid culture was grown in 384-well

plates for two days, allowing nearly all strains to reach

saturation. Because all of the strains being used are derived

from a common parental strain, the cell density for each of these

strains is nearly identical at saturation, allowing us to effectively

‘normalize’ the cell numbers. Using a liquid handling robot

(Biomek NX), 2 ml of saturated culture were used to inoculate a

fresh 150 ml of YPD. This culture was allowed to grow for four

hours, an amount of time which is sufficient to allow all strains to

exit lag-phase and begin exponential growth, but not so long as

to result in a large variation in cell densities among the strains

(Figure S6). For the non-essential strains, all growth was

conducted at 30uC. For the essential strains, the initial growth

was done at 25uC (a permissive temperature for all strains), but

the saturated cells were back-diluted into plates containing

media pre-warmed to 30uC (a non-permissive temperature for

many, but not all, of the strains) and allowed to continue growing

at 30uC for four hours. For both the non-essential and the

essential strains, two independent biological replicates were

initiated from each saturated plate. After four hours of

outgrowth, cells were harvested by centrifugation at 40006g

for five minutes. The cell pellets were flash frozen in liquid N2

and stored at 280uC until further processing.

Figure 7. The location of mutants that disrupt splicing suggests a similarity to exon-definition in mammalian splicing. A. Spliceosome
assembly in mammalian systems is thought to occur via exon-definition, where interactions between U1 and U2 snRNP components across an
internal exon, or CPSF components and U2 snRNP across a terminal exon, are necessary for efficient processing of the upstream intron. B. Functional
location of a subset of the mutants examined in this work, presented on a model transcript. Factors shown in red caused a statistically significant
increase in the precursor levels of at least one transcript in our screen, whereas those in grey did not affect the splicing of any of the transcripts.
doi:10.1371/journal.pgen.1002530.g007
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High-throughput RNA isolation
Isolation of total cellular RNA was performed using custom

protocols written for a Biomek NX liquid handling system. To

each frozen cell pellet collected as described above, 50 ml of Acid

Phenol: Chloroform (5:1, pH,5.5) and 25 ml of AES buffer

(50 mM sodium acetate (pH 5.3), 10 mM EDTA, 1%SDS) were

added. The plates were sealed with plastic CapMats (Greiner

BioOne, cat.#: 384070) and vortexed for five minutes at top speed

on a plate vortex. The plates were incubated for 30 minutes in a

water bath at 65uC with intermittent vortexing. After incubation,

the plates were spun for one minute at 10006g. An additional

35 ml of AES buffer was added to each well, and after mixing the

organic and aqueous phases were separated by centrifugation for

five minutes at 30006g. Using a slow aspiration speed, 40 ml of the

upper phase containing the RNA were robotically transferred to a

new 384-well microtiter plate. The transferred aqueous phase was

mixed with 3 volumes of RNA Binding Buffer (2 M Guanidine-

HCl, 75% isopropanol) and passed through a 384-well glass fiber

column (Whatman, cat.#: 7700-1101) by centrifugation for two

minutes at 20006g. The column was washed twice with two

volumes of Wash Buffer (80% ethanol, 10 mM Tris-HCl

(pH 8.0)), followed by a final dry spin for two minutes at

20006g. To remove any contaminating genomic DNA, 5 ml of

DNase Mix (16DNase Buffer, 0.25 units of DNase I (Promega))

was added to each well and incubated at room temperature for

15 minutes. After the incubation, 80 ml of RNA Binding Buffer

was added to each well of the 384-well glass fiber plate and spun as

before. After washing and drying as above, 15 ml of sterile water

was added to each well of the glass-fiber plate to elute the RNA

into a clean 384-well microtiter plate (Greiner BioOne, cat. #:

781280). In general, this procedure yielded about 1 mg of total

cellular RNA from each cell pellet. The quality of the RNA

produced by this protocol is equal to our conventionally purified

samples, and the effectiveness of the DNase treatment is

demonstrated in Figure S7.

Synthesis of cDNA and quantitative PCR
Total cellular RNA was converted into cDNA in 384-well

microtiter plates. Of the 15 ml of RNA purified as described above,

10 ml were used in a cDNA synthesis reaction that had a total

volume of 20 ml and which contained 50 mM Tris-HCl (pH 8.3),

75 mM KCl, 3 mM MgCl2, 10 mM DTT, 0.5 mM each dNTP,

5 mg dN9 primer, and 60 ng M-MLV RT. Reactions were

incubated overnight at 42uC.

The cDNA reactions were diluted 30-fold with water, giving a

final concentration of ,1 ng/ml based on the initial RNA

concentration, and used without any further purification as

templates in high-throughput quantitative PCR (QPCR) reac-

tions. The QPCR reactions were performed in a reaction

volume of 10 ml, containing 5 ml of template (,5 ng of

template), 10 mM Tris-HCl (pH 8.5), 50 mM KCl, 1.5 mM

MgCl2, 0.2 mM each dNTP, 0.256 SYBR Green, 5% DMSO,

0.7 ng Taq DNA polymerase, and 250 nM forward and reverse

primers. The sequences of the primers used for each targeted

RNA are shown in Table S4. Standard curves were generated

consisting of 4-fold serial dilutions of genomic DNA and

covering a range of 1.66105 molecules. Each primer pair was

well-behaved, showing an amplification efficiency of between

86% and 97% (Figure S8). Two technical replicates were

measured for each biologically independent sample, generating

four independent measurements for each of the ,5500 mutant

strains.

Processing QPCR data
On the basis of standard curves generated using QPCR, relative

nanogram quantities were calculated for every RNA transcript

within each of the ,5500 strains tested. To assess reproducibility,

coefficients of variation (CV) were determined for each primer pair

and each strain. The vast majority of these were highly

reproducible, both overall and on a per plate basis. As an initial

quality filter, we chose to exclude any samples for which the CV

was greater than 0.25.

Because no simple mechanism exists to normalize for

variability in each of our experimental steps, we instead chose

to measure the levels of six different RNAs in each of the samples

and use these to determine a composite normalization value to

account for the overall yield in our procedure. The six RNAs

were: U1 snRNA, Scr1 (SRP) RNA, Tef5 mRNA, Tub1 mRNA,

Srb2 mRNA and Faa1 mRNA. These RNAs were chosen

because their biological functions are diverse and their cellular

levels vary over a broad range (,300-fold, Table S1). For both

independent biological replicates of every strain, a composite

normalization constant, Cnormxi
, was calculated according the

following formula:

For each primer pair, ngxi
represents the relative nanogram

quantity calculated for an individual sample. Similarly, ngMEDPlate

represents the median value determined for a given primer pair

on an individual QPCR plate run. Because of the subtle

variations that are apparent from one plate run to the next, we

found that this per plate normalization using ngMEDPlate
gave us

the most robust data. By determining the ratio of
ngxi

ngMEDPlate

for

every primer pair, a relative abundance of total RNA can be

calculated for every sample. As seen in Figure S9, a histogram of

Cnormxi
values follows a normal distribution in log2 space with a

variance of 1.5 units. A second filter at the level of Cnormxi
values

was introduced which allowed for the filtering of samples with

very low amounts of cDNA.

For strains that passed this filter, the normalized levels of a given

RNA were determined according to the following formula:

RNAngnormxi
~

RNAngxi

Cnormxi

The relative amount of RNA in a given strain was then

determined according to the following formula:

RNArelxi
~log2
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RNAngnormxMEDPlate
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For each primer pair, RNAngnormxMEDPlate
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value of the normalized RNA levels determined within a given
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Significance analysis of QPCR data
To determine the subset of strains that cause a statistically

significant increase or decrease in precursor levels, we employed

the Significance Analysis of Microarrays, or SAM, program [37]. While

this software was originally designed for the analysis of microarray

data, a significance analysis of our QPCR data is subject to similar

concerns regarding multiple hypothesis testing. For each RNA,

SAM analysis was performed on the four RNArelxi
values,

comprised of both technical and biological replicates that were

generated for each of the ,5500 strains. For each transcript, a one

class SAM analysis was performed where the D value was adjusted

to minimize the false discovery rate (FDR), yielding the following

values: for the U3 precursor using D= 0.983, FDR = 0.045; for the

Tub3 pre–mRNA using D= 0.91, FDR = 0; for the Rpl31b pre–

mRNA using D= 1.061, FDR = 0.003; for the Ubc13 pre–mRNA

using D= 0.978, FDR = 0.002; and for the Tef5 pre–mRNA using

D= 0.99, FDR = 0.

Splicing-sensitive microarrays
The candidate non-essential deletion strains were grown to

saturation in YPD at 30uC, then back diluted in 25 ml cultures in

flasks at a starting A600,0.2 and allowed to grow at 30uC until

they reached an optical density of between A600 = 0.5 and

A600 = 0.7. The candidate essential strains were initially grown at

25uC in YPD, then shifted to the indicated temperatures for

15 minutes after they reached an optical density of between

A600 = 0.5 and A600 = 0.7. In parallel with the collection of the

mutant strains, wild type isogenic controls were grown and

collected under the same conditions as the mutant strains

examined. Total cellular RNA samples were isolated, converted

into cDNA, and fluorescently labeled as previously described [31].

All microarrays were performed as two-color arrays comparing

mutant and wild type strains, each grown under identical

conditions. Both raw and processed microarray data are available

through GEO using accession number GSE34330.

Chromatin immunoprecipitation
The U1C-Tap bdf1D and U1C-Tap bdf2D strains were

generated by deleting the appropriate genes in the background

of the U1C-Tap strain from Open Biosystems [57] using standard

techniques. The strains were grown at 30uC in rich medium

supplemented with 2% glucose (YPD) until they reached an optical

density of A600,0.7. The chromatin was cross-linked with 1%

formaldehyde for 2 minutes at 30uC. Glycine was added at a final

concentration of 125 mM and the cultures were left shaking for

another 5 minutes. Cell pellets from 50 ml of culture were

collected by centrifugation at 16206g for 3 minutes, then washed

with 25 ml ice-cold 16PBS and the pellet stored at 280uC. The

pellets were resuspended in 1 ml Lysis buffer (50 mM Hepes

pH 7.5, 140 mM NaCl, 1 mM EDTA, 1% TritonX-100, 0.1%

Na-deoxycholate supplemented with protease inhibitors) and lysed

in the presence of 500 ml 0.5 mm glass beads in a beat beater. The

lysate was collected by centrifugation at 10006g for 1 minute, and

then pre-cleared by spinning for 15 minutes at 14000 rpm in a

tabletop centrifuge at 4uC. The pellet was re-suspended in another

1 ml of Lysis buffer and the chromatin was sheared to an average

size of 300 bp (range 100–500 bp) by means of a Bioruptor

sonicator. The sample was clarified by 2 cycles of centrifugation at

14000 rpm for 15 minutes in a tabletop centrifuge at 4uC and the

resultant chromatin solution frozen and stored at 280 C. From

the chromatin samples a 1% Input sample was retained, and then

each sample was split equally between a Mock IP and an IP

sample. The IP samples were incubated with 5 ml 0.5 mg/ml anti-

Tap Antibody (Thermo Scientific, CAB1001). After 2 hours at

4uC on a rotator, 25 ml of protein A/G-agarose resin (#Sc-

2003Santa Cruz) was added to all samples and they were further

incubated for another 2 h at 4uC. The resin was washed twice with

1 ml Lysis buffer, twice with 1 ml Wash buffer (10 mM Tris-HCl,

25 mM LiCl, 0.5% NP-40, 0.5%Na-deoxycholate, 1 mM EDTA)

supplemented with 360 mM NaCl, twice with 1 ml Wash buffer,

and finally twice with 1 ml TE. The first wash was a brief one,

followed by a 15 minute incubation of the samples on a rotator at

4uC for the second wash. In between washes, the resin was

collected by short spins at 2000 rpm in a tabletop centrifuge. The

resin was resuspended in 100 ul Elution buffer (50 mM Tris-HCl

pH 8.0, 5 mM EDTA, 1% SDS) and the immunoprecipitated

material was eluted from the beads by incubating at 65uC for

30 minutes with occasional tapping. To reverse crosslinks, the IPs

and the 1% Input samples were incubated overnight in a 65uC
water bath. The next day, the samples were treated with 12.5 ml

20 mg/ml Proteinase K solution and incubated at 42u for 2 h.

The DNA was then purified by using a Cycle Pure Kit (Omega

Bio-Tek, D6492-01) following the manufacturer’s instructions and

eluted in a final volume of 120 ml.

Quantitative real-time PCR was performed on a Roche Light

Cycler 480 machine as described above, using the 1% Input

sample to generate a standard curve for each of the primer pairs

we used. For the primers used in the screen, the sequences are

available in Table S4. The primers for the different regions of

actin gene and the PMA1 gene are the same as previously

published [5]. For each sample the Mock IP value calculated as

percent input was subtracted from the IP value (in percent input).

Then, a fold enrichment value was calculated, by dividing these

values by the PMA1 value.

Mud1 overexpression
An overexpressing plasmid containing a full-length copy of the

Mud1 gene including ,500 bp up- and down-stream of the ORF

was transformed into BY4741 (Open Biosystems). This strain and

a control strain containing the empty vector were grown in 25 ml

minimal media until they reached an optical density of A600,0.5–

0.6. RNA isolation was performed as previously described [31],

and cDNA synthesis and Q-PCR were performed as described

above. The primer sequences are found in Table S4.

Supporting Information

Figure S1 Splicing factors included within strain library.

Within the ‘‘GO process: RNA splicing’’ box are listed all

splicing factors as annotated by Gene Ontology [30]. These

factors have been subdivided based on the presence or absence

of a strain within our library, and further by the presence or

absence of data from our final filtered dataset. The subset

highlighted in red represents the strains which passed all the

filters in the U3 snoRNA precursor screen. Strains for which

there is ‘‘NO DATA’’ that passed our quality filters are listed

separately. Factors for which ‘‘NO STRAIN’’ was present in our

library are also noted. We ‘‘MANUALLY REMOVED’’ several

strains that are included by Gene Ontology but that we felt are

either are not part of the spliceosome or have a yet

uncharacterized function. In addition, we have ‘‘MANUALLY

ADDED’’ three factors which are known to impact splicing. Two

more strains that partially ‘‘DISRUPT READING FRAMES’’

of specific splicing factors (indicated in the parentheses) were also

added to our dataset.

(EPS)

Figure S2 Global changes in Tef5 RNA levels. A. Total RNA

levels of the Tef5 transcript in 5198 strains which passed the
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quality filters. The total RNA levels are presented in log2 space as

a composite behavior of both biological replicates, and are ordered

from the highest (left) to the lowest (right) values. On the right side

of the figure the data are presented as a heat map, with both

biological datasets (A and B) shown. The data in the heat map are

ordered from the highest to the lowest values, similar to the

representation on the left. B. A comparison of the levels of Tef5

pre–mRNA versus the splicing efficiency of this transcript

(calculated as a ratio of precursor Tef5 to total Tef5 levels across

the entire dataset) shows a strong correlation. C. A comparison of

the relative growth rate of the non-essential library strains [36]

versus the Tef5 pre–mRNA levels reveals no correlation between

cellular fitness and splicing efficiency.

(EPS)

Figure S3 U1 snRNP recruitment is diminished upon Bdf1

deletion. Chromatin immunoprecipitation (ChIP) was performed

using a Tap tagged version of Yhc1 (U1C) in wild type, bdf1D, and

bdf2D strains to assess the co-transcriptional occupancy of the U1

snRNP. A) Primers that had been previously used in a similar

assay (Tardiff et al. Mol Cell 2006) allowed us to monitor by

quantitative PCR the amount of U1 snRNP associated with

different genomic regions of the ACT1 gene. The plotted values

were calculated as the percent of input signal detected at given

region within the actin gene divided by the percent of input signal

observed for the intronless gene PMA1. The error bars represent

the standard deviations of technical replicates. B) The ChIP

samples described above were assayed with the same primers used

in our screening which targeted intronic regions of the U3

snoRNA, Rpl31B and Ubc13 pre–mRNAs. As above, the values

are presented as fold enrichment over the intronless gene PMA1

and the error bars are indicate standard deviation of technical

replicates. For all four intron-containing genes, decreased levels of

U1 snRNP are detected in the bdf1D strain relative to both the

wild type and bdf2D strains.

(EPS)

Figure S4 The RNA levels of most spliceosomal factors are

unchanged in most mutants. Total RNA levels for all splicing

factors in the background of different gene deletions or point

mutations for which microarrays were performed. The data are

organized on the basis of the highest to the lowest average change

in the snt309D and lsm6D strains.

(EPS)

Figure S5 Mud 1 overexpression does not cause increases in

precursor levels. A high copy plasmid (2-micron) containing the

Mud1 gene was transformed into an otherwise wild type strain in

order to affect its overexpression. The expression levels of Mud1

and several precursor RNAs were monitored by quantitative real-

time PCR and compared to a wild type strain containing an empty

vector. The data were normalized to the expression of the

intronless Faa1 transcript to account for loading differences in the

samples. While a .30-fold increase is apparent for the Mud1

transcript, no increase is detected in the precursor levels of any of

the RNAs surveyed, suggesting that their splicing is unaffected by

Mud1 overexpression. The error bars represent the standard

deviation of technical replicates.

(EPS)

Figure S6 Growth rates of mutant strains in liquid culture.

Growth curves for a subset of 96 mutant deletion strains over a

600 minute time interval. Whereas the majority of the strains (A)

grow at a rate which is similar to wild type, a small number of

strains (B) grow at a slightly reduced rate, while one strain (C)

grows very slowly. On the basis of these data, we chose to harvest

cells after 4 hours of outgrowth, which ensures that the majority of

the strains are harvested when A600,0.5.

(EPS)

Figure S7 Assessing Total RNA and cDNA quality. A. A

comparison of RNA quality between a ‘‘classic’’ phenol-extraction

protocol and our robotic procedure. The diagram above the

picture of the gel indicates the regions of a 384-well plate from

which RNA was selected and run. Each lane contains about

300 ng of total cellular RNA and duplicates from each region of

the plate are shown. B. Effectiveness of the DNase treatment as

measured by quantitative RT-PCR, demonstrating the shift in

fluorescence before and after DNase treatment. The green text

indicates the samples that were treated with DNase, whereas the

black text indicates the untreated samples. C. The measured levels

of Tef5 pre–mRNA in the indicated samples demonstrates that the

contaminating genomic DNA is strongly depleted by DNase

treatment.

(EPS)

Figure S8 Standard curves for quantitative PCR (QPCR) for all

primer pairs. Standard curves for all primer pairs used in this

study. The Cp values (crossing points) are plotted against the

logarithm of known starting sample amounts (in nanograms of

genomic DNA). The equations that describe the curves as well as

the R2 values are specified for each of the primer pairs.

(EPS)

Figure S9 Distribution of Cnorm values. The distribution of the

normalization constants (Cnorm) in log2 space for all samples in the

biological replicate A dataset. The area highlighted in dark green

comprises Cnorm values which have passed the Cnorm filter. All

log2(Cnorm) values less than 23 (an 8-fold decrease from the

median) were eliminated from the dataset. Above the histogram, a

box and outlier plot underlines the same distribution of Cnorm

values.

(EPS)

Table S1 Relative abundances of RNA species as measured by

QPCR. RNA species for which expression levels were measured

and their corresponding levels. The values are normalized to the

Tub3 pre–mRNA level, which was the lowest abundance

transcript measured in our experiments.

(DOCX)

Table S2 List of SAM identified strains and their SAM score for

the various pre–mRNAs measured. Strains which were found to

be statistically significant for any of the five precursor RNAs we

measured, arranged in the decreasing order of their maximal D

score generated by SAM.

(DOCX)

Table S3 The complete list of the strains used in this study. The

systematic names of all genes which were either deleted or

contained a temperature sensitive mutation are noted, as well as

their mutations and a reference to their sources. The sources are

a = Giaver et al., 2002; b = Ben-Aroya et al., 2008; c = from the

Guthrie lab collection.

(DOCX)

Table S4 Forward and Reverse primer sequences used for

QPCR for each target RNA. The list of forward and reverse

primers used in this study.

(DOCX)
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