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Abstract Adoptive T cell therapy for cancer patients

optimally requires participation of CD4 T cells. In this phase

I/II study, we assessed the therapeutic effects of adoptively

transferred IL-10- and IFN-c-producing CD4 effector cells

in patients with recurrent ovarian cancer. Using MUC1

peptide and IL-2 for ex vivo CD4 effector cell generation, we

show that three monthly treatment cycles of autologous T

cell restimulation and local intraperitoneal re-infusion-

modulated T cell-mediated immune responses that were

associated with enhanced patient survival. One patient

remains disease-free, another patient experienced prolonged

survival for nearly 16 months with recurrent disease, and

two patients expired within 3–5 months following final

infusion. Prolonged survivors showed elevated levels of

systemic CD3?CD4?CD25? and CD3?CD4?CD25- T

cells when compared to that of pre-treatment levels and

similarly treated short-term survivors. Such cell populations

among these patients contained variable levels of ‘‘Induc-

ible’’ Tr1 (CD4?CD25-FoxP3-IL-10?) and ‘‘Natural’’

(CD4?CD25?CD45RO?FoxP3?) TReg cell numbers and

ratios that were associated with prolonged and/or disease-

free survival. Moreover, peptide-restimulated T cells from

these patients showed an elevation in both IFN-c production,

memory cell phenotype, and select TNF family ligands

associated with enhanced T cell survival and apoptosis-

inducing activities. This suggests that intraperitoneally

administered Th1-like cells, producing elevated levels of

IL-10, may require and/or induce differential levels of dis-

tinct systemic TReg subpopulations that influence, in part,

long-term tumor immunity and enhanced memory/effector

CD4-mediated therapeutic potentials. Furthermore, treat-

ment efficacy and enhanced memory cell phenotype did not

appear to be dependent on TReg cell numbers but upon ratios

of ‘‘Inducible’’ and ‘‘Natural’’ TReg subpopulations.
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Abbreviations

Th1 CD4? T cells producing IFN-c
TReg Regulatory T cells

Foxp3 Forkhead box protein p3

TR1 CD4? CD25-FoxP3- T cells producing IL-10

nTRegs Ag-experienced natural TReg

CD4?CD25?CD45RO?FoxP3- cells
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Introduction

Ovarian cancer is the leading cause for mortality among

gynecologic malignancies and represents the fourth leading

overall cause for cancer-related death in women [1].

Standard treatment relies on surgical debulking and plati-

num-based chemotherapy. Although most patients initially

respond to treatment, the majority of women with advanced

disease become resistant to such treatments and experience

terminal relapse [2]. There is currently no known treatment

capable of achieving a cure for women with recurrent

ovarian cancer in whom adjuvant therapy has been previ-

ously administered. Thus, the evaluation and subsequent

characterization of new therapeutic strategies is needed [3].

CD4 T cells play a central role in virtually every aspect

of immunity, including the antitumor response, and have

been suggested to be a key missing component in current

cancer immunotherapies [4]. Human Th1 effector cells are

a subpopulation of CD4 T cells that are characterized by

their capacity to secrete IFN-c and IL-10 [5–9]. These cells

can mediate and/or assist in tumor rejection by directly

killing tumor cells via TNF family-related lytic pathways

(i.e., TRAIL and FasL), up-regulation of HLA Class I and

II expression on tumor cells, inducing angiogenesis inhib-

itors and promoting DC-dependent and/or -independent T

cell activation or tolerance [3, 10–16]. Such antitumor

responses have been associated, in part, with both Th1 cell-

derived IFN-c and/or IL-10-mediated mechanisms that

contribute to tumor regression and immunity [5–7, 10, 11].

Moreover, a recent case study involving a single melanoma

patient demonstrated that infusion of a Th1 cell clone,

specific for the NY-ESO tumor-associated Ag, led to a

durable remission [17], and thus provides an impetus to

study the roles and immunomodulatory effects of such

effector cells in patients with similarly aggressive diseases,

such as recurrent ovarian cancer.

In addition to Th1 effector cells, CD4 T cell subpopu-

lations have also been associated with regulatory T cells

(TRegs) that control self-reactivity in autoimmune disease

and immune response homeostasis at sites of inflammation

and tumor growth [18–22]. TReg cells can be classified

into two main subsets according to their origin and sup-

pressive activity. Ag-experienced ‘‘Natural’’ CD4? TReg

effector cells (nTRegs), constitutively expressing FoxP3

and the activation markers CD25 and CD45RO

(CD4?CD25?CD45RO?FoxP3?), originate in the thymus

by high affinity interaction of the T cell receptor with Ag

expressed on the thymic stroma [23, 24]. Such cells sup-

press the proliferation of effector T cells in a contact-

dependent, cytokine-independent manner. In contrast, other

types of TReg cells can be induced from naive CD4 cells

in the periphery, such as IL-10-producing TR1 cells and

TGF-b-producing Th3 cells [18, 25–27]. Such ‘‘induced’’

CD4?CD25- TReg subpopulations (iTReg) exert sup-

pression mostly through soluble factors, and their sup-

pressive function is not strictly associated with a high level

of FoxP3 expression. In humans, both Natural and Induc-

ible TReg cell subpopulations have been identified at

increased frequencies in the peripheral blood and malig-

nant effusions of patients with various types of cancers,

including ovarian [24, 25, 28–31]. Although evidence that

both ‘‘Inducible’’ and ‘‘Natural’’ TRegs may alter the

clinical course of cancer progression has been described,

their diverse roles, phenotypic heterogeneity, and effects

on tumor immunity during adoptive immunotherapy with

tumor-reactive effector cells in patients with epithelial cell-

based tumors remain relatively undefined.

In our previous study, which marked one of a few

clinical studies focused on the therapeutic effects of

intraperitoneal T cell transfer, we investigated the genera-

tion, expansion, and therapeutic effects of autologous

Th1-like effector cells as a potential immunotherapeutic

strategy in patients with recurrent ovarian cancer [32]. We

showed that three monthly treatment cycles of T cell

restimulation and local–regional intraperitoneal re-infusion

selectively modulated endogenous T cell-mediated

immune responses in some patients that were associated

with diminished or stabilized serum CA125 tumor marker

levels. In the current study using the same cohort, we

extend our observations in these patients to more defini-

tively characterize IFN-c and IL-10 production among

transferred T cells and investigate the effects of such Th1-

like effector cell transfer on both ‘‘Inducible’’ TR1 and

‘‘Natural’’ FoxP3? TReg cell subpopulations at various

stages of treatment. To our knowledge, this is the first

report that investigates multiple cycles of adoptively

transferred Th1 cell therapy and their relationship with

different TReg cell subpopulations and memory T cell

responses in patients with recurrent ovarian cancer. This

study offers insight into Th1-mediated mechanisms that

enhance Th1/memory T cell responses following T cell-

based immunotherapy in cancer patients and further sug-

gests a potential role for co-therapeutic approaches

targeting modulation, and not depletion, of the TReg cel-

lular network in such patients.

Materials and methods

Patients

In this Phase I/II study, seven patients with recurrent epi-

thelial ovarian cancer confined to the peritoneal cavity

were enrolled on protocol through the Harrington Cancer

840 Cancer Immunol Immunother (2012) 61:839–854

123



Center (Amarillo, TX) after obtaining informed consent.

All patients, ranging from 47 to 70 years of age, were

previously treated by standard surgery and chemotherapy

with cis- or carboplatin- and paclitaxel-containing regi-

ments. Following standard treatments, CT scans and

pathology of biopsied samples prior to immunotherapy

confirmed recurrent disease. None of these patients had

received other cancer therapies within 4–6 weeks of pro-

tocol entry. All patients received chemotherapy with either

cisplatin or gemcitabine following completion of immu-

notherapy. Four patients completed the proposed three

cycles of adoptive T cell immunotherapy, whereas three

patients developed local occlusion or rupture of the intra-

peritoneal port that resulted in discontinued treatment.

Characteristics and clinical course summaries for patients

completing three cycles of adoptive T cell immunotherapy

are described in Table 1. All studies were carried out with

approval of the institutional review board of the Texas

Tech University School of Medicine and under IND from

the Food and Drug Administration (FDA).

MUC1 mucin peptide

The 20mer MUC1 peptide GSTAPPAHGVTSAPATAPAP

was synthesized by American Peptide Inc. (Sunnyvale,

CA). The orientation is a single repeat of the mucin 1

peptide and shown to be optimal for the stimulation of

human mononuclear cells from patients with adenocarci-

noma [33–35].

Generation of MUC1 peptide-stimulated effector T

cells

Generation of MUC1 peptide-stimulated effector T cells

has been previously described [32, 34]. Briefly, peripheral

blood mononuclear cells (PBMC) from eligible ovarian

cancer patients were obtained via leukaphereses. Cells

were adjusted to 2 9 106 cells/ml in serum-free AIM-V

(Registered TM) lymphocyte medium (Life Technologies

GIBCO-BRL, Grand Island, NY) and maintained in a 37�C

humidified 5% CO2 atmosphere. Cells within culture bags

were stimulated with MUC1 peptide (1 lg/ml) on days 0

and 7. Human IL-2 (Cetus, Nutley, NJ) was added twice

per week at 100 IU/ml for cell expansion. Twice weekly,

cells were counted, diluted to 2 9 106 cells per ml with

more media to maintain lymphocyte proliferation. On day

seven, 2 ml of supernatant were collected, centrifuged at

4009g for 10 min, and sent for sterility testing. After

8 days, MUC1-stimulated T cells were harvested from

culture bags and prepared for patient treatment. Cells were

washed twice in normal saline and resuspended in 5%

albumin/normal saline solution. Cells and supernatants

from cultures prior to (Day 0) or following (days 3 and 8)

restimulation with peptide and IL-2 were cryopreserved for

future functional and phenotypic analysis. Cryopreserved

cell preparations showed a 93–97% viability range after

thawing.

Adoptive T cell immunotherapy and treatment scheme

Adoptive immunotherapy with autologous MUC1 peptide-

stimulated T cells was performed on patients with residual

recurrent ovarian cancer following standard surgery and

chemotherapeutic protocols. Eligible patients underwent

leukaphereses for each treatment cycle. Collected PBMC

were then expanded ex vivo with MUC1 peptide and IL-2.

The effector T cells were administered regionally via an

intraperitoneal port-a-catheter and repeated monthly for a

total of three cycles of T cell transfer. The number of T

cells ranged from 108 to 109 cells per infusion (i.e.,

1–4 9 108 cells/m2). Patients were evaluated by magnetic

resonance imaging (MRI) or computed tomography (CT)

Table 1 Characteristics and clinical course summary of patients completing 3 cycles of therapy

Patient

no.

Patient

age

(years)

Pre-study therapy Pre-study histology Pre-study tumor nodule

number (size)a
Disease

status

Survival

(months)

OV1 70 Resection

chemotherapy

Poorly differentiated/epithelial papillary

serous adenocarcinoma

Miliary-type nodules in multiple

areas of abdomen and ascites

Recurrent 3

OV2 61 Resection

chemotherapy

partial resection

Moderately differentiated/epithelial not

otherwise specified adenocarcinoma

Right pelvis (1–2 cm) midline

pelvic (3–4 cm)

Recurrent [84b

OV3 61 Resection

Chemotherapy

resection

Poorly differentiated/epithelial

papillary serous adenocarcinoma

2–3 Nodules upper abdomen

(\1 cm)

Recurrent 5

OV7 59 Resection

chemotherapy

Poorly differentiated/epithelial

papillary serous adenocarcinoma

Multiple nodules in multiple

areas of abdomen (5–6 cm

range)

Recurrent 16

a Determined by CT scan just prior to immunotherapy. b DFS disease-free survival
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before and after the completion of therapy. Disease

responses were determined by the comparison of pre-

treatment and post-treatment images. In addition, individ-

ual serum CA-125 levels were determined by ELISA at

various time points over the next 200 days following

treatment initiation and compared with pre-treatment

CA125 levels.

Flow cytometric analysis

Single cell suspensions of peptide-stimulated PBMC were

washed three times in a fluorescent antibody buffer (FAB)

consisting of 1% human serum albumin and 0.02% sodium

azide in 0.01 M phosphate-buffered saline, pH 7.2.

Immune cell populations were phenotyped by their

expression of surface markers using direct immunofluo-

rescence staining techniques [32, 36]. Lymphocytes (106),

pre-treated with polyclonal human IgG (Sigma Inc) to

block FcR, were mixed with 100 ll of FAB containing

1 lg of various mAbs conjugated to either PE, FITC,

PE-CY5, or APC. The mAbs used include anti-CD4 (eBio-

science, San Diego, CA. Clone HIS51), anti-CD8 (eBio-

science. Clone 53-2.1), anti-CD45RO or anti-CD45RA

(Pharmingen), anti-CD3 (eBioscience), or anti-CD25

(eBioscience, San Diego, CA). Stained cell preparations

were incubated for 20 min on ice then washed three times in

FAB and analyzed by multiparameter flow cytometry using a

Becton–Dickinson FACscalibur (San Jose, CA). One hun-

dred thousand cells were analyzed per sample with dead cells

excluded on the basis of forward light scatter. Surface marker

analysis was performed using Cell Quest Software (Becton–

Dickinson), and the percent positive and absolute cell

numbers were determined. For intracellular staining, cells

were labeled with antibodies to specified cell surface mark-

ers as described above. Following incubation, brefeldin A

(10 lg/ml) was added to cultures to retain cytoplasmic

markers. Subsequently, cells were fixed with 2% parafor-

maldehyde followed by intracellular staining in permeabi-

lization buffer containing 0.5% saponin and 1% BSA in PBS,

and either human anti-FoxP3, anti-IL-10, or anti-IFN-c
mAbs (BD Pharmingen). Cells were washed and

resuspended in 1% BSA/PBS solution and analyzed by flow

cytometry as described above.

Comparative analysis of human gene expression levels

by RT–PCR

Human inflammatory or common cytokine mRNA

expression levels were quantitated using Pathway Specific

Array Systems purchased from SuperArray Bioscience

Corp. (Frederick, MD). Total RNA from PBMCs obtained

either prior to (Day 0) or following peptide stimulation for

3 or 8 days was extracted by tissue homogenation in

TRIzol reagent (GIBCO). Experimental RNA samples

were converted into first-strand cDNA templates using the

RT First Strand Kit (Superarray Corp.). Templates were

then mixed with instrument-specific RT qPCR Master

Mixes and dispensed into wells containing pre-dispensed

gene-specific primer sets. Relative gene expression levels

and threshold cycle values (Ct) were determined with the

Bio-Rad iCycler (BioRad Labs, Hercules, CA). Calcula-

tions were performed using the 2^-DCt method of analysis

according to manufacturer’s instructions. Data are expres-

sed as either Average Raw Ct values (where Ct values of

35 or greater are equal to 0), Average DCt values (Average

Ct (gene of interest)-Average Ct (housekeeping genes)),

or as fold changes (test sample/control sample) in gene

expression [32, 36].

Data presentation and statistical analysis

In select studies, the absolute cell numbers were calculated.

Lymphocyte numbers were obtained from freshly isolated

and cultured PBMCs by coulter counter. Depending on the

cell subpopulation of interest and their level of sequential

gating following flow cytometric analysis, absolute cell

numbers were derived by multiplying the cell percentages at

each layer of gating 9 the coulter counter-derived lym-

phocyte cell number per ml of PBL. For statistical analysis,

the Student’s t test was used for paired comparisons and

provided by the PRISM Graph Pad statistical software

package. ANOVA analysis was used for the comparison of

three or more matched groups. Statistical significance was

defined as a P value less than 0.05 for all analysis.

Results

Phenotypic characterization of adoptively transferred

MUC1 peptide-stimulated effector T cells

Patients underwent leukaphereses at various time intervals

prior to and following adoptive T cell transfer for collec-

tion of PBMCs. Cells from such patients were stimulated

with MUC1 peptide and IL-2 for 8 days as described in

‘‘Materials and methods’’. Following restimulation, gen-

erated effector T cells were harvested, characterized, and

evaluated for MUC1 Ag reactivity in vitro. Previously, we

have shown that such freshly generated human effector

cells were predominantly CD4 T cells, demonstrated

MUC1 cytolytic potential and produced significantly

greater amounts of supernatant-derived IFN-c when com-

pared to that of pre-stimulation levels. Moreover, there

were no significant differences in either the CD4/CD8

expansion rates or functional potentials among corre-

sponding group cultures and/or treatment cycles [32].
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In the current study, we extended our observations to

directly assess CD4 T cell activation and cytokine pro-

duction at the single cell level within these cultures.

Using multiparameter flow cytometry, freshly generated

effector T cell populations were predominantly

CD3?CD4? ([87%), whereas CD3?CD8? T cells were

routinely lower (\10%). Moreover, such CD4 cells co-

expressed up-regulated levels of CD25 and CD45RO

(Fig. 1a, b). As shown in Fig. 1c, CD4?CD25?

CD45RO? donor effector cells, among patients under-

going 3 treatment cycles of PBMC restimulation and re-

infusion, showed no significant (P [ 0.05; ANOVA)

differences in the frequencies of such cells at each

treatment cycle among either individual patients or the

four patients utilizing this 8-day restimulation strategy.

Since human Th1 cells have been shown to produce both

IFN-c and IL-10 [5, 8, 9], intracellular cytokine staining

showed that CD4 effector T cells expressed substantial

levels of IFN-c with lower levels of IL-10 (Fig. 1b). As

shown in Fig. 1d, individual patients showed no signifi-

cant (P [ 0.05) differences in the mean frequency of

CD4?CD25?CD45RO? cells producing IFN-c for all

three cycles with all patients producing similarly ele-

vated levels (P [ 0.05; ANOVA). In contrast, patients

OV1 and OV3 showed substantial (P \ 0.05) decreases

in IL-10 production among corresponding cells when

compared to that of patients OV2 and OV7 (Fig. 1e).

Furthermore, the mean IL-10/IFN-c cell frequency ratios

among the former were significantly (P \ 0.05) lower

when compared to the latter (Fig. 1f). Collectively, this

suggested that restimulation and expansion of systemic

ovarian cancer patient effector T cells with MUC1

peptide and IL-2 can effectively generate functionally

differentiated CD3?CD4?CD45RO? Th1 cells that not

only produced IFN-c, but also substantially different

levels of IL-10 ex vivo.

Clinical evaluation and therapeutic efficacy

among patients receiving three cycles of MUC1-

stimulated CD4 effector T cell transfer

Patients underwent leukaphereses at various time intervals

prior to and following adoptive T cell transfer for collec-

tion of PBMCs. Following restimulation and expansion

with MUC1 peptide and IL-2, freshly generated autologous

effector T cells were harvested and administered via an

intraperitoneal port-a-catheter as described in Materials

and Methods. Treatment was conducted at monthly inter-

vals for up to three cycles of T cell transfer. Four patients

completed the proposed three cycles of adoptive T cell

immunotherapy, whereas three patients developed local

occlusion or rupture of the intraperitoneal port that resulted

in discontinued treatment (\3 treatment cycles) and death

due to disease progression. Characteristics and clinical

course summaries for patients completing three cycles of

adoptive T cell immunotherapy are described in Table 1.

All subjects had confirmed recurrent ovarian cancer fol-

lowing resection and chemotherapy consisting of cis- or

carboplatin and paclitaxel-containing regiments. Initially,

patient OV1 had a complete response to treatment; how-

ever, approximately 6 months later, the patient had disease

recurrence. Subsequently, she received topotecan, oral

etoposide, and intravenous liposomal doxorubicin with no

response. Pre-study CA-125 levels for all patients varied

from normal (\35 units/ml normal range) for patient OV2

to over a thousand units/ml (32). CT scans and pathology

of biopsied samples prior to immunotherapy confirmed

recurrent disease (Table 1). None of the patients received

other cancer therapies within 4–6 weeks of protocol entry.

There was no toxicity except for grade 1 abdominal pain in

patient OV2 at the time of infusion. All patients received

chemotherapy with either cisplatin or gemcitabine fol-

lowing completion of immunotherapy. Of the four patients

completing 3 cycles of adoptive T cell transfer, one patient

remains disease-free (OV2), another patient survived for

nearly 16 months with recurrent disease and death (OV7).

In contrast, short-term surviving patients treated with CD4

effector cells possessing lower IL-10/IFN-c cell ratios (i.e.,

OV1 and OV3) showed progressive disease and expired

within 3–5 months following T cell therapy.

Treatment with autologous MUC1-stimulated CD4

effector cell transfer differentially enhanced

endogenous CD4?CD25? and CD4?CD25- T cell

subpopulation levels among long-term surviving

patients

Since co-expression of CD25 on CD4? T cells has been

previously linked to specific cell subpopulations associated

with either immune cell activation or immunoregulation

[24], we next assessed and characterized such CD4 T cell

populations in peripheral blood of ovarian cancer patients

receiving T cell transfer. As shown in Fig. 2a, long-term

surviving patients (OV2 and OV7) showed elevated levels

of systemic CD4?CD25? T cell numbers when compared

to that of corresponding T cell populations in short-term

survivors (OV1 and OV3). However, in long-term surviv-

ing patient OV2, such CD4 T cell populations were sub-

stantially elevated when compared to that of corresponding

pre-treatment levels and that of patient OV7 at similar

treatment times. In contrast, the latter showed elevated

levels of CD4?CD25- when compared to that of the for-

mer (Fig. 2b). Patients OV1 and OV3 showed no differ-

ences in either T cell subpopulation when compared to

either respective pre-treatment levels or each other

(Fig. 2a, b).
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Fig. 1 Adoptively transferred MUC1 peptide-stimulated CD4 effec-

tor T cells produce IFN-c and differential levels of IL-10. Human

MUC1 peptide-stimulated effector T cells were generated as

described in ‘‘Materials and methods’’. a Eight-day cultured cells

were harvested and labeled with FITC-anti-CD4, anti-CD8, and APC-

CD3 mAbs. Lymphocytes were distinguished by their forward light

scatter/side scatter profiles and gates set on CD3?CD4? or

CD3?CD8? cells and assessed by multiparameter flow cytometry.

In b, cells were labeled with FITC-anti-CD4, PE-anti-CD25, PE-

CY5-CD45RO, and either APC-anti-IFN-c or IL-10 mAbs. Gates

were set on CD4?CD25?CD45RO? cells, and T cells co-expressing

either IFN-c or IL-10 were assessed using multiparameter flow

cytometry. Data shown are from a representative experiment showing

the percentages of cells expressing specified cell markers and

CD4?CD25?CD45RO? T cells co-expressing IFN-c or IL-10. In c,

mean donor cell frequencies of infused CD4?CD25?CD45RO?

effector T cells for each patient undergoing 3 treatment cycles of

PBMC restimulation and re-infusion. In d and e, mean donor cell

frequencies of CD4?CD25?CD45RO? T cells co-expressing either

IFN-c or IL-10, respectively. Data are expressed as the mean cell

frequency ± SD of 3 independent cell generation and infusion

procedures for each patient. e Comparative analysis assessing

IL-10/IFN-c donor CD4 effector cell ratios. Data are expressed as

the mean IL-10/IFN-c donor cell ratios ± SD of 3 independent cell

generation and infusion procedures for each patient

Fig. 2 Autologous MUC1-stimulated CD4 effector cell therapy

enhances systemic CD4?CD25? and CD4?CD25- T cell levels

among treated long-term surviving patients. PBMC from patients

treated with 3 cycles of adoptive T cell transfer therapy were obtained

prior to therapy and at monthly intervals following each treatment

cycle. Cells were labeled with FITC-anti-CD4 and PE-anti-CD25

mAbs. Total lymphocyte populations were distinguished by their

forward light scatter/side scatter profiles and gates set on CD4?/

CD25? or CD4?/CD25- cells, and the percentages of these

populations were assessed by multiparameter flow cytometry. Data

shown are the absolute cell numbers of systemic CD4?/CD25?

(a) and CD4?/CD25- (b) and were calculated as the percentages of

positive staining cells 9 the total number of lymphocytes per ml of

PBL for each patient. Individual points represent pre-treatment cell

population levels for each patient tested
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Autologous MUC1 peptide-stimulated CD4 effector

cell transfer enhances systemic ‘‘memory/effector’’

CD4?CD25?FoxP3-CD45RO? T cell levels

among long-term surviving patients

Memory CD4?CD25? T cell responses were assessed using

flow cytometry and the following gating strategy (Fig. 3a).

As shown in Fig. 3, systemic CD4?CD25?FoxP3- T cell

population numbers co-expressing the memory marker

CD45RO were markedly higher among patients OV2 and

OV7 when compared to that of patients OV1 and OV3.

Moreover, long-term surviving patient OV2 (disease-free)

had greater cell numbers and frequencies of such cell pop-

ulations when compared to that of long-term surviving

patient OV7 manifesting disease (Fig. 3b, c). This suggested

that treatment with autologous MUC1-stimulated Th1 cells

differentially increased both the cell number and frequency

of systemic CD4?CD25?FoxP3- T cell subpopulations

co-expressing CD45RO (memory/Ag-experienced) among

long-term surviving patients when compared to that of cor-

responding short-term survivors.

Multiple treatment cycles with autologous CD4 effector

cell therapy ‘‘shift’’ endogenous ‘‘Inducible’’ TR1

and ‘‘Natural’’ FoxP3? TReg cell subpopulation levels

and proportions among long-term surviving patients

Since it has been reported that Inducible Tr1 and Natural

FoxP3? TReg subpopulations are functionally distinct T

cell subpopulations that may have a significant impact on

effector/memory T cell responses and disease progres-

sion/regression within cancer patients [18, 20, 24–28],

we next assessed their systemic levels among patients

receiving multiple cycles of Th1 cell transfer. Using

multiparameter flow cytometry, we enumerated at the

single cell level the presence of Tr1 (CD4?CD25-Fox-

P3-IL-10?) and Natural Effector (CD4?CD25?

CD45RO?FoxP3?) TRegs at monthly intervals following

each treatment cycle. As shown in Fig. 4a–d, treated

long-term surviving patients (OV2 and OV7) showed

elevated levels of both systemic Inducible TR1 and

Natural FoxP3? TReg cell subpopulations when com-

pared to that of corresponding short-term surviving

patients (OV1 and OV3). Both patients OV7 and OV2

showed elevated levels of TR1 cells when compared to

that of corresponding pre-treatment levels with the for-

mer having greater cell numbers and frequencies

(Figs. 4c, 5). However, in contrast to patient OV7,

patient OV2 showed a marked and progressive decrease

in both the cell number and frequency of Natural TRegs

co-expressing FoxP3 (Figs. 4a, 6). Consequently, this

resulted in both progressively lower and higher levels of

systemic Inducible TR1/Natural FoxP3? cell ratios with

different rates of occurrence that correlated with pro-

longed and disease-free survival, respectively (Fig. 4e).

Corresponding cell ratio levels for short-term survivors

remained nearly uniform with negligible differences at

each of the time points tested following treatment

Fig. 3 Treatment with autologous MUC1-stimulated CD4 effector

cell therapy enhances systemic memory/effector T cell subpopulation

levels in long-term surviving patients. PBMCs from patients were

obtained as described in Fig. 2. Cells were labeled with anti-CD4,

anti-CD25, anti-FoxP3, and anti-CD45RO mAbs and assessed by

multiparameter flow cytometry. The gating strategy for these

experiments are shown in a. Gates were set on CD4?CD25?FoxP3-

cells co-expressing CD45RO and the frequency of cells co-expressing

CD45RO for each patient were determined (b). In c, absolute cell

numbers were calculated as described in the ‘‘Materials and

methods’’. Individual points represent pre-treatment cell population

levels for each patient tested
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(Fig. 4f). Collectively, such a ‘‘shift’’ and/or difference

in the cell numbers, occurrence rates, and proportions of

either Inducible TR1 or Natural TReg subpopulations

may promote and influence, in part, more effective

antitumor responses among patients following autologous

T cell therapy.

Treatment with MUC1-stimulated CD4 effector cell

transfer enhances systemic IFN-c-secreting CD4 T cells

among long-term surviving patients

CD4?CD25?FoxP3- T cells were next assessed for IFN-c
production in peripheral blood of patients receiving

Fig. 4 Autologous MUC1-stimulated CD4 effector cell therapy

modulates systemic ‘‘Inducible’’ TR1 and ‘‘Natural’’ FoxP3? TReg

cell subpopulation levels and proportions in long-term surviving

patients. PBMCs from patients treated with 3 cycles of T cell transfer

were obtained prior to therapy and at monthly intervals following

each treatment cycle. Cells were restimulated with MUC1 peptide and

IL-2 for 72 h, harvested, and labeled with anti-CD4, anti-CD25, anti-

FoxP3, and either anti-IL-10 or CD45RO mAbs as described in

‘‘Materials and methods’’. Gates were set on either ‘‘Natural Ag-

experienced’’ TReg CD4?CD25?CD45RO?FoxP3? T cell subpopu-

lations (a, b) or ‘‘Inducible’’ TR1 CD4?CD25-FoxP3-IL-10? cells

(c, d) and assessed among either long-term or short-term surviving

patients by multiparameter flow cytometry. Absolute cell numbers

were calculated as described in the ‘‘Materials and methods’’.

Individual points represent pre-treatment cell population levels for

each patient tested. Systemic Inducible TR1/Natural Ag-experienced

T cell ratios were assessed among long-term (e) and short-term

(f) surviving patients following therapy. Numbers in parenthesis are

the rates of cell subpopulation occurrence over the treatment period

and were determined and quantified by the slope of the line for each

patient and suggests changes in cell population ratios per unit time
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multiple cycles of CD4 effector cell transfer by intracel-

lular cytokine staining and flow cytometry. As shown in

Fig. 7, long-term surviving patients showed elevated cell

numbers and frequencies of such cells when compared to

that of short-term survivors. Moreover, disease-free patient

OV2 had greater cell numbers and frequencies of such cells

when compared to that of patient OV7 experiencing pro-

longed survival and recurrent disease (Fig. 7a, b).

Therapeutic efficiency of CD4 effector cell transfer

correlates with the up-regulation of distinct TNF family

gene expression levels among endogenous

MUC1-stimulated CD4 T cells

Since effective CD4-mediated antitumor responses have

been associated with cell expression of various TNF

superfamily ligand/receptor complexes, we next assessed

Fig. 5 MUC1 peptide-stimulated CD4 effector cell transfer influ-

ences the levels of systemic ‘‘Inducible’’ Regulatory T cell subpop-

ulations co-expressing IL-10 in long-term surviving patients. PBMCs

from long-term surviving patients were obtained and restimulated as

described in Fig. 4. Gates were set on CD4?CD25-FoxP3- popula-

tions and cells co-expressing IL-10 were assessed by multiparameter

flow cytometry for patients OV2 (left panel) and OV7 (right panel).
Numbers represent the percentages of CD4?CD25-FoxP3- T cells

co-expressing IL-10. Numbers in parenthesis represent the frequency

of FoxP3- cells among CD4?CD25-populations for each patient at

specified time points

Fig. 6 Autologous MUC1 peptide-stimulated CD4 effector cell

therapy modulates systemic levels of ‘‘Ag-experienced’’ Natural

TReg cell subpopulations co-expressing FoxP3 in treated long-term

surviving patients. PBMCs from long-term surviving patients were

obtained and restimulated as described in Fig. 4. Cells from patients

OV2 (a) and OV7 (b) were harvested and labeled with anti-CD4, anti-

CD25, anti-CD45RO, and anti-FoxP3 mAbs. Gates were set on

CD4?CD25?CD45RO?, and cells co-expressing intracellular FoxP3

were assessed by multiparameter flow cytometry. Numbers represent

the percentages of CD4?CD25?CD45RO? T cells co-expressing

FoxP3

Cancer Immunol Immunother (2012) 61:839–854 847

123



gene expression levels of select TNF-related genes asso-

ciated with either CD4-mediated tumor cell killing, per-

sistence/survival, and co-stimulation [37]. Peripheral blood

mononuclear cells were obtained from patients prior to

(Day 0) and 1 month following final treatment (Day 120

post-treatment) and restimulated with MUC 1 peptide and

IL-2 for 72 h. Using SuperArray RT-PCR (Frederick, MD),

we show that all treated patients had elevated gene

expression levels of the TNF-related gene associated with

direct tumor cell killing, LT-a (Table 2). However, only

patient OV2 (disease-free survival) had comparatively

elevated levels of FasL, TRAIL, and TNF when compared

to that of other patients. In contrast, corresponding long-

term surviving patient OV7 (with recurrent disease) had

elevated survival/co-stimulatory-related gene expression

levels of OX-40L and CD27-L, whereas patient OV2

selectively showed elevated levels of LIGHT. Short-term

survivors (patients OV 1 and OV3) showed negligible

levels of corresponding genes associated with prolonged

survival and/or co-stimulation (Table 2). This suggested

that peptide-restimulated CD4? T cells from long-term

survivors are equipped for enhanced survival/persistence

and can potentially facilitate direct CD4-mediated killing

of tumor cells in vivo following treatment completion.

Discussion

Adoptive T cell therapy is a viable treatment for cancer

patients and optimally requires participation of CD4 T

cells. In this study, which marks one of a few clinical

studies investigating treatment by local intraperitoneal T

cell transfer, we assessed the therapeutic effects of adop-

tively transferred IFN-c- and IL-10-producing CD4 effec-

tor cells in patients with recurrent ovarian cancer. We show

that three monthly treatment cycles of autologous T cell

restimulation and local–regional intraperitoneal re-infusion

modulated both systemic memory and IFN-c-producing

CD4 effector T cell subpopulation levels that were asso-

ciated with enhanced patient survival. Moreover, these

patients also contained differentially elevated levels of

Inducible Tr1 and Natural TReg cell subset numbers with

progressively decreased and increased Inducible/Natural

TReg cell ratios that were further associated with

Fig. 7 Treatment with autologous MUC1-stimulated CD4 effector

cell transfer enhances systemic IFN-c-secreting CD4 T cells among

long-term surviving patients. PBMCs from long-term surviving

patients were obtained and restimulated as described in Fig. 4. Cells

were labeled with anti-CD4, anti-CD25, anti-FoxP3, and anti-IFN-c
mAbs. Gates were set on CD4?CD25?FoxP3- populations, and cells

co-expressing IFN-c were assessed by multiparameter flow cytometry

among long-term surviving patients OV2 (a) and OV7 (b). Numbers
represent the percentages of CD4?CD25?FoxP3- T cells co-express-

ing IFN-c. Numbers in parenthesis represent the frequency of FoxP3-

cells among CD4?CD25? populations for each patient at specified

time points. In c, absolute cell numbers were calculated as described

in the ‘‘Materials and methods’’. Individual points represent pre-

treatment cell population levels
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prolonged and disease-free survival, respectively. Lastly,

we observed that adoptively transferred Th1-like cells

derived from long-term survivors consistently produced

significantly elevated levels of IL-10 when compared to

that of corresponding cell preparations from short-term

survivors. Such disproportionate production levels in anti-

gen-experienced CD4 T cell-derived IL-10 and IFN-c were

associated with enhanced patient antitumor immune

responses and clinical responses and may suggest a

potentially important determinant in the balance between

effective and ineffective immunotherapeutics.

The immunoenhancing and therapeutic roles of IFN-c in

facilitating and enhancing the immune response in cancer

patients has been well documented. Generally, while

playing a dominant role as a feedback regulator to inhibit

active immune responses and establish and/or maintain

immune response homeostasis [5–11, 38–41], differentially

localized levels of IL-10 may also enhance select immune

functions [6, 38, 39, 41]. Several clinical studies on

patients with various autoimmune disorders have shown

that administration of IL-10 appeared to be immunosup-

pressive, whereas elevated doses induced an increase in

patient IFN-c production and a marked elevation in their

immune stimulatory capacities [38, 42–47]. Similarly, in

tumor therapy studies, it has been shown that IL-10 has

stimulatory effects on both the innate and adaptive immune

responses that also include the cytotoxic and proliferative

capacity of Ag-specific CD8 and NK effector T cells

[38, 46–51]. This suggested that the clinical experience with

human IL-10 can be either anti-inflammatory or immuno-

stimulatory and may further appear to be dependent on

cytokine dose. In certain viral infections, where T cells

undergo oligoclonal expansion of effector T cells that may

result in excessive and/or functionally reduced differences in

effective memory T cell generation and stability, IL-10 has

been shown to be a potent inhibitor of such ‘‘memory T cell

inflation’’ [52]. This limit on memory T cell accumulation at

various stages of the immune response may be actually

efficacious to clinical outcomes among cancer patients by

enhancing the quality and quantity of memory/effector T cell

populations at sites of tumor progression or dormancy [53,

54]. Conceivably, IL-10 derived from elevated levels of Th1

cells following T cell transfer may have immunoen-

hancing and/or immunostimulatory effects that augment

Table 2 TNF super family gene expression levels associated with enhanced T cell survival and killing potentials among ovarian cancer patients

following treatment with three cycles of adoptive T cell transfer

Function Gene Treatment time Patient OV2 Patient OV7 Patient OV1 Patient OV3

Anti-apoptosis (survival) OX-40-L Pre-treatment 1.48 1.42 1.46 1.70

Post-treatment 0.41 10.70 1.62 1.31

CD30-L Pre-treatment 0.14 0.20 0.12 0.15

Post-treatment 0.63 0.37 0.10 0.17

CD27-L Pre-treatment 2.84 0.88 0.93 0.40

Post-treatment 1.25 13.74 1.28 1.21

LIGHT Pre-treatment 0.27 0.62 0.32 0.95

Post-treatment 20.88 0.75 0.23 0.14

CD40-L Pre-treatment 0.01 1.30 1.06 0.70

Post-treatment 2.01 1.11 1.33 1.01

Pro-apoptosis (killing) Fas-L Pre-Treatment 0.98 1.08 0.39 0.73

Post-treatment 3.77 1.16 1.46 2.08

TRAIL Pre-treatment 0.26 0.63 1.39 0.54

Post-treatment 3.28 0.38 0.30 0.54

TNF Pre-treatment 1.96 0.86 0.74 0.80

Post-treatment 3.49 1.53 1.04 1.67

LT-a Pre-treatment 6.81 5.39 6.66 5.73

Post-treatment 3.24 10.56 7.07 5.93

PBMC were obtained from patients prior to (Day 0) and 1 month following final treatment (Day 120 post-treatment) and stimulated with MUC1

peptide and IL-2 for 72 h. Cells were harvested, and total RNA was isolated and first-strand cDNA were prepared as described in ‘‘Materials and

methods’’. Template cDNA was characterized in triplicate using the human Common Cytokine or Inflammatory Cytokine PCR Arrays with the

RT SYBR Green/fluorescein PCR master mix on the Bio-Rad iCycler. The raw Ct (cycle threshold) values were calculated by the instrument and

converted into the Avg ACt and/or Relative Gene Expression Level (DCt = Ct (gene of interest)—Avg Ct (house keeping genes) by the AACt

method. Comparison of fold changes in gene expression between either peptide-stimulated pre (Day 0)- and post (Day 120)-treated patient

PBMC to that of pre-treated non-stimulated patient PBMC (Day 0) were calculated using the Ct method in the PCR Array Data Analysis

template. Shaded regions indicate comparative differences in gene fold-expression levels (i.e., greater than 3-fold up-regulation) among cor-

responding genes in both long- and short-term surviving patients
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antitumor immunity and promote patient survival. Fur-

thermore, we speculate that lower levels of T cell-

derived IL-10, as seen in short-term surviving patients,

may drive immunosuppressive functions while potentially

higher and sustained levels as detected in long-term

survivors may facilitate and/or generate IFN-c-induced

immune activation events that elicit clinically relevant

results.

It has become clear that TR1 cells are generated in an

Ag-specific fashion and can therefore be defined as

‘‘inducible’’ TRegs, whereas FoxP3? TRegs are primarily

‘‘natural’’ occurring cells that are selected in the thymus,

are specific for self Ags, and probably represent a separate

T cell lineage [18, 20, 23–25, 27, 28]. Moreover, the time

at which these two distinct TReg subsets play a role in the

modulation of the antitumor response may also be differ-

ent. Natural FoxP3? TRegs are recruited and activated

early during an immune response to control its magnitude,

whereas adaptive TR1 cells, which are induced upon

repeated Ag stimulation, may act later to dampen the

immune response and to restore and maintain tolerance or

homeostasis. Consequently, the relative levels and ratios of

TR1 verses FoxP3? Natural TReg cell subpopulations may

be an important determinant in the balance between

effective and ineffective antitumor responses. In our study,

we observed that TR1/Natural TReg cell ratios over the

three treatment periods were inversed among the prolonged

survivor (patient OV7) and disease-free (patient OV2)

patient. In the former, such cell ratios declined with

treatment time whereas in the latter, such corresponding

ratios progressively increased. This further correlated with

our observations that patient OV2 (disease-free) had

comparatively greater levels of both endogenous IFN-c-

producing CD4 effector and CD4 memory T cell popula-

tions when compared to patient OV7 (prolonged survival

with recurrent disease). Collectively, this may suggest that

treatment-induced modulation and/or elevation of select

TReg cell subset proportions, with their distinct functional

kinetics and phenotype, can influence endogenous Th1 and/

or memory cell generation and maturation that may further

contribute to tumor-free patient responses and enhanced

cancer patient survival.

Aside from their diverse biological properties and

mechanisms of actions, it has also been shown that TReg

cell subsets also respond differently to various cytokines

[18, 20, 23–25, 27, 28]. Recent studies have shown that

IFN-c can further modulate and facilitate Natural TReg cell

subpopulation function and phenotype by induction, con-

version, and maintenance of FoxP3 expression in such cells

[55–58]. Moreover, it has been suggested that there is an

inherent plasticity in the functional repertoire of T cells

where under select conditions, memory T cell populations

can convert into Natural FoxP3 TRegs via IFN-c-

dependent mechanisms, which can further modulate

Ag-specific immune responses and the clinical course of

disease progression [59, 60]. Alternatively, others have shown

that IL-10 can amplify one regulatory T cell subpopulation

while actively suppressing another [25, 39–42, 47]. For

example, it has been shown that TR1 cells are induced

under conditions of Ag stimulation via an IL-10-dependent

process in vivo [7, 25]. Aside from its potential effects on

select TReg cell subpopulations, it has been suggested that

IL-10 possesses an immunosuppressive role against Th1-

mediated immune responses that may aid in avoiding

uncontrolled chronic inflammation and potentially delete-

rious immunopathology at sites of tumor growth and pro-

gression [5–9, 27, 41, 47]. It is thus conceivable that

heightened or variable levels of either IL-10 or IFN-c
derived from adoptively transferred Th1 cells and/or

ongoing T cell-induced antitumor responses may have

opposing regulatory effects on different effector/memory

or TReg cell subpopulations that subsequently affect the

balance between effective and ineffective antitumor

responses in either long-term verses short-term patient

survival.

Effective patient responses to CD4-mediated therapies

may be dependent, in part, on their capacity to directly

mediate tumor cell killing via TNF superfamily-mediated

mechanisms [3, 4, 10, 11, 37]. Our study showed that all

treated patients had elevated gene expression levels of the

TNF-related gene associated with direct tumor cell killing,

LT-a. However, only patient OV2 (disease-free survival)

had comparatively elevated levels of FasL, TRAIL, and

TNF when compared to that of other patients. This sug-

gested that following multiple treatment cycles, the dis-

ease-free surviving patient had an enhanced systemic

capacity to mediate direct tumor cell lysis in vivo. Another

observation with therapeutic relevance was the presence of

select co-stimulatory TNF superfamily ligand/receptor

genes associated with T cell co-stimulation, expansion, and

persistence [37]. Again, differences in such gene expres-

sion levels were noted among MUC1 peptide-restimulated

T cells from patients experiencing prolonged survival.

Patient OV7, with recurrent disease, had elevated gene

expression levels of OX-40L and CD27-L (CD70) ligands.

Interestingly, both human CD4 and CD8 T cells can

express both of these TNF ligands and their receptors,

which suggests that T cell–T cell interactions in this patient

may exist and potentially influence the development of

effector T cell populations [18, 37, 61–63]. Alternatively, it

has been shown that both OX-40 and CD27 receptors are

also expressed on both mouse and human natural and

induced TReg cells [37]. Thus, although such TNF family

member receptors have been linked to prolonged TCR-

induced T cell survival and persistence among conven-

tional effector T cells, it has been suggested that OX-40L
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interaction with OX-40-expressing TReg cell subsets can

selectively destabilize and/or attenuate TReg-mediated

suppression and subsequent enhancement of effector T cell

function and their immune responses [18, 64, 65]. In con-

trast, disease-free patient OV2 showed elevated levels of

LIGHT following MUC1 peptide T cell restimulation.

LIGHT expression has been shown to be essential for

memory T helper cell-mediated activation of DCs and

further suggested to be involved in the maintenance or

reactivation of secondary Th1 responses [37, 66, 67]. We

speculate that the presence of such TNF superfamily

ligand/receptor signaling among various T cell subsets

could influence the development of memory/effector and

TReg cell subpopulations within the cellular repertoires

from responding verses non-responding cancer patients

receiving T cell immunotherapy [68].

The role of regulatory T cells in cancer is disputed

[69, 70]. In both ovarian and breast cancer patients,

either systemic or local FoxP3 expression is associated

with a poor prognosis and overall survival [30, 31, 71–73].

Curiel and colleagues reported that the presence of high

numbers of CD4?FoxP3? T cells in malignant ascites of

ovarian carcinoma correlated with tumor staging and

reduced survival [29]. In colorectal cancer, several

investigators did not find any differences between

patients with high or low TReg cell infiltration [74],

whereas others have found an improved survival asso-

ciated with a high density of local and systemic FoxP3?

cells suggesting no major immunosuppressive role of

such cells in colorectal cancer [75]. Moreover, it has

been suggested that the presence and levels of various

TReg cell subsets in cancer patients may be beneficial to

survival [69, 76, 77]. In either instance, it has been

suggested that induction of lymphopenia before adoptive

T cell transfer improves homeostatic proliferation and

persistence of transferred cells by eliminating, in part,

CD4?CD25? TRegs [4, 78, 79]. Our studies among

ovarian cancer patients treated with multiple cycles of

adoptively transferred autologous MUC1-specific Th1

cells, enhanced patient antitumor responses and survival

that appeared to correlate with differential levels of

distinct CD4? TReg subpopulations. We suggest that

treatment efficacy and heightened memory/Th1 effector

cell phenotype did not appear to be dependent, in part,

on particular TReg cell numbers but upon ratios of

Inducible and Natural TReg subpopulations. Moreover,

our studies using intraperitoneal local–regional treatment

offer insight into Th1-mediated mechanisms that enhance

memory T cell responses in ovarian cancer patients and

further suggest that TReg modulation and not depletion

may heighten antitumor responses following CD4 T cell-

based immunotherapy.

Lastly, we have shown that adoptive transfer with CD4

effector T cells, producing elevated levels of both IFN-c
and IL-10, modulated select T cell-mediated immune

responses that were associated with enhanced patient sur-

vival. However, it is worth noting that all patients in this

study received standard cancer treatments that included

surgery and chemotherapy both prior to and following

adoptive T cell transfer. The combination of immunother-

apy and conventional cancer therapies has been shown to

increase the therapeutic index within patients by reducing

the tumor load and enhancing the possibility for developing

effective adoptively transferred and/or endogenously gen-

erated effector cell responses to residual disease. The dis-

ease-free survivor, demonstrating long-term remission

(patient OV2), showed relatively normal levels of serum

CA125 at the initiation of immunotherapy that suggested a

lower tumor burden when compared to that of other

patients. This corroborates the findings by others that

adoptive T cell immunotherapy works best when tumor

burden is minimal and can be further enhanced, in part, by

concurrently treating patients with conventional modalities.

Thus, such a combinatorial approach may have contrib-

uted, in part, to a better T effector-to-tumor cell ratio under

minimal disease burden and/or reduced tumor-associated

immune suppression in this patient. Alternatively, in the

subject with prolonged survival and recurrent disease

(patient OV7), it may be speculated that immunotherapy

initially controlled her microscopic and/or residual disease;

however, ineffective responses to standard chemotherapy

with time may have unleashed tumor growth that subse-

quently reduced her immune-mediated therapeutic poten-

tials that resulted in progressive disease and death. In either

instance, this suggests that the impact of standard treatment

modalities should not be disregarded and experimental

CD4-mediated immune therapies should probably be

administered in conjunction with, rather than, in place of

such conventional treatments.
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