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Abstract

Cellular efficiency in protein translation is an important fitness determinant in rapidly growing organisms. It is widely
believed that synonymous codons are translated with unequal speeds and that translational efficiency is maximized by the
exclusive use of rapidly translated codons. Here we estimate the in vivo translational speeds of all sense codons from the
budding yeast Saccharomyces cerevisiae. Surprisingly, preferentially used codons are not translated faster than unpreferred
ones. We hypothesize that this phenomenon is a result of codon usage in proportion to cognate tRNA concentrations, the
optimal strategy in enhancing translational efficiency under tRNA shortage. Our predicted codon–tRNA balance is indeed
observed from all model eukaryotes examined, and its impact on translational efficiency is further validated experimentally.
Our study reveals a previously unsuspected mechanism by which unequal codon usage increases translational efficiency,
demonstrates widespread natural selection for translational efficiency, and offers new strategies to improve synthetic
biology.
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Introduction

Eighteen of the 20 amino acids are each encoded by two or

more synonymous codons in the standard genetic code, yet the

synonymous codons are often used unequally in a genome. Such

codon usage bias (CUB) has been extensively documented in all

three domains of life [1–3]. Within a genome, highly expressed

genes tend to have stronger CUB than lowly expressed ones [4],

and the codons preferentially used in highly expressed genes of a

species are referred to as preferred codons.

Although codon usage is clearly determined by the joint actions

of mutation, drift, and selection [5–6], the fitness benefit of CUB is

less clear. There are two prevailing, non-mutually exclusive,

hypotheses on the selective utility of CUB: accuracy and efficiency

of protein translation [6]. The translational accuracy hypothesis

asserts that different synonymous codons have different probabil-

ities of mistranslation, and that the use of accurately translated

codons is beneficial because mistranslation reduces the number of

functional molecules, wastes energy, and/or induces cytotoxic

protein misfolding. Unequivocal evidence for this hypothesis exists

[7–10].

By contrast, the translational efficiency hypothesis lacks direct

evidence. This hypothesis holds that different synonymous codons

are translated at different speeds, and that faster translation is

beneficial because it minimizes ribosome sequestering and so helps

alleviate ribosome shortage [5,11–12]. The relevance of ribosome

shortage is evident from the findings that most ribosomes are

actively engaged in translation during rapid cell growth [13–14]

and that ribosome concentration increases with the rate of cell

growth [15]. An important observation invoked to support the

efficiency hypothesis is that cognate tRNAs of preferred codons

tend to have higher cellular concentrations (or more gene copies)

than those of unpreferred codons [4,16], which may allow faster

translation of preferred codons than unpreferred codons. While

results from several earlier studies are consistent with this

hypothesis [12,17], these studies do not exclude the possibility

that the observed differences in activity or fitness caused by

synonymous mutations are entirely due to CUB’s influence on

translational accuracy (see Discussion). Here we directly test the

efficiency hypothesis and its presumed underlying mechanism.

Results

Estimating in vivo translational speeds
The translational efficiency hypothesis assumes that synony-

mous codons have different translational speeds, caused by

disparities in codon selection time (CST), the time needed for

ribosomal A site to find the cognate ternary complex of

aminoacylated tRNA+eEF-1a+GTP. To test this proposition, we

took advantage of a genome-wide ribosome profiling study of

Saccharomyces cerevisiae that surveyed ribosome-protected mRNA

fragments at a nucleotide resolution in a cell population at a given

moment by Illumina deep sequencing [18]. Because the

probability that a codon is docked at the A site is proportional
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to its CST, we estimated the relative CSTs of all 61 sense codons

(Figure 1A) by the ratio of the observed codon frequencies at the A

site in the ribosome profiling data and the expected codon

frequencies estimated from mRNA-Seq data generated under the

same condition in the same experiment (Figures S1, S2, S3; see

Materials and Methods). The standard errors of the CST estimates,

measured by bootstrapping genes from the original datasets, are

on average 12% of the CST estimates (Figure 1A), indicating that

our CST estimates are overall quite precise.

CUB is commonly measured by the relative synonymous codon usage

(RSCU), defined by the frequency of a codon relative to the

average frequency of all of its synonymous codons in a set of highly

expressed genes [19]. To compare the usage of all 61 sense codons,

we also use RSCU’, which is the proportion of use of a given codon

among synonymous choices in a set of highly expressed genes (see

Materials and Methods). Another commonly used measure of

CUB is the codon adaptation index (CAI) [20], which is calculated for a

gene, and measures its usage of high-RSCU codons (see Materials

and Methods). The greater the CAI, the more prevalent are

preferred codons in the gene.

Contrary to the widely held presumption that preferred codons

are translated faster than unpreferred codons, no significant

negative correlation between RSCU’ and CST was observed among

the 61 sense codons (Figure 1B). It is also believed that codons with

abundant cognate tRNAs tend to have low CSTs. Because tRNA

gene copy number and tRNA concentration are highly positively

correlated [21–22], the former is often used as a proxy of the

latter. However, neither tRNA gene copy number (Figure 1C) nor

tRNA concentration (Figure 1D) correlates negatively with CST.

Because codons and tRNAs do not have one-to-one correspon-

dence, in the foregoing analysis, we considered the best-matching

tRNA species for each codon. This codon-tRNA relationship has

been shown to be more accurate than the wobble rule, at least in

yeast [22].

We also examined each amino acid separately. Among the 18

amino acids with at least two codons, 12 (Ala, Asn, Cys, Gln, Glu,

Gly, Ile, Lys, Ser, Thr, Tyr, and Val) showed a negative

correlation between RSCU’ and CST, while 6 (Arg, Asp, His,

Leu Phe, and Pro) showed a positive correlation, when statistical

significance of the correlation was not required (Figure 1A). The

number of negative correlations is not significantly more than the

chance expectation of 9 (P = 0.12, one-tail sign test).

Using the standard errors of the CST estimates for the foregoing

18 amino acids (Figure 1A), we tested whether the CSTs are

significantly different between the synonymous codon with the

highest RSCU’ and that with the lowest RSCU’. After the control

for multiple testing by the Bonferroni correction, only two amino

acids showed significant differences. The highest-RSCU’ codon has

a lower CST than the lowest-RSCU’ codon for glycine (nominal

P = 0.002), while the opposite is true for arginine (nominal

P,0.001). Our results are robust to different multiple-testing

corrections, as no other amino acids show a nominal P,0.01.

Furthermore, when RSCU’ is not considered, arginine is the only

amino acid for which synonymous codons show significant

heterogeneity in CST at the 5% significance level after the

correction for multiple testing. Following an earlier study [1], we

also tried defining preferred codons without using gene expression

data, but the results are not different (Figure S4). The overall lack

of a significant negative correlation between CST and synonymous

codon usage is real rather than an artifact of imprecise CST

estimation, because the standard errors of CSTs are quite small

(Figure 1A) and CSTs of several nonsynonymous codons differ

significantly from one another (see below).

To validate the above findings, we also directly compared

RSCU’ values of individual codon positions of Illumina reads from

the ribosome profiling data, without estimating CSTs. If unpre-

ferred codons are translated more slowly and therefore stay at the

ribosomal A site longer than preferred codons, codons at the A site

should have a lower RSCU’ on average than its neighboring sites of

the same read, after the correction of sequencing bias by mRNA-

Seq data. However, we observed no dip in RSCU’ at the A site

(Figure 1E). We further calculated, within each gene, the ratio

between the frequency of preferred codons and that of unpreferred

codons at the ribosome A site of Illumina reads from the ribosome

profiling data, after correction by mRNA-Seq. This ratio is

expected to be 1 if preferred and unpreferred codons are

translated equally fast. Indeed, after combining the ratio for all

amino acids and all genes using the Mantel-Haenszel procedure

[23], we found the overall ratio to be 0.984, not significantly

different from 1 (P = 0.21, two-tail x2 test).

Optimal codon usage under tRNA shortage
The above findings are puzzling, because the first step in the

interaction between tRNA and mRNA is non-specific [24] and the

relative waiting time for the cognate tRNA to arrive at the

ribosome A site is expected to be inversely proportional to the

relative concentration of the cognate tRNA. It was also reported

that CST is the rate-limiting step in translational elongation [25].

The only plausible explanation of similar CSTs among synony-

mous codons is that, in wild-type yeast cells for which the ribosome

profiling was conducted, available cognate tRNAs for translating

synonymous codons have effectively the same concentration.

In rapidly growing yeast, ,80% of total RNA is rRNA and

,15% is tRNA [15]. The mean length of yeast tRNAs is ,72

nucleotides and the total length of rRNAs per ribosome is 5469

nucleotides [15]. Thus, the number of tRNA molecules per cell is

approximately (15%/72)/(80%/5469) = 14.2 times the number of

ribosomes per cell, substantially exceeding the expected ratio of

two tRNAs per active ribosome (at A and P sites, respectively) if

tRNA recharging and diffusion is instantaneous.

In reality, however, tRNA recycling takes time and thus cannot

be ignored. Each tRNA, after completing its job of transferring an

amino acid to the elongating peptide and then exiting the

ribosomal E site, needs to be recharged with the cognate amino

acid and then with eEF-1a+GTP to form a ternary complex

before it can be reused in translation. It has been estimated that

each ribosome translates ,32.6 codons per second in yeast [26].

This implies that on average a tRNA molecule needs to be used

32.6/14.2 = 2.3 times per second, or once every 0.44 second. It is

possible that the time for ternary complexes to form and diffuse to

Author Summary

Although an amino acid can be encoded by multiple
synonymous codons, these codons are not used equally
frequently in a genome. Biased codon usage is believed to
improve translational efficiency because it is thought that
preferentially used codons are translated faster than
unpreferred ones. Surprisingly, we find similar translational
speeds among synonymous codons. We show that
translational efficiency is optimized by a previously
unknown mechanism that relies on proportional use of
codons according to their cognate tRNA concentrations.
Our results provide important molecular details of protein
translation, answer why codon usage is unequal, demon-
strate widespread natural selection for translational
efficiency, and can guide designs of synthetic genomes
and cells with efficient translation systems.

Codon Usage and Translational Efficiency
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ribosomal A site is a substantial fraction of 0.44 second, so that the

local concentration of ternary complexes is much lower than the

total tRNA concentration. A recent study reported that consec-

utive synonymous codons in an mRNA tend to use the same tRNA

and proposed that this codon choice is beneficial because a tRNA

does not diffuse far from the ribosome after exiting its E site and is

reused for translating the next synonymous codon when the

ternary complex is formed again [27]. This observation and its

explanation strongly implies that the local concentration of ternary

complexes is low; otherwise, the addition of one cognate tRNA

molecule among on average 20 tRNAs (because identical amino

acids are expected to be on average 20 residues apart) cannot

significantly increase the relative concentration of the cognate

tRNA around the ribosome. Based on available information in E.

Figure 1. Relative codon selection times (CSTs) in wild-type yeast cells in rich media. (A) CST (grey bars) and RSCU’ (orange dots) of each
sense codon. CSTs are rescaled such that the maximal observed value is 1. Error bars show one standard error, estimated by the bootstrap method.
No significant negative correlation between CST and (B) RSCU’, (C) tRNA gene copy number, or (D) tRNA concentration. Spearman’s rank correlation
coefficients (r) and associated P values are presented above each panel. The P value in (B) is calculated by a permutation test because of the non-
independence among RSCU’ values of synonymous codons. (E) No dip in RSCU’ at the ribosomal A site, compared to P, E, and other neighboring sites.
Geometric means of RSCU’ is calculated at each codon position (as in the calculation of CAI) for ribosome profiling sequencing reads and mRNA
sequencing reads, respectively; the ratio at each position is presented. Error bars show one standard error estimated by bootstrapping sequencing
reads 1000 times.
doi:10.1371/journal.pgen.1002603.g001
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coli, we calculated that the physiological concentration of ternary

complexes is only ,4.3% of the total concentration of tRNAs and

,22% of the concentration of ribosomes (see Materials and

Methods). These observations strongly support our hypothesis that

available tRNA is in shortage during translation. Consistent with

our hypothesis, total tRNA concentrations increase with the rate of

cell growth in E. coli [28] and tRNA gene copy number increases

with the shortening of the minimal generation time across species

[29].

Under tRNA shortage, the optimal usage of synonymous

codons in minimizing the total CST (i.e., maximizing translational

efficiency) is to use isoaccepting tRNAs in proportion to their

concentrations (see Materials and Methods). That is, pi = qi, where

pi is the relative usage of the ith synonymous codon of an amino

acid (Spi = 1) and qi is the relative concentration of the

corresponding tRNA (Sqi = 1). Under this codon usage, available

cognate tRNAs of synonymous codons have equal concentrations

and synonymous codon selection times become identical (see

Materials and Methods). We will refer to this theoretical optimal

codon usage under tRNA shortage as the proportional rule. The

proportional rule is not predicted by other models. For example,

without tRNA shortage, two optimal solutions in minimizing the

total CST exist. When codon usage is fixed, isoaccepting tRNA

concentrations should follow q2
i =q2

j ~pi=pj , which is referred to as

the square rule [30–31]. When tRNA concentrations are fixed,

only the codon corresponding to the most abundant tRNA species

should be used [30], which is referred to as the truncation rule.

To test if the actual codon usage of yeast follows the

proportional rule, we examined the 12 amino acids that are each

translated by at least two tRNA species in yeast. For each amino

acid, the relative transcriptomic usage of a codon among

synonymous codons (i.e., pi) is quite close to the relative gene

copy number of its cognate tRNA among isoaccepting tRNAs (i.e.,

qi), as predicted by the proportional rule (Figure 2A). We measured

the Euclidian (Figure 2B) and Manhattan (Figure 2C) distances in

synonymous codon usage from the observed values to those

predicted by the proportional rule, and found these distances

significantly shorter than expected by chance (Figure 2B–2D;

Table S1; see Materials and Methods). Not surprisingly, genomic

codon usage fits the proportional rule less well than the

transcriptomic codon usage (Figure 2A), reflected by greater

distances from the predicted values (Figure 2B, 2C).

The better fitting of the transcriptomic codon usage to the

proportional rule than to the square rule and truncation rule can

be seen from a comparison of the distances under these three

models (Figure 2D). We also compared the likelihood of the three

models, given the observed codon usage (Figure 2D). The

proportional model has a much higher log10(likelihood) than the

square model. Because the likelihood of the truncation model is 0,

this model is much worse than the other two models. The same

conclusions are reached for the transcriptomic codon usage of all

other model eukaryotes we examined (Figure 2A, 2D).

In the above analysis, we combined synonymous codons that

are recognized by the same tRNA species (referred to as iso-

synonymous codons). Because the relative usage of such iso-

synonymous codons does not affect the relative usage of

isoaccepting tRNAs, it presumably does not affect translational

efficiency. Nonetheless, iso-synonymous codons are not used

equally, and factors other than translational efficiency (e.g.,

translational accuracy) may be at work (Table S2).

Codon–tRNA imbalance reduces translational efficiency
The observation of similar CSTs among synonymous codons

and the empirical validation of the proportional rule strongly

support the following model that includes three elements: (1)

available tRNAs are in shortage during translation, (2) transla-

tional efficiency is optimized in nature by balanced codon usage

according to tRNA concentrations, and (3) synonymous codons

are translated with similar speeds under the codon-tRNA

balance. Our model predicts reduced translational efficiency

due to ribosome sequestering when the codon-tRNA balance is

broken. It further predicts lower efficiency under exclusive use of

preferred codons than balanced use of preferred and unpreferred

codons.

We experimentally tested the above predictions by quantifying

the cellular efficiency in translation, represented by the protein

expression of a reporter gene, under different levels of codon-

tRNA imbalance induced by the expression of another gene.

Unlike previous studies [12,17], our separation of the inducer and

reporter allows the distinction among several potential mecha-

nisms of CUB’s impact on protein expression. We inserted our

reporter gene, the Venus yellow fluorescent protein (vYFP) gene

controlled by the GPD promoter, into Chromosome XII of a

haploid strain of S. cerevisiae (Figure 3A). We then designed four

synonymous sequences encoding another fluorescent protein,

mCherry, as our inducer (Figure S5). The four mCherry sequences,

named mCherry-1, 2, 3, and 4, cover the entire range of CAI of

native yeast genes (Figure 3B). We developed an index, distance to

native codon usage (Dncu), to measure the difference between the

codon usage of a (heterologous) gene and the overall codon usage

of the host cell, which is proportional to tRNA concentrations (see

Materials and Methods). The four mCherry versions also span a

large range of Dncu (Figure 3C) and show different degrees of

codon-tRNA imbalance for individual amino acids (Figure S6).

Other than synonymous codon usage, the four mCherry versions are

nearly identical: they encode the same protein sequence, have

similar G+C content (42–44%), and have identical sequences in

the first 56 nucleotides of the coding region, because this region

may affect the level of protein expression [12,32–33]. Each mCherry

gene is expressed from a constitutive and strong promoter on a

high-copy-number plasmid (see Materials and Methods). The four

plasmids were separately transformed to yeast cells carrying the

vYFP reporter gene (Figure 3A). Our model predicts that the

higher the Dncu of mCherry, the lower the vYFP expression.

The four yeast strains were grown in rich media to the log

phase, and the expression levels of vYFP and mCherry proteins

were inferred from their fluorescent signals, which were simulta-

neously measured for each cell by fluorescence-activated cell

scanning of at least 300,000 cells. We found mCherry expression

levels to be significantly different among the four strains (see

Materials and Methods). Within each strain, expression levels of

mCherry and vYFP are negatively correlated among cells (see

Materials and Methods). Hence, the expressions of vYFP cannot

be directly compared among strains. Instead, we separated the

cells of each strain into three bins on the basis of mCherry

expression and then compared vYFP expressions among the four

strains for cells with similar mCherry expressions (Figure 3D). We

found that, across the range of mCherry expressions shared by the

four strains, the higher the Dncu of mCherry, the lower the

expression of vYFP (Figure 3D). Furthermore, the vYFP

expression-level difference among the strains increases with the

mCherry expression level (Figure 3D). Of special interest is the

comparison between mCherry-3 and mCherry-4, which clearly shows

that it is a low Dncu rather than a high CAI that enhances

translational efficiency (Figure 3D). A multivariate regression

analysis of all cells from the four strains further demonstrated that

Dncu is significantly more important than CAI in explaining the

variation of the vYFP signal (P,0.001).

Codon Usage and Translational Efficiency

PLoS Genetics | www.plosgenetics.org 4 March 2012 | Volume 8 | Issue 3 | e1002603



The above results were not due to different random mutations

fixed in the genomes of the four strains during our experiments,

because the vYFP signals were not significantly different among

the strains upon removal of the plasmids (Figure 3E). We also

sequenced the entire plasmid DNA from each strain and found no

mutation. Using quantitative polymerase chain reaction, we

further verified that the vYFP mRNA abundance is not different

among the four strains (Figure 3F). Thus, the among-strain

variation in vYFP signal must be due to a variation in translation.

We also confirmed our results by a finer control of mCherry

Figure 2. Synonymous codons are used in proportion to cognate tRNA concentrations. (A) Relative uses of synonymous codons in the
transcriptomes of seven model eukaryotes are compared to the relative concentrations of cognate tRNAs measured from gene copy numbers, for the
12 amino acids that have at least two isoaccepting tRNA species. For comparison, genomic synonymous codon usage in S. cerevisiae is also
presented. The diagonal line shows the predicted proportional relationship between tRNA concentrations and cognate codon uses that maximizes
translational efficiency under tRNA shortage. (B) Euclidian and (C) Manhattan distances between the observed synonymous codon usage in S.
cerevisiae and the prediction by the proportional rule are significantly smaller than chance expectations. Euclidian and Manhattan distances are

defined by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xk

i~1

(pi{qi)
2

vuut and
Xk

i~1

Dpi{qi D, respectively, where pi and qi are codon and cognate tRNA fractions, respectively, and k is the number of

different tRNA species for the amino acid concerned. The chance expectations are shown by the frequency distributions of the distances under

uniformly random codon usage, determined from 106 simulations. (D) Euclidian and Manhattan distances between the observed synonymous codon

usage and the predictions under the proportional rule, square rule, and truncation rule, respectively. P values indicate the probability that a distance

generated by random codon usage is smaller than the observed distance, determined by 106 simulations. Log10(likelihood ratio) measures the

likelihood of the proportional rule, relative to the square rule, given the actual codon usage.
doi:10.1371/journal.pgen.1002603.g002
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expression and ruled out the possibility that our observation is a

byproduct of potential differences in translational accuracy among

different mCherry versions (Figure S7; see Materials and Methods).

Furthermore, because the accuracy hypothesis is based on CAI and

thus predicts a higher vYFP expression in the strain carrying

mCherry-4 than that carrying mCherry-3, our results (Figure 3D) are

inexplicable by this hypothesis. Similarly, mechanisms resulting

from translational errors, such as protein misfolding or aggrega-

tion, cannot explain our observation either.

In the experiment, we used vYFP to represent native genes in the

yeast genome. However, because vYFP and mCherry have 71/

220 = 32% of protein sequence identity, one might ask whether

our observation can be generalized. Specifically, could the

negative influence of mCherry expression on vYFP expression

be caused entirely by the similarity in codon usage between

mCherry and vYFP? We measured the codon usage dissimilarity

between a pair of genes by a Euclidian distance and examined the

distribution of this distance between each mCherry version and all

yeast genes (Figure S8). The distribution is approximately bell

shaped and the distance between mCherry and vYFP falls in the

central part of the bell, suggesting that mCherry is no more similar

to vYFP in overall codon usage than to average yeast genes.

Furthermore, our results cannot be explained by amino acid

similarity between mCherry and vYFP, because all mCherry

versions have the same amino acid sequence and should not

differentially affect vYFP expression through amino acid usage.

Thus, our observation from vYFP can be extrapolated to native

genes in the yeast genome.

Why more highly expressed genes have stronger CUB
If translational efficiency is maximized when the cellular codon

usage follows the proportional rule, why do highly expressed genes

necessarily prefer codons with highly abundant cognate tRNAs

and have stronger CUB than lowly expressed genes? We

Figure 3. Experimental evidence for the impact of codon usage imbalance on translational efficiency. (A) Experimental design for
examining the impact of mCherry expression on the expression of the reporter vYFP. An mCherry gene is constitutively expressed from a 2-micron
plasmid in S. cerevisiae, whereas vYFP is constitutively expressed from Chromosome XII. Four different synonymous versions of mCherry are
compared. (B) The codon adaptation indices (CAIs) of the four synonymous mCherry sequences (circled numbers), in comparison to CAIs of all S.
cerevisiae genes. (C) Values of distance to native codon usage of yeast (Dncu) for the four mCherry sequences, in comparison to that of all S. cerevisiae
genes. (D) Relationship between vYFP expression and the CAI or Dncu of mCherry, when the mCherry expression is controlled for. A finer control of
mCherry expression is presented in Figure S6, where cells of the low, intermediate, and high mCherry expressions defined here are each subdivided
into 5 bins. Error bars, which are barely seen, show one standard error. (E) vYFP expressions in the four strains after the removal of the plasmids that
carry mCherry. Error bars show one standard error. (F) vYFP mRNA levels of the four strains relative to that of the wild-type strain, which does not carry
mCherry. The mean expressions from three biological replications and the standard errors are presented.
doi:10.1371/journal.pgen.1002603.g003

Codon Usage and Translational Efficiency
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hypothesize that these phenomena are due to differential selective

coefficients associated with synonymous mutations occurring in

highly expressed and lowly expressed genes in the regain of the

codon-tRNA balance upon a genetic perturbation. Let us imagine

an amino acid with two synonymous codons (codon1 and codon2)

that each uses a distinct tRNA species (tRNA1 and tRNA2) and

assume that the present codon usage follows the proportional rule.

Now, if the proportion of tRNA1 rises due to a mutation, natural

selection will promote the fixations of synonymous mutations from

codon2 to codon1 to reestablish the codon-tRNA balance. Such

advantageous mutations occurring in highly expressed genes affect

tRNA usage more than those occurring in lowly expressed genes

and hence have a greater selective advantage and are fixed faster.

This difference becomes even bigger when clonal interference [34]

is considered. As a result, highly expressed genes use more codon1

and fewer codon2 than before and show stronger CUB. The

contrasting scenario, in which the tRNA usage is rebalanced by

frequent use of codon1 in lowly expressed genes, requires many

synonymous substitutions in many lowly expressed genes, which

will not happen because it takes much longer than rebalancing the

tRNA usage by increasing codon1 frequency in highly expressed

genes. Indeed, in a computer simulation of codon usage evolution

that starts from the equal usage of 4 synonymous codons whose

cognate tRNAs have different concentrations, the final usage of

the codons, after 500 generations of random mutation, genetic

drift, and natural selection for translational efficiency, follows the

proportional rule (Figure 4A). More importantly, the preferential

use of high-concentration tRNA species and strong CUB in highly

expressed genes are seen from both the average of 1000 simulation

replications (Figure 4B) and any one replication (Figure 4C). The

standard deviations presented in Figure 4B indicate an extremely

low probability for CUB to be stronger or a preferred codon to be

used more frequently in lowly expressed genes than highly

expressed genes. As expected, the phenomena in Figure 4

disappear when the natural selection for translational efficiency

is removed in the simulation (Figure S9). These observations

support our model that the high CAI of highly expressed genes is a

byproduct of natural selection for an overall cellular efficiency in

translation, rather than the direct product of stronger selection for

translation efficiency in more highly expressed genes [6].

Optimal amino acid usage under tRNA shortage
Analogous to synonymous codon usage, we predict that the

optimal amino acid (or nonsynonymous codon) usage in speeding

up translation is in proportion to the corresponding tRNA

concentrations. Indeed, amino acid frequencies inferred from

transcriptome data were reported to correlate positively with the

corresponding tRNA gene copy numbers in yeast [35] and C.

elegans [36]. More importantly, actual amino acid usage is

significantly closer than random usage to our predicted optimal

(i.e., the diagonal line in Figure 5A; P,1026, simulation test). This

phenomenon is also true in all other model eukaryotes examined,

although the level of match between the observation and

prediction varies among species (Figure 5A). Transcriptomic

amino acid usages instead of proteomic amino acid usages are

plotted here because the latter are unavailable for most species.

Nevertheless, S. cerevisiae data showed an almost perfect correlation

between transcriptomic and proteomic amino acid usages (Figure

S10), indicating that the former is a good proxy for the latter. We

also predict a positive correlation between aminoacyl tRNA

synthetase concentration and corresponding tRNA concentration

to enhance the efficiency of amino acid charging. Such a

correlation is indeed found in S. cerevisiae (r = 0.45, P = 0.03; Figure

S11).

If amino acid frequencies are in perfect proportion to tRNA

concentrations, the mean CST for an amino acid should not vary

among amino acids. This uniformity, however, is not observed in

yeast (Figure S12), suggesting that amino acid usage is only

roughly proportional to tRNA concentrations (Figure 5A), which

may be due to mutational bias [37] or antagonistic selective

pressures from factors such as physiochemical properties [38] and

synthetic costs [39] of various amino acids. Our model predicts

that the average CST of an amino acid increases with the decrease

of the relative availability of tRNAs for the amino acid. Indeed, a

negative correlation exists between the tRNA availability and CST

for the 20 amino acids (Pearson’s r = 20.40, P = 0.03, permutation

test; Figure 5B). This finding reconfirms tRNA shortage in

translation, explains in part why CSTs of nonsynonymous codons

vary, and indicates compromised translational efficiency due to

other fitness effects of amino acid usage.

Discussion

The translational efficiency hypothesis of CUB
Results from several earlier experiments are consistent with the

role of CUB in enhancing translational efficiency or reducing

ribosome sequestering [12,17]. For example, when expressing

many synonymous versions of a green fluorescent protein (GFP)

gene in E. coli, Kudla and colleagues reported that strains

harboring high-CAI GFP genes tend to grow faster than those

harboring low-CAI GFP genes, despite the lack of a correlation

between the GFP protein expression level and its CAI [12].

Although these authors found no correlation between CAI and

protein misfolding, their experiment was unlikely to be sensitive

enough for quantifying GFP misfolding [12]. Thus, it could not

rule out the possibility that the observed variation in fitness was

entirely caused by CUB’s influence on translational accuracy. By

contrast, we were able to demonstrate CUB’s impact on

translational efficiency after excluding its impact on translational

accuracy.

A recent study in E. coli showed that the ribosome shortage

induced by over-expression of unneeded proteins can be alleviated

by physiological adaptation in 30 to 40 generations, owing to the

manufacture of additional ribosomes [40]. This finding suggests

that the disadvantage of suboptimal codon usage may also be

mitigated by physiological adaptation. Nevertheless, physiological

adaptation takes time. If the growth rate fluctuates rapidly due to

frequent environmental changes, the fitness of the individual with

suboptimal codon usage is expected to be much lower than the

individual with balanced codon usage.

We hypothesized and demonstrated that translational efficiency

is optimized by codon-tRNA balance. This new model of

translational efficiency by unequal codon usage differs substan-

tially from the prevailing model (Table 1). One critical piece of

evidence for our model is similar CSTs of synonymous codons in

wild-type yeast. Our CST estimation is based on the assumption

that the time a codon occupies the ribosomal A site equals the

waiting time for the cognate tRNA. Our estimates of all CSTs

would be biased upward to a similar level if downstream ‘‘traffic

jams’’ happen during translational elongation. However, a recent

study suggested that downstream traffic jams are unlikely, due to

slow ‘‘ramps’’ at the beginning of an mRNA [21]. Furthermore,

even if downstream traffic jams occur, it should affect synonymous

codons as well as nonsynonymous codons and thus cannot explain

why only synonymous codons but not nonsynonymous codons

have similar CSTs.

Over two decades ago, Curran and Yarus indirectly estimated

relative CSTs for 29 sense codons in E. coli, under the assumption

Codon Usage and Translational Efficiency
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that the probability of a frame shift in the translation of a codon is

proportional to the CST of the codon [41]. They reported that

only codons of very low CSTs tend to be preferentially used [41].

However, because their fundamental assumption about the frame-

shift rate is incorrect [42], their CST estimates are unlikely to be

correct. It is also possible that prokaryotes and eukaryotes have

some differences in using CUB to regulate translational efficiency

(e.g., translational attenuation in prokaryotes). In another E. coli

study, Sorensen and colleagues reported faster translation of a

multicopy-plasmid-borne lacZ gene when a segment of the gene

comprises mainly preferred codons than when it comprises mainly

unpreferred codons [43]. This result cannot be used to infer

relative CSTs of synonymous codons in wild-type cells, because the

extremely high expression of synonymous versions of the

endogenous lacZ gene from plasmids potentially breaks the

codon-tRNA balance and alters CSTs. Nevertheless, their

observation is fully compatible with our finding of different levels

of translational efficiency induced by the expressions of different

synonymous versions of mCherry. Several other studies reported

similar findings [25,44]. Recently, some authors calculated CSTs

by assuming that the CST of a codon is determined by the relative

concentrations of its cognate, nearly cognate, and non-cognate

tRNAs without considering tRNA shortage or using ribosome

profiling data [45]. Because of the violation of the fundamental

assumption they made, their estimates are likely to be incorrect.

Indeed, their estimated CSTs would predict a slower translation of

mCherry version 3 than 4, contradictory to our experimental

result (Figure 3D). While the present work was under review,

Ingolia and colleagues reported estimates of translational elonga-

tion speeds in mouse embryonic stem cells using a pulse-chase

strategy that does not involve expressions of heterologous genes

[46]. Although their method is different from ours, their finding of

similar elongation speeds among synonymous codons is highly

consistent with our results from yeast.

Our discoveries require reinterpretation of several earlier

observations. For example, higher prevalence of codons with

abundant cognate tRNAs in genes with higher expressions is often

interpreted as a result of a stronger demand for fast translation of

more abundant proteins [19–20]. This interpretation is not

supported by our results. Rather, we suggested and demonstrated

by simulation that, the selection coefficient for synonymous

mutations that help achieve the codon-tRNA balance is greater

in highly expressed genes than in lowly expressed genes, leading to

quicker and more acquisitions of codons with abundant cognate

tRNAs in the former than in the latter. In this regard, our results

support that CUB serves as a global strategy to enhance the

efficiency of the translation system [12,47].

Within an organism, the transcriptome can vary among cell

cycle stages, developmental stages, and tissues. How do such

variations affect the codon-tRNA balance? We found pairwise

Pearson’s correlations in transcriptomic usage of all 61 sense

codons to be nearly 1 among different time points in the S. cerevisiae

mitotic cell cycle (Figure 6). We further analyzed the transcrip-

tomic usage of all 61 codons across tissues and/or developmental

Figure 4. Computer simulation demonstrates that selection for
translational efficiency results in the preferential use of codons
with abundant cognate tRNAs in highly expressed genes. Ten
genes with different expression levels are considered for a haploid
organism. Four synonymous codons of an amino acid are each
recognized by its cognate tRNA. Concentrations of the four tRNAs
differ, but the initial codon frequencies are equal. Synonymous

mutations, genetic drift, and natural selection for translational efficiency
are considered (see Materials and Methods). (A) Overall changes of
transcriptomic codon usage averaged from 1000 simulation replica-
tions. Error bars show one standard deviation. (B) Highly expressed
genes evolved stronger codon usage biases than lowly expressed
genes. The averages from 1000 simulation replications are presented.
Error bars show one standard deviation. (C) Evolutionary changes in the
usage of codon4, the codon recognized by the most abundant tRNA, in
a randomly chosen simulation replication.
doi:10.1371/journal.pgen.1002603.g004
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Figure 5. Amino acids are used approximately in proportion to cognate tRNA concentrations. (A) Relative uses of amino acids estimated
from the transcriptomic data of 7 model eukaryotes are compared to the relative concentrations of their cognate tRNAs measured from gene copy
numbers. The diagonal line shows the predicted proportional relationship between tRNA concentrations and cognate amino acid frequencies that
maximizes translational efficiency under tRNA shortage. PE (or PM) is the probability that the Euclidian (or Manhattan) distance between the amino
acid usage randomly generated under a uniform distribution and that predicted by the proportional rule is smaller than the observed distance, and is
estimated from 106 simulations. The distance definitions are the same as those in the legend of Figure 2, except that i is an amino acid instead of a
codon. (B) The average CST of an amino acid in S. cerevisiae is negatively correlated with the availability of its cognate tRNAs, which is measured by
the fraction of cognate tRNA genes among all tRNA genes divided by the frequency of the amino acid estimated from the transcriptome. The P-value
is determined from 1000 permutations of CSTs.
doi:10.1371/journal.pgen.1002603.g005
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stages in the worm, fruitfly, and human. If multiple replications of

the same cell type exist in a dataset, we randomly chose one

replication in our analysis. Similarly high correlations were

observed among different cell types within species (Figure 6). By

contrast, the correlation is generally below 0.5 between any pair of

the four species examined here. The high correlation in codon

usage across cell cycle stages, developmental stages, and tissues of

the same species is likely due to house-keeping genes, which are

always highly expressed. Thus, within-organism gene expression

variations have little impact on the maintenance of the codon-

tRNA balance. Further, tRNA concentrations may covary with

the transcriptomic codon usage to maintain the codon-tRNA

balance across tissues [48].

A byproduct of our CST estimation is the translational initiation

rate of each gene. We found that the translational initiation rate is

significantly positively correlated with the mRNA concentration

(r= 0.34, P = 6610281), suggesting a coordinated regulation of

gene expression at the transcriptional and translational levels. We

also observed a strong positive correlation between the transla-

tional initiation rate and CAI (r= 0.51, P,102196), suggesting that

CAI provides a moderate amount of information about the

translational initiation rate. This may explain why the protein

concentration correlates with the product of mRNA concentration

and CAI better than with the mRNA concentration alone [49].

Several studies revealed reduced mRNA stability near the

translation initiation site, suggesting that the reduced stability

may enhance the translational initiation rate [12,32–33]. Indeed,

we found a weak but significant positive correlation between the

reduction in mRNA stability [32] and our estimated translational

initiation rate (r= 0.08, P = 161025).

Translational efficiency and accuracy are two separable
benefits of CUB

Given that CUB improves both translational efficiency and

accuracy, one wonders whether one of these effects is a side-effect

of the other. For instance, it was previously suggested that the

variation in translational accuracy among synonymous codons

may be a byproduct of the variation in translational efficiency,

because (i) most translational errors are believed to occur during

codon selection, (ii) codon selection has been assumed to be faster

for preferred codons than unpreferred codons, and (iii) faster

codon selection is thought to result in fewer errors [50]. Because

our result invalidates assumption (ii) for wild-type cells, the above

argument no longer holds. Thus, even though translational

accuracy may be affected by relative concentrations of tRNAs in

engineered yeast cells with grossly imbalanced codon-tRNA usage

[51], this impact is not expected in wild-type cells because our

results strongly suggest that isoaccepting tRNA species have

effectively the same concentrations in wild-type cells. In addition,

the enrichment of preferred codons at evolutionarily conserved

amino acid residues cannot be explained by the translational

efficiency hypothesis [7–10]. Furthermore, experimental data

showed that translational accuracies of iso-synonymous codons

vary [52], suggesting that the variation in accuracy cannot be

entirely caused by the variation in cognate tRNA concentration,

because iso-synonymous codons use the same cognate tRNA.

Rather, comparative genomic analyses strongly suggest that

translational accuracy is likely to be intrinsically different among

synonymous codons [1,53]. Further, we were able to establish

CUB’s impact on translational efficiency even after we controlled

its impact on translational accuracy (Figure 3, Figure S7). In

addition, because translational accuracy is not entirely determined

by translational efficiency [7–10], the proportional rule, which is

predicted from selection for efficiency, is not predicted from

selection for accuracy, especially because translational errors at

different residues have different fitness effects. Thus, the impact on

efficiency cannot be a byproduct of the impact on accuracy. Taken

together, we conclude that translational accuracy and efficiency

are two separable benefits of CUB.

Evolutionary models of codon usage bias
Let us compare three evolutionary models of CUB that differ in

the roles of translational accuracy and efficiency as the selecting

agent. We also consider mutational bias and genetic drift, two

known factors in the evolution of CUB, in these models. In model

I, translational efficiency is the sole selecting force (Figure 7). This

model predicts co-evolution of codon usage and cognate tRNA

concentrations and a codon-tRNA balance at which the relative

frequency of a synonymous codon (pi) equals the relative

abundance of its cognate tRNA (qi). The expected values of pi = qi

are determined by the mutational bias, which directly affects

codon usage and indirectly affects tRNA concentrations. However,

this model cannot explain the observation that, although preferred

codons of an amino acid vary among species, this variation

Table 1. Comparison between the old and new models of translational efficiency by unequal codon usage.

Comparisons Old model New model

Ternary complexes of aminoacylated
tRNA+eEF-1á+GTP

In excess. In shortage.

Translational speeds of synonymous
codons in wild-type cells

Faster for those with higher cognate tRNA
concentrations.

Equal, because codon usage has been optimized to
be proportional to cognate tRNA concentrations.

Translational speeds of synonymous
codons in mutant cells

Faster for those with higher cognate tRNA
concentrations.

Unequal when the codon-tRNA balance is broken.
Slower for codons with higher ratios between the
codon fraction and the cognate tRNA fraction.

Why is the codon usage bias stronger
in more highly expressed genes?

Fast translation of highly expressed genes is favored
over fast translation of lowly expressed genes.

Synonymous mutations in highly expressed genes
have larger effects than those in lowly expressed
genes in regaining the codon-tRNA balance, which
increases the overall translational efficiency of the cell.

Why is the codon usage proportional
to cognate tRNA concentration?

No explanation. It maximizes the overall cellular translational
efficiency when ternary complexes are in shortage.

How to reach the highest cellular translational
efficiency in making a synthetic cell?

Exclusive use of preferred codons. Codon usage in proportion to cognate tRNA
concentrations.

doi:10.1371/journal.pgen.1002603.t001
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decreases substantially (but does not disappear) after the control of

genomic GC content [1]. For example, GTT and GTA both code

for valine and have the same GC content, but GTT is frequently

used as the preferred codon when the genomic intergenic GC

content is below 50% [1]. When the GC content exceeds 50%,

GTG rather than GTC is often used as the preferred codon for

valine [1]. This observation suggests that, in addition to

translational efficiency, there is a separate selecting force with a

relatively constant direction.

In model II, translational accuracy is the sole selecting agent on

CUB (Figure 7). The demand for translational accuracy, coupled

with the mutational bias, determines the expected CUB, whereas

selection for translational efficiency determines tRNA concentra-

tions based on codon frequencies. The phenomenon of stronger

CUB in more highly expressed genes is explainable by the protein-

misfolding-avoidance hypothesis which predicts that highly

expressed genes are translated more accurately by using accurate

codons more frequently [7,54]. Model II predicts that, after the

control for the mutational bias, accurate codons are always the

preferred codons in a species. If the translational accuracy of a

codon is an intrinsic property of the codon and does not vary

among species [29], we should observe no variation in the choice

of preferred codons, after the control of mutational bias. This

prediction, however, is incorrect, because preferred codons are not

always the same in different species with the same mutational bias

[1,29]. A more rigorous test of this model is to compare the

accurate and preferred codons of each amino acid in a species,

because model II predicts a complete match between them. For

Figure 6. Similarity in transcriptomic codon usage across cell cycle stages, developmental stages, and tissues. Distributions of pairwise
Pearson’s correlations of codon usage among (A) mitotic cell cycle stages in S. cerevisiae, (B) developmental stages in C. elegans, (C) tissues and
developmental stages in D. melanogaster, and (D) among tissues in H. sapiens.
doi:10.1371/journal.pgen.1002603.g006
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each codon, we calculated an odds ratio by the relative use of the

codon over other synonymous codons at conserved amino acid

positions divided by that at non-conserved amino acid positions;

the synonymous codon with the highest odds ratio is regarded as

the most accurate codon because it is most preferentially used at

important amino acid positions [7–10]. By comparing S. cerevisiae

with its relative S. bayanus, we identified conserved and non-

conserved amino acid positions. We calculated the odds ratio for

each codon in each gene and then combined the odds ratios from

all genes using the Mantel-Haenszel procedure [23]. By definition,

the preferred codon of an amino acid is the one with the highest

RSCU’. We found that, in 6 (Ala, Asp, Gly, His, Thr, and Val) of

the 18 amino acids that have at least two synonymous codons, the

codon with the highest odds ratio is different from the codon with

the highest RSCU’ (Figure 8). Furthermore, for three amino acids

(Asp, His, and Thr), the codon with the highest RSCU’ has an odds

ratio significantly lower than 1 (Figure 8). We also used the 10%

most highly expressed genes to calculate odd ratios; 8 (Ala, Arg,

Asp, Cys, Ile, Leu, Thr, and Val) of the 18 amino acids show

mismatches between the codon with the highest RSCU’ and the

codon with the highest odds ratio (Figure 8). These results provide

unambiguous evidence for the inadequacy of model II.

In model III, selections for translational accuracy and efficiency

jointly determine CUB (Figure 7). Let us consider three types of

synonymous mutations with regard to their impacts on transla-

tional accuracy and efficiency. First, a synonymous mutation is

likely to be fixed when it enhances both translational accuracy and

efficiency, but is likely to be lost when it decreases both. Second, a

synonymous mutation may increase the accuracy but reduce the

efficiency. One possible outcome is that selection for higher

accuracy will gradually alter the codon usage, which is followed by

tRNA concentration changes that recover the loss of efficiency.

Eventually, accurate codons will be the preferred codons.

Alternatively, selection for higher accuracy may not be able to

alter the codon usage permanently if the loss of efficiency is either

too large or cannot be recovered by a corresponding tRNA change

as quickly as the switch back of the codon usage. Consequently,

accurate codons cannot become the preferred codons and the

system is trapped in a local fitness peak that is the maximum for

efficiency but not accuracy. For example, while codon CCA is

more accurate than CCT for proline (Figure 8), there are still

about a quarter of bacterial species with GC%,40 that use CCT

as their preferred proline codon [1], suggesting that it is not rare

for codon usage to be trapped in a local fitness peak. Third, a

synonymous mutation may increase the efficiency but reduce the

accuracy when the system is at a codon-tRNA imbalance.

Although the fate of this mutation is determined by the relative

strengths of the two forces, changes of tRNA concentrations could

resolve the conflict better because they can increase efficiency

without reducing accuracy. So, the final codon usage pattern will

also depend on the rate of mutations that alter tRNA

concentrations. While the quantitative aspects of model III require

further exploration, it is clear that the model is able to explain, at

least qualitatively, both the matches and mismatches between the

accurate and preferred codons (Figure 8). It is also able to explain

the codon-tRNA balance and the phenomenon of stronger CUB

in genes with higher expressions. Thus, model III is most

compatible with and best supported by available data. In addition

to translational accuracy and efficiency, synonymous codon usage

of individual genes may also be shaped by other forces, for

example, those related to RNA splicing and stability [55]. But

these forces are gene-specific and do not create genomic patterns

of CUB.

Implications for synthetic biology
Synthetic biology designs and constructs novel biological

functions not found in nature. It has long been known that, in

many but not all cases, increasing the CAI of a transgene boosts its

protein expression [12,56–57]. Different protein expression levels

of synonymous transgenes are likely caused by CST differences

created by various degrees of codon-tRNA imbalance induced by

transgene expressions. Consistent with this idea, overexpression of

rare tRNAs of E. coli (the bio-reactor) can rescue the tRNA

depletion when heterologous human genes are expressed in E. coli

[56]. When an artificially designed gene is added to a host cell, the

potential imbalance between the overall cellular codon usage and

the tRNA pool also affects the expressions of native genes and

hence the growth of the host cell. We showed that Dncu, a newly

devised index measuring the distance in codon usage between the

transgene and the host cell, is an accurate indicator of the impact

of per transgene protein molecule production on the expressions of

native genes. We demonstrated that it is the Dncu rather than CAI

Figure 7. Evolutionary models of synonymous codon usage bias. Three models that differ in the involvement of natural selection for
translational accuracy and efficiency in the evolution of codon usage bias. Models I and II can be rejected by the existing data, whereas model III is
supported by available data.
doi:10.1371/journal.pgen.1002603.g007
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of the transgene that predicts its impact on the host protein

expression. Therefore, Dncu should be considered in synthetic

biology when the impact of transgene expression on host gene

expressions is a concern. Further, when genes from multiple

species are assembled into a synthetic genome, designing tRNA

gene numbers in proportion to the usage of their cognate codons

will likely make protein expressions in the entire cell most efficient.

Materials and Methods

Yeast genomic data
The yeast ribosome profiling data [18] were downloaded from

Gene Expression Omnibus (www.ncbi.nlm.nih.gov/geo/) under

accession number GSE13750. Gene expression and protein

expression levels were from http://web.wi.mit.edu/young/

expression/ [58], http://www.imb-jena.de/tsb/yeast_proteome/

[59], and the supplementary data of a previous study [60].

Transcriptomic data for the yeast mitotic cell cycle were from a

previous study [61]. Gene sequences and reading frames were

downloaded from Saccharomyces Genome Database (SGD, www.

yeastgenome.org). Numbers of tRNA gene copies were retrieved

from an earlier study [22].

Genomic data of other eukaryotes
Gene expression levels in A. thaliana, D. melanogaster, M. musculus,

and H. sapiens were downloaded from Gene Expression Omnibus

(GDS416, GDS2784, GDS592 and GDS596, respectively). Gene

expression levels in S. pombe and C. elegans were retrieved from two

earlier studies [62–63], respectively. Peptide and cDNA sequences

of S. pombe, A. thaliana, C. elegans, D. melanogaster, M. musculus, and H.

sapiens were from Ensembl (www.ensembl.org/). Numbers of

tRNA gene copies in the above species were obtained from the

genomic tRNA database (http://lowelab.ucsc.edu/GtRNAdb/).

Estimation of codon selection time (CST)
Using the S. cerevisiae ribosome profiling data [18], we identified

codons docked at the ribosomal A site, from the Illumina Genome

Analyzer sequencing reads. By comparing the observed codon

frequencies in the ribosome profiling data with the expected codon

frequencies estimated from mRNA-Seq data generated under the

same condition in the same experiment, we calculated the relative

CSTs of all 61 sense codons. Although Illumina sequencing may be

biased toward certain sequences or nucleotides [64], this bias

affects the mRNA-Seq and ribosome profiling data equally and

thus will not affect our estimation of CST. For a sequencing read

from the ribosome profiling data, nucleotide positions 16–18 were

considered to be at the ribosomal A site where codon selection

occurs [18]. Only those reads with exactly 28 nucleotides and 0

ambiguous sites were used to ensure the accurate determination of

positions 16–18. We calculated the fraction of in-frame codons by

comparing the read sequences with annotated yeast coding

sequences. Consistent with what was previously reported [18],

the majority of codons at positions 16–18 were in-frame in the

ribosome profiling data. In the mRNA-Seq data, the fraction of

each phase was close to one third, as expected. All out-of-frame

codons were excluded. The probability of incorrect codon

assignment was low, because only codons misaligned by at least

3 nucleotides may be assigned incorrectly. Transposons and

uncharacterized genes were removed. Our CST estimation

procedure (Figure S1) is as follows.

We first calculated fi, the observed frequency of codon i, in the

ribosome profiling data by

Figure 8. Matches and mismatches between preferred codons and accurate codons in S. cerevisiae. Odds ratio (bars) measures the
enrichment of a synonymous codon at evolutionarily conserved amino acid residues relative to that at non-conserved residues and is used as a proxy
for translational accuracy. RSCU’ (orange dots) measures the preference in codon usage. Odds ratios are estimated from either all genes (black) or the
10% most highly expressed genes (grey) of S. cerevisiae. Asterisks indicate 5% significance in the deviation of an odds ratio from 1 (uncorrected for
multiple testing).
doi:10.1371/journal.pgen.1002603.g008
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fi~

XN

j~1

cij

X61

i~1

XN

j~1

cij

, ð1Þ

where cij is the count of codon i in mRNA j positioned at the

ribosomal A site measured by ribosome profiling and N is the

number of genes with ribosome profiling data (N.3000 for both

rich and starvation conditions). The expected ribosome footprint

frequencies of codon i (Fi) when all codons have equal CST can be

calculated based on the frequency of the codon in the mRNA-Seq

data using

Fi~

XN

j~1

(RjCij)

X61

i~1

XN

j~1

(RjCij)

, ð2Þ

where Rj is the translational initiation rate of mRNA j and Cij is the

count of codon i in mRNA j measured by mRNA-Seq. Then, the

relative codon selection time for codon i is calculated by

CSTi~fi=Fi: ð3Þ

We used an iterative approach to estimate the translational

initiation rates that appear in Eq. 2. We first used Rj = 1 for all j.

After the CST is calculated for each codon, the elongation rate ej of

mRNA j (i.e., the number of codons translated per unit time) is

calculated by

ej~
Lj

X61

i~1

(DijCSTi)

, ð4Þ

where Lj is the number of codons in each molecule of mRNA j and

Dij is the number of codon i in each molecule of mRNA j. The

translational initiation rate Rj can be estimated from

Rj~ejdj , ð5Þ

where dj is the ribosome density on mRNA j (i.e., the number of

ribosomes per codon) and can be estimated by

dj~

X61

i~1

cij

X61

i~1

Cij

: ð6Þ

We then used the newly estimated translational initiation rates to

calculate CSTs. After 10 iterations, CST estimates converge (Figure

S2) and are considered as our final estimates. Because our

estimates of CSTs are relative values, we rescaled them by setting

the maximal observed value at 1.

CST estimates from different experimental replicates were highly

correlated (r = 0.79, P = 6610214) and were thus pooled for the rest

of the analysis. Three different sets of initial values of translational

initiation rates (uniform, proportional to CAI of each gene, inversely

proportional to CAI) were used in CST estimation and they resulted

in identical estimates of CSTs (Figure S3A, S3B). Thus, CST

estimation does not depend on the initial values of R. The standard

errors of the CST estimates were estimated by bootstrapping genes

present in the ribosomal profiling data 1000 times. The CST

estimates from two different media (rich and starvation) are also

very similar (Figure S3C). To ensure no mistake in the estimation of

CST, the first two authors of this paper independently derived the

formulas, wrote the computer programs, and estimated the CSTs,

and their results were virtually identical.

Estimation of synonymous codon usage bias in yeast
There are two commonly used measures of synonymous codon

usage bias. The first is the relative synonymous codon usage (RSCU),

defined by the frequency of a codon relative to the average

frequency of all of its synonymous codons in a set of highly

expressed genes [19]. Codons with RSCU.1 are preferred and

those with RSCU,1 are unpreferred. To compare the usage of all

61 sense codons, we also used RSCU’ = RSCU/n, where n is the

number of synonymous codons of an amino acid. RSCU’ of a

codon is the proportion of use of a given codon among

synonymous choices in a set of highly expressed genes. The

second commonly used measure of synonymous codon usage bias

is the codon adaptation index (CAI), which is calculated for a gene, and

measures its usage of high-RSCU codons [20]. Briefly, CAI of a

gene is the geometric mean of RSCU divided by the highest

possible geometric mean of RSCU given the same amino acid

sequence. CAI is a positive number no greater than 1. The greater

the CAI, the more prevalent are preferred codons in the gene.

We first selected 200 most highly expressed genes based on a

previous study [59]. Sixteen of these genes did not have expression

information in another study [58] and 4 had expression levels lower

than 4 times the genomic average (2.7 mRNA/cell reported in an

earlier study [58]). The remaining 180 highly expressed genes were

used to calculate RSCU and RSCU’ for each codon. Our RSCU

estimates were highly correlated with those previously reported [20]

(r = 0.995, P,0.001, permutation test). CAI was calculated for each

yeast gene and for each version of mCherry based on the RSCU values

obtained above, following a previous study [20].

We also estimated the effective number of codons (Ncp) for each

gene, after controlling the GC content of the gene [65–66]. We

separately estimated the frequency (f) of each of the 61 sense

codons in each gene. We then estimated Spearman’s rank

correlation (r) between Ncp and f among all genes for each codon.

Among synonymous codons, those with more negative r values

are considered to be more preferred [1]. This dataset was used in

Figure S4 only.

Concentrations of ternary complexes in E. coli
It has been reported that the physiological concentration of the

ternary complex is ,200 nM for Phe tRNA and Lys tRNAs in E.

coli [67]. Because the number of Phe tRNA and Lys tRNA

molecules per cell is 1830 and 4300, respectively [68], we

calculated that the Phe tRNA concentration is 1830/(6.0261023)/

(1.1610215) = 2.861026 M = 2800 nM, where 6.0261023 is the

number of molecules per mole and 1.1610215 liter is the average

volume of an E. coli cell. Similarly, Lys tRNA concentration is

estimated to be 6500 nM. Thus, about 200/[(2800+6500)/2] =

4.3% of tRNAs are in ternary complexes. Because there are

,1.26104 ribosomes per E. coli cell [68], ribosome concentration

is ,18,000 nM. Thus, the ratio in the concentration of ternary

complexes to that of ribosomes is expected to be 200620/
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18000 = 0.22, if Lys and Phe can represent all 20 amino acids in

ternary complex concentration.

Mathematical proof that proportional codon usage
maximizes translational efficiency

Without loss of generality, we assume that an amino acid is

encoded by synonymous codons 1 and 2, which are respectively

recognized by isoaccepting tRNAs 1 and 2. Let the relative usage

of the two codons be p1 and p2 = 12p1 and the relative

concentrations of the two tRNAs be q1 and q2 = 12q1, respectively.

Let the codon selection time for the two synonymous codons be t1
and t2, respectively. Thus, the expected codon selection time for

the amino acid concerned is t = p1t1+p2t2. When tRNAs are in

shortage, the local concentrations of tRNA 1 and 2 are aq1/p1 and

aq2/p2, where a is a constant. Because codon selection time is

proportional to the inverse of the local tRNA concentration, we

have t~
p1b

aq1=p1
z

p2b

aq2=p2
, where b is another constant. The

above formula can be simplified to t~b(p2
1=q1zp2

2=q2)=a~

(b=a)½1z(p1{q1)2=(q1q2)�. It is easy to find that t reaches its

minimal value of b/a when p1~q1 and p2~q2. In other words, the

expected codon selection time is minimized and thus translational

efficiency is maximized when relative synonymous codon frequen-

cies equal relative tRNA concentrations. Under this condition,

codon selection time equals b/a for both codons and local tRNA

concentration equals a for both tRNAs. A full treatment considering

tRNA cycle and kinetics gave the same result [31].

Empirical test of the proportional rule
We measured the Euclidian distance and Manhattan distance in

synonymous codon usage from the observed values to the values

predicted from the observed tRNA fractions using the proportional

rule. To evaluate whether the observed distances are shorter than

expected by chance, we conducted a computer simulation with 106

replications under random codon usage. That is, the frequency of a

synonymous codon is uniformly distributed between 0 and 1 with the

constraint of the total frequency of all synonymous codons being 1.

We then obtained the distribution of the distance between a random

codon usage and the codon usage predicted from the observed tRNA

fractions. We also conducted a second simulation with 106

replications, in which tRNA factions vary randomly according to

the above uniform distribution. We then obtained the distribution of

the distance between the observed codon usage and that predicted

from random tRNA fractions. This way, the potential confounding

effect of genomic GC content on the assumed null distribution of

codon usage becomes irrelevant to the test. We similarly tested the

square rule and the truncation rule. Results from the first simulation

are presented in Figure 2D, while those from the second simulation

are in Table S1.

Distance to native codon usage
We developed an index, distance to native codon usage (Dncu),

to measure how different the codon usage of a (heterologous) gene

is from the overall codon usage of the host cell, which is

presumably balanced with tRNA concentrations. First, the

Euclidean distance in synonymous codon usage between the

heterologous gene and the host is calculated for each of the 18

amino acids with at least two synonymous codons by

Di~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xni

j~1

(Yij{Xij)
2

vuut , ð7Þ

where Yij is the fraction of codon j among the synonymous codons

of amino acid i for the heterologous gene and Xij is the fraction of

codon j among the synonymous codons in the host transcriptome,

ni is the number of synonymous codons for amino acid i. Dncu of

the gene is defined as the weighted geometric mean of Di, or

Dncu~( P
k

i~1
D

mi
i )

1
l , ð8Þ

where k#18 is the number of amino acid types encoded by the

gene excluding Met and Trp, which have no synonymous codons,

mi is the number of amino acid i found in the protein, and l is the

protein length excluding Met and Trp residues. By definition, Dncu

is between 0 and 1.

Yeast experiments
The mCherry gene sequence was obtained from a previous study

[69]. We designed four synonymous DNA sequences encoding the

same mCherry peptide (Figure S5). The first 56 nucleotides were

the same for all four sequences to avoid potential effects on the

mRNA secondary structure, which affects protein translation

[12,32–33]. The GC contents of the four sequences (42–44%)

were also made similar to each other and to the average value in

yeast coding sequences (40%). In all sequences, synonymous

codons were randomized in order and thus were unlikely to cause

differences in order-related effects [27]. The different versions of

mCherry DNA sequences were synthesized by Blue Heron

Biotechnology. They were cloned into p426GPD [70] at SpeI

and XhoI (New England Biolabs; Promega) and are under the

control of the GPD promoter. The plasmids were subsequently

transformed individually into a haploid yeast cell (BY4742) with

vYFP [71] inserted into Chr XII [72]. The genotype of the cell is

MATa his3D1 leu2D0 lys2D0 ura3D0 hoD0::PGPD-Venus.

We measured the expressions of mCherry and vYFP in log

growth phase in Yeast extract/Peptone/Dextrose (YPD) media by

florescence-activated cell scanning (FACSCalibur, BD). Fluores-

cence of mCherry was measured from FL4 with a 670 nm pass

filter and fluorescence of vYFP was measure from FL1 with a filter

having a 30 nm bandpass centered on 530 nm. Yeast cells with

mCherry fluorescence signals greater than the BY4742 negative

control cells (i.e., mCherry fluorescence signals .10) were gated.

We retrieved the forward scatter (FSC, which is proportional to

cell size) and mCherry and vYFP fluorescence signals for all gated

cells. The expression levels of fluorescent proteins were defined as

their fluorescence signals divided by FSC. The mean mCherry

expression level is 3.38860.002, 6.46860.007, 14.00360.032,

and 14.54460.022 for the strains carrying mCherry-1, 2, 3, and 4,

respectively. Expression levels of mCherry and vYFP were

negatively correlated for each strain (mCherry-1: r = 20.22;

mCherry-2: r = 20.57; mCherry-3: r = 20.60; mCherry-4: r = 20.62;

P,2.2610216 in all cases). All gated cells were then grouped into

3 (Figure 3D) or 15 (Figure S7) bins with equal mCherry

expression ranges. For each genotype, multiple independently

transformed strains were examined on different days, but the

results were highly similar. We thus combined all results obtained

from different strains of the same genotype. The total numbers of

cells measured were 456333, 648792, 352863, and 793832,

respectively, for the strains carrying mCherry-1, 2, 3 and 4

(Figure 3B). To confirm that our results were not due to random

secondary mutations, we removed the plasmids from each strain

by using 59-FOA media to select against the plasmids, and then

measured the vYFP fluorescence intensities. We also sequenced

the entire plasmid DNA from each of the four strains.

Codon Usage and Translational Efficiency

PLoS Genetics | www.plosgenetics.org 15 March 2012 | Volume 8 | Issue 3 | e1002603



To compare the vYFP mRNA levels among strains, we extracted

the total RNA (RiboPure-Yeast Kit, Ambion) from three

independently transformed strains of each genotype. The total

RNA was reversely transcribed into cDNA (Moloney Murine

Leukemia Virus Reverse Transcriptase, Invitrogen) with random

hexamer primers. The vYFP mRNA level was measured by

quantitative polymerase chain reaction (7300 Real-Time PCR

System, Applied Biosystems) with ACT1 as an internal control.

The primers for vYFP are 59 – CATGGCCAACACTTGT-

CACT– 39 and 59 –TACATAACCTTCGGGCATGG– 3, while

the primers for ACT1 are 59 - CTGCCGGTATTGACCAAACT -

39 and 59 – CGGTGATTTCCTTTTGCATT – 39.

Multivariate regression analysis
The software package RELAIMPO (http://cran.r-project.org/

web/packages/relaimpo/) was used for a multivariate regression

analysis of the yeast experimental data from all cells of the four

strains. We compared the relative importance of Dncu and CAI in

explaining the among-cell variation in vYFP signal by the LMG

method and used 1000 bootstrap replications to determine the

statistical significance. Use of other methods (LAST, FIRST, and

PRATT) implemented in RELAIMPO gave similar results.

Impact of potential errors in translation on our
experiments

Proponents of the translational accuracy hypothesis might argue

that, because different synonymous codons have different

mistranslation rates [52,73] and preferred codons are considered

to be more accurately translated than unpreferred codons [7], the

mCherry with a low CAI is expected to produce fewer functional

protein molecules than the mCherry with a high CAI even when the

same numbers of protein molecules are produced. In other words,

using red florescent signals may have led to a more severe

underestimation of protein expression for the mCherry with a low

CAI than for that with a high CAI. The average mistranslation rate

has been estimated to be ,561024 per codon, and unpreferred

codons have been posited to undergo mistranslation five times as

often as preferred codons [7]. Based on these numbers and the

CAIs of the four mCherry versions (Figure 3B), we assume that the

mistranslation rate is 1061024, 861024, 561024, and 261024

per codon for mCherry-1 to mCherry-4, respectively. Let us further

assume that no mistranslated protein fluoresces. Given the length

of mCherry (236 amino acids), we expect that 11.8%, 9.44%,

5.9%, and 2.36% of mCherry-1 to mCherry-4 proteins respec-

tively fail to fluoresce due to mistranslation. On this assumption,

we corrected mCherry expression levels from the observed

florescent signals. We also conducted a better control of mCherry

expression among strains by dividing cells of each strain into 15

bins based on the above corrected mCherry expression (Figure

S7). Again, we observed a lower vYFP expression when the Dncu of

the mCherry gene is higher, across the range of mCherry

expressions shared by the three strains (Figure S7). This result is

conservative, because only a minority of mistranslations are

expected to prevent fluorescence, and it is likely that we have

overcorrected the effect of mistranslation.

Computer simulation of the evolution of synonymous
codon usage bias

We simulated the evolution of synonymous codon usage in an

asexual haploid unicellular digital organism. In this organism, we

focused on a single amino acid with four synonymous codons

(codon1 to codon4) that are respectively recognized by four

distinct tRNA species (tRNA1 to tRNA4). We assume that the

relative concentrations of the four tRNA species are 20, 21, 22, and

23, respectively. The digital organism has ten genes with relative

(mRNA and protein) expression levels from 20 to 29, respectively.

These genes each have 12 codons that are sampled from the four

synonymous codons. We started the simulation with exactly the

same usage of the four synonymous codons in each gene.

Synonymous mutations among codons all have the same rates

and the total mutation rate per genome is assumed to be one

synonymous change per generation. The relative CST for a codon

is assumed to equal the number of times the codon is used in

translation divided by the number of corresponding tRNA

molecules. The total time (T) required for translating all the

proteins can be considered as the generation time. T can be

calculated by summing up the CSTs of all codons in all transcripts

if there is only one ribosome in the cell. If there are m ribosomes in

the cell, the time required would simply be m times shorter. Thus,

without loss of generality, we assume m = 1. A strain with a shorter

generation has a higher fitness and will spread in the population.

Genetic drift is simulated by random sampling of cells for the next

generation. The population size is 104 individuals and the

simulation lasts for 500 generations. We repeated the simulation

1000 times. Our results did not change when we simulated the

evolution for more generations. By contrast, when we removed the

natural selection for translational efficiency in simulation, the

phenomena observed in Figure 4 disappeared (Figure S9).

Note that, in the simulation, we allow codon usage to evolve

while fixing tRNA concentrations. If tRNA concentrations evolve

while the codon usage is fixed, we also expect to observe the

rebalance of codon-tRNA usage, but the correlation (or the lack of)

between CUB and gene expression level will not change during

this evolutionary process. In reality, tRNA concentrations and

synonymous codon usage likely co-evolve to regain the balance. As

long as codon usage is allowed to evolve, we expect stronger CUB

to appear in more highly expressed genes, as demonstrated in

Figure 4.

Supporting Information

Figure S1 The procedure for estimating codon selection times

(CSTs) from ribosome profiling data. Circled numbers correspond

to the equations in Materials and Methods and thick arrows show

the iterations.

(PDF)

Figure S2 The estimates of CSTs quickly converge after a few

iterations.

(PDF)

Figure S3 Robustness of CST estimates. (A–B) Comparison of

CST estimates when different initial values of translational

initiation rates are used. (C) CST estimates from two media (rich

and starvation) are similar.

(PDF)

Figure S4 No correlation between codon preference (red dots)

and CST (grey bars) among synonymous codons. CSTs are rescaled

such that the maximal observed value is 1. Error bars show one

standard error, estimated by the bootstrap method. Following ref.

1 in the main text, we measured the preference of a codon by

Spearman’s rank correlation (r) between the frequency of the

codon in a gene and the effective number of codons in the gene

(Ncp) across all genes (see Supplementary Methods). Preferred

codons have more negative r values.

(PDF)

Figure S5 Alignment of the DNA sequences of the four

synonymous versions of mCherry used in our yeast experiments.
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Invariant sites among the four sequences are marked with

asterisks.

(PDF)

Figure S6 Codon usage of four synonymous versions of mCherry

and that of the native transcriptome, compared to relative

concentrations of cognate tRNAs in S. cerevisiae, for the 12 amino

acids that have at least two isoaccepting tRNA species.

(PDF)

Figure S7 The impact of synonymous codon usage of mCherry on

vYFP expression is not explainable by the translational accuracy

hypothesis. The mCherry expression levels have been corrected by

considering mistranslations that reduce the red florescent signals of

mCherry. Mistranslation rates are assumed to be 1061024,

861024, 561024 and 261024 per codon for mCherry-1 to mCherry-

4, respectively. Our results are not sensitive to these assumptions of

mistranslation rates. Cells of each strain are then divided into 15

equal-size bins by the corrected mCherry expression level per unit

cell size. Error bars show one standard error.

(PDF)

Figure S8 Distribution of the Euclidian distance in codon usage

between all yeast genes and (A) mCherry-1, (B) mCherry-2, (C)

mCherry-3, and (D) mCherry-4. Euclidian distance is calculated byffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X61

i~1

(xi{yi)
2

vuut , where xi is the frequency of codon i in mCherry and

yi is the corresponding frequency in a yeast gene. The distance

between vYFP and mCherry is indicated by the arrow.

(PDF)

Figure S9 Results from computer simulations without selection

for translational efficiency. The simulations are conducted as

described in Materials and Methods, except that no selection for

translational efficiency is applied. (A) Overall changes of

transcriptomic codon usage averaged from 1000 simulation

replications. Error bars show one standard deviation. (B) No

significant difference in codon usage among genes of different

expression levels. The averages from 1000 simulation replications

are presented. Error bars show one standard deviation.

(PDF)

Figure S10 High correlation between amino acid frequencies

inferred from yeast transcriptomic data and those from yeast

proteomic data. Each dot represents an amino acid.

(PDF)

Figure S11 Correlation between the total tRNA gene copy

number for an amino acid and the mRNA expression level of the

corresponding aminoacyl tRNA synthetase. Each dot represents

an amino acid. Only 18 amino acids are presented because of the

lack of information for the synthetases of Pro and Glu. The

aminoacyl tRNA synthetase genes were identified based on gene

annotations in SGD (http://www.yeastgenome.org/) and the

expression levels of these genes were obtained from Holstege et

al. (1998 Cell 95, 717).

(PDF)

Figure S12 Significantly different CSTs among different amino

acids. To quantify potential variations in CST among amino acids

and among synonymous codons, we linearly regressed the CSTs of

the 61 sense codons using the formula of CSTij~aizbtijzcze,

where CSTij is the CST of the jth codon of the ith amino acid, ai is

the effect of amino acid i, b is the coefficient for the tRNA effect, tij
is the gene copy number for the cognate tRNA of the jth codon of

the ith amino acid, c is a constant equal to the mean CST of all

sense codons, and e is the residual effect. The parameters in the

above linear regression were estimated by the least squares

method. Asterisks indicate a statistically significant effect

(*, nominal P,5%; **, nominal P,1%). Note the lack of a

significant effect of the cognate tRNA gene copy number on the

variation of synonymous CSTs, consistent with the results in

Figure 1.

(PDF)

Table S1 Euclidian and Manhattan distances between the

observed tRNA fractions and the predictions of the proportional

rule, square rule, and truncation rule, respectively.

(PDF)

Table S2 Unequal use of iso-synonymous codons in S. cerevisiae.

(PDF)
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