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Abstract

Methylated DNA immunoprecipitation followed by high-throughput sequencing (MeDIP-seq) has the potential to identify
changes in DNA methylation important in cancer development. In order to understand the role of epigenetic modulation in
the development of acute myeloid leukemia (AML) we have applied MeDIP-seq to the DNA of 12 AML patients and 4 normal
bone marrows. This analysis revealed leukemia-associated differentially methylated regions that included gene promoters,
gene bodies, CpG islands and CpG island shores. Two genes (SPHKAP and DPP6) with significantly methylated promoters
were of interest and further analysis of their expression showed them to be repressed in AML. We also demonstrated
considerable cytogenetic subtype specificity in the methylomes affecting different genomic features. Significantly distinct
patterns of hypomethylation of certain interspersed repeat elements were associated with cytogenetic subtypes. The
methylation patterns of members of the SINE family tightly clustered all leukemic patients with an enrichment of Alu
repeats with a high CpG density (P,0.0001). We were able to demonstrate significant inverse correlation between
intragenic interspersed repeat sequence methylation and gene expression with SINEs showing the strongest inverse
correlation (R2 = 0.7). We conclude that the alterations in DNA methylation that accompany the development of AML affect
not only the promoters, but also the non-promoter genomic features, with significant demethylation of certain interspersed
repeat DNA elements being associated with AML cytogenetic subtypes. MeDIP-seq data were validated using bisulfite
pyrosequencing and the Infinium array.
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Introduction

Acute myeloid leukemia (AML) is a heterogeneous form of cancer

in which many molecular and cytogenetic somatically acquired

events have been described [1]. Although these somatic changes

have considerable influence over clinical outcome and constitute

valuable biomarkers for disease classification [2] their role in the

evolution of the stem cell to a fully transformed leukemic cell has yet

to be completely understood. It is clear that some of the genes altered

in AML play key roles in epigenetic regulation both at the DNA and

chromatin levels. The MLL gene is involved in many chromosomal

translocations in leukemia [3] and can also be altered by partial

tandem duplication. This gene is now recognized as a histone

methyltransferase. The EZH2 gene, which encodes a histone

methyltransferase, is subject to inactivating monoallelic and biallelic

mutations in myelodysplastic/myeloproliferative neoplasms [4]. The

potential significance of DNA methylation changes in AML has been

given further emphasis with the recent discovery of somatic

mutations in DNMT3A, which encodes a DNA methyltransferase

[5]. There is therefore a considerable body of evidence that

implicates epigenetic alterations as being important in the

development of AML [6]. However, in order to fully understand

the role of DNA methylation in AML, a global view of the AML

methylome is required.

MeDIP (methylated DNA immunoprecipitation) is one of the

main approaches for detection of DNA methylation [7]. The

introduction of next generation sequencing extends the study of

DNA to yield whole genome methylation analysis [8]. MeDIP-seq

(MeDIP followed by high-throughput sequencing) can investigate

the entire genome in an unbiased manner in contrast to array-based

methods, which analyze pre-identified sequences [9,10]. We

therefore used this approach to develop whole-genome DNA

methylation profiles with a view to the identification of epigenetic

features relevant to the development of AML and some of its

subtypes. We mapped complete methylomes from 12 AML samples

including 4 different cytogenetic subtypes [1] and from 4 normal

bone marrows (NBMs) using antibody-mediated enrichment of

methylated DNA. Using a previously published method (Batman
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algorithm) [11,12], we were able to construct 100 bp resolution

methylation map for each leukemia and NBM. That enabled us to

identify significant methylation differences in the promoters, the

non-promoter genomic regions and also in repeat elements.

Results

In order to perform a genome wide analysis of DNA

methylation in AML, we applied the MeDIP-seq technique to

DNA samples from 12 AML patients: 3 with t(8;21) translocation,

3 with the t(15;17) translocation, 3 with trisomy 8, and 3 with a

normal karyotype (NK). We used 4 unrelated NBMs as control

samples (Table S1). A total of 7.66108 reads were generated of

which 53% could be mapped uniquely to the reference human

genome (NCBI 36/hg18). The coverage of the 27 million CpG

sites in the reference genome ranged from 63% to 87% for the 16

datasets (Table S2). Furthermore, the saturation analysis indicated

that sufficient numbers of reads had been obtained to generate

reliable methylome profiles for each DNA sample (Fig. S1) [13].

For interpretation of DNA methylation signals, we used the

Batman algorithm [11,12], which takes into account the

underlying CpG density to obtain quantification of methylation

(scores being given in the range 0–1). MeDIP-seq results were

validated by both the Illumina Infinium array platform and

bisulfite pyrosequencing of individual regions (see below). Three

DNA samples (studies No. 11, 12 and 13) were analyzed on the

Illumina HumanMethylation 27 BeadArray. The methylation

levels at 27,578 CpG sites of the array were compared to

equivalent values from MeDIP-seq results. Strong correlations

between both methods were found (R2 = 0.89, 0.9 and 0.8

respectively) (Fig. S2). These correlations between MeDIP-seq

and Infinium array are consistent with and slightly higher than

previously reported correlations between both methods (R2 = 0.8)

[12].

Global DNA methylation assessment in AML and NBM
Firstly, we analyzed AML and NBM whole genome data to

assess the significance of differences in global DNA methylation.

We categorized DNA methylation into 5 groups; ,0.2, 0.2–0.4,

0.4–0.6, 0.6–0.8, 0.8–1.0 Batman scores [11] (Fig. 1A). Fisher’s

exact test did not demonstrate significant difference in global DNA

methylation between all AMLs and all NBMs (P = 0.96). There

was only 2.68% difference in the global DNA methylation; AML

DNA methylation average was 67.68% while for NBM DNA

Figure 1. Global DNA methylation display in AML and NBM. (A) DNA methylation of all AML patients and all NBMs were categorized into 5
groups of methylation. There was no significant difference in the global DNA methylation between AML and NBM. (B) DNA methylation scores of all
AMLs (blue line) and all NBMs (green line) were plotted against their density (frequency). AML has less frequency of DNA methylation scores.0.8 in
the comparison with NBM. (C–J) Percentages of different groups of DNA methylation in the average of each triplicate of AML subtype and in the
average of 4 NBMs. SINEs showed the highest difference in the DNA methylation scores.0.8 between NBM and AML.
doi:10.1371/journal.pone.0033213.g001
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methylation average was 70.36%. The frequency of Batman

scores.0.8 was less in AML than in NBM as some regions of the

genome i.e. gene bodies and repeated DNA sequences lose their

DNA methylation in cancer (global hypomethylation) [14]

(Fig. 1B). To investigate this further, the genome was subdivided

into 4 features; promoters, gene bodies, CpG islands (CGIs), and

CGI shores (description for each genomic region is summarized in

Table S3) and 4 repeat classes (satellites, SINEs; short interspersed

nuclear elements, LINEs; long interspersed nuclear elements, and

LTRs; long terminal repeats) (Figs. 1C–J). Among these features,

gene bodies (Fig. 1D) exhibited the highest level of DNA

methylation (82% in AML and 85% in NBM having a Batman

score.0.6). The difference in the percentages between AML and

NBM is consistent with the global hypomethylation that is a

feature of cancer [15]. By contrast, CGIs (Fig. 1E) showed the

lowest levels of DNA methylation (16% in AML and 13% in NBM

having a Batman score.0.6). CGIs are generally protected from

being methylated in normal tissues, whereas in malignancy some

CGIs are targets for DNA methylation [6]. Global hypomethyla-

tion in AML was mainly observed in SINEs since we noted that

,20% fewer SINE repeats in AML with a Batman score.0.8

(Fig. 1H). SINEs, especially the Alu family, are rich in methylated

CpGs and are common targets for DNA methylation in normal

tissues [16].

Methylation of localized genomic regions discriminates
AML and its subtypes

Next, we investigated whether methylation of specific genomic

features could discriminate between AML and NBM. Conse-

quently, we searched for differentially methylated regions (DMRs)

in 4 genomic categories; promoters, gene bodies, CGIs and CGI

shores using empirical Bayes statistics (Bioconductor’s Limma R

package). This analysis indicated that 105 gene promoters and 704

CGIs showed significant differences in methylation between AML

and NBM (Table S4). 80% of differentially methylated CGIs were

located outside the promoters (within the gene bodies or

intergenically located) with a 2-fold increase in the number of

differentially methylated CGIs located within the promoters

between NBM and AML (Dataset S1, S2, S3, S4). In order to

identify which genomic feature is the strongest predictor, we

performed a two-dimensional cluster analysis (Figs. 2A–D) and a

pair-wise comparison (Fig. S3) that indicated, of the 4 genomic

features, the CGIs could cluster all the AML samples most tightly

and discriminate them from NBM. In order to estimate the

strength of this clustering, we have applied a prediction strength

algorithm [17], which indicated very high stability of AML and

NBM clusters (Fig. S4). Moreover, the examination of the

differentially methylated promoters (Dataset S1) identified some

previously noted targets for epigenetic silencing or alteration in

Figure 2. Hierarchical clustering of AML versus NBM in 4 genomic features. First row represents cluster analysis of all AMLs versus all NBMs
and the second row represents cluster analysis of AML subtypes in promoters (A, E), gene bodies (B, F), CGIs (C, G) and CGI shores (D, H). In each
figure, each column represents AML patient/NBM and each row represents a single DMR. AML patients were clustered more tightly in CGIs (first row).
t(8;21) AML subtype was clustered separately from the other AML subtypes (second row).
doi:10.1371/journal.pone.0033213.g002
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hematological disorders. For example, ID4 has been shown to act

as a putative tumour suppressor gene in AML [18], DCC is

hypermethylated in follicular lymphoma [19] and mutation of

TERT increases the risk of familial AML [20]. This gene list also

included genes that have roles in a variety of other cancers e.g.

DPP6 is down regulated in melanoma [21], SPHKAP plays a role in

the sphingosine phosphorylation pathway that induces tumor

progression and invasion [22,23]. Additionally, differentially

methylated gene bodies, intragenic CGIs (within promoters/gene

bodies) and intragenic CGI shores identified a number of genes

belonging to potentially important transcription factor families e.g.

MYOD1, SOX14, FOXA2, FOXB2, RUNX1 and PAX1.

We included AML patients with 4 cytogenetic subtypes so that we

could detect DMRs that would discriminate between each subtype.

The highest number of DMRs separating an AML subtype from the

rest of groups was found in t(8;21) AML. By contrast, trisomy 8

AML showed the lowest number of identified DMRs. Most of total

DMRs in each AML subtype were hypermethylated (,60% of total

DMRs) except in trisomy 8 AML where only 40% of total identified

DMRs were hypermethylated. For all AML subtypes, the

hypermethylated DMRs was located mostly in CGIs where the

preferential methylation was found in CGIs located outside the

promoters (within the gene bodies or intergenically located) (Table

S5). Additionally, there were very few DMRs that overlapped

between AML subtypes with no common hypo or hypermethylated

DMRs between the all 4 AML subtypes (Fig. S5). Most of those

DMRs are unique for each AML subtype i.e. DMRs associated with

MEIS1/2, TOP3B, CDH13, ST6GAL2 in t(8;12) AML, DOK6,

NCOR2 in t(15;17) AML, ELK1, VMO1 in NK AML, SNX16,

HHEX in trisomy 8 AML. Based on a two-dimensional cluster

analysis (Figs. 2E–H) and a pair-wise comparison (Fig. S6) AML

subtypes could be readily distinguished using the identified genomic

features with a notable clustering of t(8;21) subgroup distantly from

the other AMLs.

Distinctive pattern of repeat sequence methylation in
AML

A considerable advantage of high-throughput sequencing is the

ability to investigate repeated elements, which would cross-

hybridize on a microarray chip [24]. The uniquely mapped reads

were used to determine the methylation patterns on repeated

sequences [12,25]. We identified numbers of interspersed elements

associated DMRs between AML and NBM (Table S6, Dataset S5,

S6, S7). The methylation pattern of the selected SINEs, LINEs

and LTRs could readily discriminate AML from NBM (Figs. 3A–

C, Fig. S7). The clearest distinction between AML and NBM was

obtained with SINE methylation; 62% of those SINEs were of the

Alu class (43% AluJb, 40% AluSx). These discriminating repeats

had a significantly high CpG density compared with the rest of the

Alu subfamilies (P = 0.002) and with the rest of SINEs (P,0.0001).

An examination of the cytogenetic subtype specific repeat

sequence methylation is shown in Figs. 3D–F & Fig. S8. It was

evident that for LINEs, SINEs and LTRs the feature that

discriminated AML subgroups was hypomethylation of particular

groups of repeats. Most of those distinctive hypomethylated

repeats were intergenic in LTRs and in LINEs (,65% found in

LINE1). However, most of the distinctive hypomethylated SINEs

belonged to the Alu family and were intragenically located. For

satellites, few repeats were found differentiating AML from NBM

and discriminating between AML subtypes.

MeDIP-seq data validation
MeDIP-seq data were validated by 2 approaches: genome-wide

using HumanMethylation 27 BeadArray (Fig. S2) and also by

locus-specific methods on selected DMRs. For locus-specific

validation, we performed direct bisulfite sequencing of 4 DMRs

on patient DNA samples; 3 DMRs were hypermethylated in AML

versus NBM and one DMR was hypomethylated in AML versus

NBM. The bisulfite results confirmed the MeDIP-seq data for

each region (Fig. S9, Table S7). In addition, we carried out

bisulfite pyrosequencing in 63 AML patients with different

cytogenetic features, 7 AML cell lines [Kasumi (in duplicates),

OCI-AML2, CTS, HL60, Kmoe2, P31/FUJ, THPI] and 5

NBMs. Pyrosequencing validation was performed on 2 DMRs

discriminating between AML and NBM (DPP6, SPHKAP), 2

DMRs that were hypermethylated in 2 AML subtypes; ST6GAL2

in t(8;21), HHEX in trisomy 8 AML and an AluJb repeat that was

differentially hypomethylated in t(8;21) AML. The results revealed

statistically significant differences in DNA methylation as was

detected by MeDIP-seq (Kruskal-Wallis test followed by Dunn’s

multiple comparison P,0.05) (Fig. S10, Table S8).

Regional DNA methylation and gene expression
We sought to determine the relationship between the methyl-

ation profiles and gene expression in AML patients. Therefore, an

array based gene expression profiling for 6 of the AML samples

that had available RNA was performed. Correlating the gene

expression to corresponding DNA methylation on an average scale

revealed strong significant inverse correlation in promoters (13,690

genes) (Pearson r = 20.97, P,0.0001), CGIs (inside the promoters

of 8,745 genes) (Pearson r = 20.89, P,0.0001) and their parallel

CGI shores (2 Kb upstream to the transcriptional start site; TSS)

[26] (Pearson r = 20.8, P,0.0001) (Figs. 4A–C). The intragenic

interspersed repeats (within the promoters/gene bodies) showed

also significant inverse correlation with gene expression. SINEs

(1,285 intragenic repeats) showed the strongest negative correla-

tion (Pearson r = 20.82, P,0.0001) followed by LTRs (541

intragenic repeats) (Pearson r = 20.63, P = 0.001) and finally

LINEs (11,242 intragenic repeats) (Pearson r = 20.54, P = 0.006)

(Figs. 4D–F). This analysis revealed that the gene expression was

strongly correlated with DNA methylation of the promoters, which

is consistent with the accepted role of DNA methylation around

TSS on related gene expression [27,28,29,30]. However, this does

not exclude the importance of some individual CGIs located

outside the promoters in altering nearby gene expression [31,32].

Furthermore, we investigated the relationship between differ-

ential gene expression and DNA methylation by integrating our

promoter MeDIP-seq data with published gene expression data

[33,34,35]. We questioned whether promoter DNA methylation

was associated with the distinctive over and under expressed genes

in each AML subtype. There was significant promoter DNA

methylation difference between the distinctive expressed genes in 3

AML subtypes; t(8;21) AML, NK AML and trisomy 8 AML

(Mann Whitney test, P = 0.005, P = 0.04, P = 0.01 respectively)

(Fig. 4G, Tables S9, S10). This indicates that differential gene

expression was correlated with differential promoter DNA

methylation in most AML subtypes. It was notable in this analysis

that the t(15;17) subgroup did not exhibit this correlation

suggesting additional modifying factors may affect gene expression

in this subgroup.

Down regulation of candidate methylated genes in AML
and AML subtypes

To investigate the consequence of promoter methylation, the

expression of 3 of the genes with the most consistent methylated

promoters in AML was performed i.e. DPP6 (absolute methyla-

tion difference = 0.46, P = 0.0007), SPHKAP (absolute methyla-

tion difference = 0.45, P = 0.0002) and ID4 (absolute methylation

The Methylome of Acute Myeloid Leukemia
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difference = 0.28, P = 0.003). The analysis was performed in 30

AML patients (including 4 AML patients who were previously

involved in MeDIP-seq experiment), cancer cell lines and normal

tissues using real time RT-PCR. The results showed that DPP6,

SPHKAP and ID4 were down regulated in AML patients

(Figs. 5A.1, B.1, C.1). By contrast, DPP6, SPHKAP and ID4 were

expressed in normal tissues. In addition, SPHKAP was down

regulated in cancer cell lines investigated, while the expression of

DPP6 and ID4 was variable among cancer cell lines. Next, we

tested the effect of a demethylating drug [DAC (5-aza-29-

deoxycytidine)] on the expression of both SPHKAP and DPP6

genes in 2 AML cell lines (OCI-AML2 and CTS). This confirmed

that the demethylating treatment was able to restore the

expression of both genes (Figs. 5A.2, B.2).

Since, the HHEX gene (also known as PRH gene) showed a

significant methylated CGI located in its gene body (between exon 2

and exon 3) in trisomy 8 AML against the rest of the groups

(absolute methylation difference = 0.74, P = 961026) (Dataset S3),

we validated the DNA methylation of that island by pyrosequencing

(Fig. S10d). This demonstrated a significant methylation difference

between trisomy 8 AML and t(8;21) AML (Kruskal-Wallis test

followed Dunn’s multiple comparison tests P,0.5) (Fig. S11a). Next,

we investigated HHEX gene expression by RT-PCR. HHEX gene

showed a significant expression difference among AML subtypes

with a significant expression difference being detected between

trisomy 8 AML and t(8;21) AML (Kruskal-Wallis test followed

Dunn’s multiple comparison tests P,0.5) (Fig. S11b). Correlating

the pyrosequencing results with HHEX gene expression showed a

moderate but significant inverse correlation between the identified

CGI methylation and related gene expression (Spearman r = 20.5,

P = 0.004). Treating CTS and OCI-AML2 cell lines with DAC

showed an increase in HHEX gene expression (Fig. S11c). Notably,

from MeDIP-seq results, there was no DMR identified among AML

subtypes in the promoter of HHEX gene; HHEX promoter

methylation was less than 0.2 Batman score in all MeDIP-seq

samples including trisomy 8 AML.

Discussion

We have used MeDIP-seq to establish the global methylome for

AML. The comprehensive nature of this study (12 independent

primary tumors) has allowed us to investigate the potential

Figure 3. Hierarchical clustering of AML versus NBM in the interspersed repeats. In each figure, each column represents AML patient/NBM
and each row represents a single DMR. First row represents cluster analysis of all AMLs versus all NBMs and the second row represents cluster analysis
of AML subtypes in SINEs (A, D), LINEs (B, E) and LTRs (C, F). Distinctive hypomethylated SINEs, LINEs and LTRs clearly distinguished each AML subtype
(second row).
doi:10.1371/journal.pone.0033213.g003
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epigenomic role of not only gene promoters but also genomic

elements, including CGIs and repeated elements. It is possible to

draw some general conclusions from this study. Firstly, comparison

of the whole genome methylation of the leukemia with the controls

showed that leukemic DNA was only 2.7% less methylated. This

contrasts with the generally held view that cancer is characterized

by global hypomethylation amounting to a 10%–20% difference

[14,36]. It may be that this limited global hypomethylation is a

particular feature of AML. However, a recent MeDIP-seq study of

pooled DNA from peripheral nerve sheath tumors also indicated a

global DNA methylation change of only 0.7% in malignancy

compared to normal [12]. A second general conclusion is that

leukemia specific methylation extends into regions that are not

specifically associated with gene promoters. We similarly found

that AML subtype specific methylation extended beyond gene

promoters and encompassed other genomic features.

Previous genome wide epigenetic studies in leukemia have, for

technical reasons, focused on gene promoters and/or CGIs

[37,38]. Our identification of AML subtype methylation patterns

effectively confirms previous observations [38] that convincingly

demonstrated AML subtype specific methylation of gene promot-

ers. It was of interest to compare our MeDIP-seq results for the

t(8;21) and t(15;17) AMLs to those obtained in that study [38]. We

found 48 genes with the same methylation status observed by

Figueroa and colleagues who used a different technique; (HELP

technique: HpaII tiny fragment Enrichment by Ligation-mediated

PCR) [39]) (Tables S11, S12). Despite the methodological

differences between the two studies it was significant that a

common list of genes could be readily identified.

Although our study did not include all possible subtypes of AML

it did robustly identify specific methylation targets that were

confirmed in a larger series of AML samples using pyrosequencing

technology. Amongst the novel targets identified in this study the

frequent methylation of the promoter of the gene (SPHKAP)

encoding sphingosine kinase anchoring protein in AML was of

particular interest since SPHKAP was down regulated in both AML

patients and cancer cell lines. The SPHKAP protein was identified

through its interaction with and regulation of SPHK1 activity [22].

Additionally, SPHKAP (or SKIP; SPHK1-interactor protein) was

recently identified as a member of A-kinase-anchoring proteins

(AKAPs) [40]. SPHK1 catalyses the phosphorylation of sphingosine

to sphingosine-1-phosphate (S1P) which promotes cell survival and

proliferation [23]. SPHK1 is overexpressed in a range of cancers and

has been proposed as a novel target for cancer therapeutics [41].

The possible leukemogenic role of loss of expression of SPHKAP and

resultant effects on the lipid signaling pathways remains unclear.

However, it is of interest to note that expression of the RUNX1 gene,

which is involved in the t(8;21) translocation in AML, has recently

been linked to regulation of key enzymes involved in sphingolipid

metabolism [42].

The second novel promoter associated DMR, which appeared

in our study to be down regulated in AML patients, was the DPP6

Figure 4. Correlation between DNA methylation and gene expression. (A–F) For a single AML patient we categorized the gene methylation
into 4 groups (.0.4, 0.4–0.6, 0.6–0.8, .0.8 Batman scores). We correlated the average of each methylation group to corresponding average of gene
expression. (G) Box plots of DNA methylation levels of over- and under-expressed genes in each triplicate of t(8;21), t(15;17), NK and trisomy 8 AML
subtypes. N refers to the number of genes in each set. Mann Whitney test of the two sets of genes demonstrated a significant methylation difference
between the medians in t(8;21), NK and trisomy 8 AML subtypes.
doi:10.1371/journal.pone.0033213.g004
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gene. The DPP6 gene was reported as a hypomethylated gene in

colon cancer [26] and at the same time is considered as a

biomarker for melanoma [21]. DPP6 gene became hypermethy-

lated in some tumors and hypomethylated in other types of tumors

as the promoter hypomethylation is important in activation some

oncogenes and in provoking loss of imprinting (LOI) [43].

Since up to 45% of the human genome consists of repetitive

sequences which are not analyzed by array-based methods, it was

desirable to extend the analysis to include such sequences. Our

study suggests that both the hyper- and hypo-methylation of

individual members of the LINE, SINE and LTR families can

readily discriminate AML from NBM. Although we found some

members of the satellite repeat family exhibiting differential

methylation, the discrimination was much less clear. Differences

between satellite methylation and interspersed repeat methylation

were previously reported in leukemia and in bladder cancer [44].

It was also possible to identify repeat family members that

exhibited differential methylation between AML subtypes. As

indicated, very distinct patterns of hypomethylation of members of

the LINE, SINE and LTR appear to be associated with each AML

subtype. Many studies have identified hypomethylation of repeat

sequence elements as important in cancer [36,43]. For example,

hypomethylation of LINEs has been observed in several cancer

types and appears to increase with the degree of malignancy [45].

Hypomethylation of LINEs has also been associated with the

phases of chronic myeloid leukemia and shown to have prognostic

value [46]. This novel observation of AML subtype specific

hypomethylation highlights the potential role of SINEs, LINEs

and LTRs in the transcription activation [47,48] of genes

important in cancer progression and speciation [46,49]. In

addition, these regions could represent discriminating biomarkers

valuable in AML diagnostics.

The establishment of such high resolution AML methylomes not

only reveals the subtle epigenetic changes involved in leukemogen-

esis but also has potentially important clinical implications. It has

been shown that detection of methylated sequences in clinical

remission for AML has the power to predict relapse risk for those

patients [50]. This study has therefore identified a large number of

potential biomarkers that, in principle, could be used to predict

relapse in AML with even greater statistical power.

Figure 5. SPHKAP, DPP6 and ID4 gene expression in AML. (A.1, B.1, C.1) Relative expression of SPHKAP, DPP6, ID4 (respectively) in AML and
normal tissues. The genes were down regulated in AML patients and in cancer cell lines, while the genes were up regulated in normal tissues. (A.2,
B.2, C.2) Relative expression of SPHKAP, DPP6 and ID4 (respectively) in OCI-AML2 and CTS cell lines before and after treatment by DAC. Gene
expression was restored in most of cell lines treated by DAC.
doi:10.1371/journal.pone.0033213.g005
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Materials and Methods

Clinical samples
We applied MeDIP-seq to 12 AML patients. Diagnosis of

leukemia was based on clinical and morphological features [51].

Median age of AML patients was 38.5 and median blast

percentage was 81% (full details Table S1). Patients’ samples

(peripheral blood or bone marrow) were stored in the tissue bank

of the St Bartholomew’s Hospital after informed written consent

was obtained. The human Kasumi leukemic cell line (ACC: 220),

OCI-AML2 leukemic cell line (ACC: 99), HL60 leukemic cell line

(ACC: 3), Kmoe2 leukemic cell line (ACC: 37), REH leukemic cell

line (ACC: 22) were obtained from the Deutsche Sammlung von

Mikroorganismen und Zellkulturen - DSMZ - (German Collection

of Microorganisms and Cell Cultures). Human CTS leukemic cell

line [52], THPI leukemic cell line [53] and P31/FUJ leukemic cell

line [54], CEM leukemic cell line [55], HD-MY-Z lymphoblastic

cell line [56], DHL lymphoma cell line [57] and WM melanoma

cell line [58] were kindly provided by Dr. Simone Jueliger (Queen

Mary University of London, London, UK). DNA was extracted

using Qiagen DNeasy Blood & Tissue kit according to

manufacturer’s instructions. The ethical approval to access the

stored material and to carry out the study was obtained from East

London and City Research Ethics Committee (ref 10/H0704/65).

MeDIP-seq
Only high quality genomic DNA was subjected to MeDIP-seq

protocol (Text S1) [25,59]. This is based on using a monoclonal

antibody against 5-methylcytosine of previously sonicated DNA.

MeDIP DNA libraries were quantified using RT-PCR and the

Agilent Bioanalyser 2100 to get 10 nanomolar concentration

libraries. The MeDIP libraries were subjected to high-throughput

45 base paired-end sequencing using Illumina Genome Analyzer

(GA-II) [60]. Two different algorithms were used for the alignment

of the generated reads against the reference human genome

(NCBI 36/hg18); Maq (Mapping and Assembly with Qualities)

[61] (http://maq.sf.net/ and Li et al.) and Bowtie [62]. Following

the alignment, the repeated sequences (including PCR duplicates

and reads that mapped to more than one location on the genome)

were filtered from the data. Reads with Maq score of ,10 were

excluded from subsequent analysis. Bowtie rounded the quality

values to the nearest 10. For methylation analysis of the uniquely

aligned reads, the Batman algorithm has been used [11]. Batman

(A Bayesian Tool for Methylation Analysis) algorithm infers the

absolute methylation state for 100 bp windows by estimating local

sequencing read enrichment for methylation taking into account

the varying densities of methylated CpGs across the genome [11].

Batman output is in the form of GFF format, each GFF file

represents a score that is equals the median of methylation states in

a 100 bp window. The score ranges between 0–1 according to the

level of methylation. The sequencing data are available in GEO,

accession number: GSE28314

MeDIP-seq data statistical workflow
Quantile normalization was performed to reduce the possible

variations among the laboratory assays and to facilitate the

comparison of the genes across all the samples. This method is

based upon the concept of quantile-quantile plot extended to n

dimensions (where n is the number of samples) [63]. In order to

reduce the complexity of the normalized data, we excluded the

genes in which the difference between the maximum and

the minimum methylation values is lower than the mean of the

standard deviation values of this genomic feature across all the

samples. We next used empirical Bayes statistics provided by

Bioconductor’s limma R package to select the top discriminating

genes for each feature [64]. This was performed for every AML

cytogenetic group against other groups including NBM, and for

all AML versus all NBM. The empirical Bayes model was used to

compute moderated t-statistics and F-statistic. The Benjamini and

Hochberg false discovery rate (FDR) was used as a multiple

testing correction generating adjusted P value for each gene.

However, due to small sample size, not many genes remained

statistically significant when multiple testing corrections were

applied. The frequency of uncorrected P values,0.05 for

differential methylation was higher than expected assuming a

random distribution. This uncorrected P value distribution

indicates a differential methylation pattern between specified

groups (Fig. S12) [65].

DMR
DMR was defined as a differential methylated region with

uncorrected P,0.05 and an absolute methylation difference

.0.25 Batman score (equal to at least 25% difference in DNA

methylation). This threshold was defined using the distribution of

absolute differences in methylation (Batman) scores of all covered

genomic features (618,556) between normal and leukemic samples

(Fig. S13). Since the 99th percentile of the differences in

methylation scores corresponds to 0.23, the minimal difference

in methylation between groups required for calling DMRs was

rounded to 25%. In order to estimate FDR in the DMR calling, a

mixture model approach was used [66]. DMR identification based

on P value,0.05 and absolute methylation difference .25% gave

an FDR of 2.4% across investigated genomic features and repeats,

that was comparable to results obtained by a recent MeDIP-seq

study [12].

Cluster analysis
Hierarchical clustering and pair-wise comparison were formed

using Pearson correlation coefficient to construct the distance

matrix among samples together with ‘Ward’ linkage clustering

method [67]. In order to reduce the data for clustering purposes,

we selected DMRs with P value,0.001 for which we noticed

particular enrichment (Fig. S13).

Whole genome analysis
For the comparison of the whole genome methylation between

AML and NBM, we have categorized DNA methylation into 5

groups and used Fisher’s exact test provided with R to investigate

if there was a statistically significant difference in the global DNA

methylation [64].

Repeats
Repeated regions were obtained from nested RepeatsRM327

table downloaded from UCSC genome annotation database

(http://hgdownload.cse.ucsc.edu/goldenPath/hg18/database/).

Direct Bisulfite sequencing
500 ng genomic DNA was bisulfite converted using EZ DNA

methylation TM kit (Zymo research). PCR amplification of the

bisulfite converted DNA was performed through 42 cycles at 55uC
annealing temperature, the primers used for the PCR are provided

in Table S13. Amplified products were cloned using the TOPO

TA cloning (Invitrogen, TOPO TA cloning kit) and 5–10 clones

were picked for template-amplification of DNA and further

sequencing. Only .95% bisulfite converted clones were analyzed

using QUMA (quantitative method for methylation analysis,

http://qmua.cdb.riken.jp).
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Bisulfite pyrosequencing
500 ng genomic DNA was bisulfite converted using EZ-96

DNA kit TM (Zymo research) specified by the manufacturer. The

converted DNA was PCR amplified using primers for each set of

genes; the primers were designed using PyroMark Assay design 2.0

(primers provided in Table S14). The pyrosequencing was

performed according to a published protocol [68] using PSQ 96

MA (Qiagen) to get a percent methylation at a single CpG site.

The percent methylation at each CpG was calculated using

PyroQ-CpG 1.0.9.

Illumina Infinium array
500 ng genomic DNA was bisulfite converted and hybridized

onto Illumina Infinium HumanMethylation 27 BeadArrays

according to the manufacturer’s protocol [69]. The GenomeStu-

dio Software was used for methylation analysis. As Illumina

Infinium array confined single CpG in ,124 bp, we determined

from MeDIP-seq a 100 bp window that includes this CpG in its

centre. Correlating the average Batman score with each 1%

Infinium array bin revealed a strong correlation between both

methods (Fig. S2).

Array based gene expression profiling
Good quality RNA was available for 6 AML patients involved

in MeDIP-seq experiment. Total RNA of AML patient samples

was extracted from a total of 10–206106 thawed cells using Trizol

(Gibco-BRL) purification method. The Applied Biosystems

Human Genome Survey Microarray (P/N 4337467) was used

for the expression profile [70]. The microarrays contain 31,700

60-mer oligonucleotide probes representing 29,098 individual

human genes, and uses chemiluminescence (CL). cRNA target

preparation and array hybridisation were performed according to

the manufacturer’s protocol (P/N 4339629). Signal intensity, S/N

ratio (signal to noise ratio), and flags values for each array were

extracted. If S/N was greater than 3, it was concluded that the

signal detected was (confidence of 99.9%) a function of the gene

expression levels detected by the probe. For those probes that have

flags value above 5,000, the signals are considered missing values.

The signal values were log2 transformed and normalized across

arrays with quantile normalizaiton method after control probes

were removed. The S/N ratio was used as filtering criteria. All the

statistical analysis was performed with the statistical language R

(http://www.R-project.org). The array expression data has been

deposited in a MIAME compliant database GEO accession

number: GSE34722, (MeDIP-seq study No. 1; GSM853941,

MeDIP-seq study No. 3; GSM854020, MeDIP-seq study No. 4;

GSM854034, MeDIP-seq study No. 5; GSM854005, MeDIP-seq

study No. 8; GSM853976, MeDIP-seq study No. 9;

GSM854019).

RT-PCR
We carried out RT-PCR starting with total RNA (1 mg) for

cDNA synthesis using random primer with Superscript III reverse

transcriptase performed as per the manufacturer’s instructions

(Invitrogen). Maximum cDNA concentration was used in a

volume of 10 ml per run. Real time was carried out using Taqman

universal master mix II as per the manufacturer’s instructions [71].

The maximum amount of RNA was used as per the manufactur-

er’s instructions. Reactions were run on the ABI 7900HT fast Real

time PCR using 96-well plate and the standard thermal cycler

protocol with 40 cycles. Control normal adult RNA was obtained

from Agilent genomics. Normal breast RNA was used to compare

the results in SPHKAP, DPP6 and ID4. Normal lymph node was

run on every plate to ensure the consistency across the runs. 18s

RNA acquired from ABI was used as the endogenous control. All

primers were designed and generated by ABI.

Treatment of cells with 5-aza-29deoxycytidine (DAC)
Twenty-four hours before adding 5-aza-29 deoxycytidine (DAC)

(Sigma), 16106 AML cell line cells were maintained in culture

containing RPMI-1640 with 10% FBS. Cells were treated by DAC

through adding freshly prepared 5 mM DAC in dimethylsulfoxide

(DMSO) to the standard media. DAC treatment was repeated at

48 hours. Control cell lines were treated identically except that

they were treated with standard media to which DMSO only had

been added. We assayed the cells for gene expression 72 hours

after the treatment.

Supporting Information

Text S1 Supporting method MeDIP-seq protocol.

(DOC)

Figure S1 Saturation analysis of MeDIP-seq samples (a,

b, c) The saturation analysis investigates whether the number of

unique reads is sufficient to generate a saturated and reproducible

methylation profile of the reference genome. The higher Pearson

correlation r the greater assurance of the reproducibility of the

methylation profiles. Sample study number is identified in Table

S1.

(DOC)

Figure S2 Correlation between MeDIP-seq and Illu-
mina Infinium array. A significant positive correlation was

found between MeDIP-seq and Illumina Infinium array in the

three MeDIP-seq samples.

(DOC)

Figure S3 Pair-wise comparison between AML and
NBMs in 4 genomic regions. Red colored spots indicate high

similarity and white colored spots low similarity. CGIs (C) showed

the highest similarities between AML subtypes and a clear

discrimination from NBMs. (A) Promoters, (B) Gene bodies, (D)

CGI shores.

(DOC)

Figure S4 Estimating the number of clusters in data set
consisting of differentially methylated CGIs using
prediction strength method The consecutive number of

clusters is given on the x-axis. The vertical bars illustrate the

standard error of the prediction strength over 5 cross-validation

folds. Prediction strength above 0.8 indicates well-separated

clusters. Dividing the CGI associated DMRs data set into two

clusters, referring to AML and NBM groups, gives the highest

stability.

(DOC)

Figure S5 Characters of DMRs in AML subtypes. Venn

diagrams showed few overlapped DMRs between AML subtypes

with no common DMRs detected between the all 4 AML

subtypes.

(DOC)

Figure S6 Pair-wise comparison between AML subtypes
in 4 genomic regions. t(8;21) AML subtype is discriminated

distantly from all the other AML subtypes. (A) Promoter, (B) gene

bodies, (C) CGIs, (D) CGI shores.

(DOC)

Figure S7 Pair-wise comparison between AML and
NBMs in repeat sequences. (A) SINEs showed the highest
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similarities between AML subtypes among other repeats; (B)

LINEs and (C) LTRs.

(DOC)

Figure S8 Pair-wise comparison between AML subtypes
in repeat sequences. There was clear discrimination between

AML subtypes in (A) SINEs, (B) LINEs and (C) LTRs.

(DOC)

Figure S9 Direct bisulfite sequencing of significant
differentially methylated genes/genomic regions in
MeDIP-seq samples. (a, b, c, d, e) For all figures, the horizontal

line represents the position of each CpG investigated and the

vertical line is the percentage of the methylation at particular CpG

site from 0–100%. The analysis was performed using QUMA.

(DOC)

Figure S10 Pyrosequencing results of candidate geno-
mic regions in AML patients, AML cell lines and NBMs.
(a) SPHKAP, (b) DPP6, (c) ST6GAL2, (d) HHEX and (e) Alu repeat.

N refers to the number of samples tested for each investigated

genomic region. Kruskal-Wallis test showed significant methyla-

tion difference among the groups (P,0.0001) for all tested genes

and repeat. Dunn’s multiple comparison tests showed that there

was significant methylation difference between AML patients and

NBMs in SPHKAP and DPP6 (P,0.05). Also, there was significant

methylation difference between AML samples and AML cell lines

in all investigated genes (P,0.05) except in the repeat.

(DOC)

Figure S11 HHEX gene methylation and expression
assay. (a) HHEX gene methylation (a significant methylated

CGI located within the body of HHEX gene) among different

AML patients. (b) HHEX gene expression among different AML

patients. (c) Effect of DAC on HHEX expression in AML cell lines.

HHEX gene expression was measured relative to NBM, PB = per-

ipheral blood from healthy donors.

(DOC)

Figure S12 Histograms of uncorrected P values after
testing the equality of the methylation means between
groups. (a) in 4 genomic regions and (b) in repeats. When

investigating the data with equal means between groups, the P

values were expected to be uniformly distributed across the unit

interval (blue line). Comparing the distribution of uncorrected P

values to the uniform distribution expected for random data revealed

enrichment of P value,0.05 (red line) indicating differential

methylation pattern. Satellites did not show a specific distribution

of uncorrected P values across the samples. High frequencies of P

values,0.05 across the samples were observed in the other tested

repeats; SINEs, LINEs and LTRs.

(DOC)

Figure S13 Histogram illustrating the distribution of
uncorrected P values after testing equality of methylation
between normal and leukemic samples for all genomic
features and repeats. For random data the distribution is

expected to be uniformly distributed across the unit interval (blue

horizontal line). The frequency of P values,0.05 (red line) is higher

than expected with particular enrichment of P values,0.001.

(DOC)

Table S1 Patients and control samples.

(DOC)

Table S2 Criteria of reads generated from Illumina
GAII,

(DOC)

Table S3 Description of the genomic regions from
MeDIP-seq results.
(DOC)

Table S4 DMRs identified in AML versus NBM in 4
genomic regions.
(DOC)

Table S5 DMRs identified in AML subtypes in 4
genomic regions.
(DOC)

Table S6 DMRs associated with repeats. (a, b) AML versus

NBM, (c) between AML subtypes.

(DOC)

Table S7 Direct bisulfite sequencing validation of
selected genomic regions.
(DOC)

Table S8 Pyrosequencing validation of selected geno-
mic regions. (a) AML versus NBM, (b) in AML subtypes.
(DOC)

Table S9 DNA methylation of over- and under ex-
pressed genes in t(8;21), t(15;17) & NK AML subgroups
that were included in MeDIP-seq experiment.
(DOC)

Table S10 DNA methylation of over- and under ex-
pressed genes in trisomy 8 AML subgroup that was
included in MeDIP-seq experiment.
(DOC)

Table S11 The overlapped genes between the results of
MeDIP-seq study and array-based study for t(15;17)
AML.
(DOC)

Table S12 The overlapped genes between the results of
MeDIP-seq study and array-based study for t(8;21) AML.
(DOC)

Table S13 Direct bisulfite sequencing primers.
(DOC)

Table S14 Pyrosequencing primers.
(DOC)

Dataset S1 Differentially methylated promoters.
(XLS)

Dataset S2 Differentially methylated gene bodies.
(XLS)

Dataset S3 Differentially methylated CGIs.
(XLS)

Dataset S4 Differentially methylated CGI shores.
(XLS)

Dataset S5 Differentially methylated SINEs.
(XLS)

Dataset S6 Differentially methylated LINEs.
(XLS)

Dataset S7 Differentially methylated LTRs.
(XLS)
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