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Abstract
Emotional arousal influences the consolidation of long-term memory. This review discusses
experimental approaches and relevant findings that provide the foundation for current
understanding of coordinated interactions between arousal activated peripheral hormones and the
brain processes that modulate memory formation. Rewarding or aversive experiences release the
stress hormones epinephrine (adrenalin) and glucocorticoids from the adrenal glands into the
bloodstream. The effect of these hormones on memory consolidation depends upon binding of
norepinephrine to beta-adrenergic receptors in the basolateral complex of the amygdala (BLA).
Much evidence indicates that the stress hormones influence release of norepinephrine in the BLA
through peripheral actions on the vagus nerve which stimulates, through polysynaptic connections,
cells of the locus coeruleus to release norepinephrine. The BLA influences memory storage by
actions on synapses, distributed throughout the brain, that are engaged in sensory and cognitive
processing at the time of amygdala activation. The implications of the activation of these stress-
activated memory processes are discussed in relation to stress-related memory disorders.
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1. INTRODUCTION
“The usefulness of all the passions consists in their strengthening and prolonging in
the soul thoughts which are good for it to conserve…”

Descartes, The Passions of the Soul (1647)

The profound effect of emotion on memory storage was recognized long before the days of
Descartes. In fact, it was said that throwing a child into a river after witnessing an important

© 2011 Elsevier Ltd. All rights reserved

christa.mcintyre@utdallas.edu. Phone: 1* (949) 824-5401; Fax: 1* (949) 824-2952..

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of
the resulting proof before it is published in its final citable form. Please note that during the production process errors may be
discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

NIH Public Access
Author Manuscript
Neurosci Biobehav Rev. Author manuscript; available in PMC 2013 August 01.

Published in final edited form as:
Neurosci Biobehav Rev. 2012 August ; 36(7): 1750–1762. doi:10.1016/j.neubiorev.2011.11.001.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



event, such as a wedding or granting of land to a township, was a medieval method for
encouraging a lasting memory of the occasion (McGaugh, 2003). Considerable attention has
been devoted to understanding the impact of emotional arousal on brain systems that store
new experiences into long-term memory. Emotional arousal serves an important role in
memory processing by first initiating attentional (Revelle and Loftus, 1992; Walker, 1958)
and metabolic (Ekman et al., 1983; Witvliet and Vrana, 1995) resources that permit
organisms to adapt rapidly to environmental challenges. Physiological changes recruited to
mobilize resources for immediate responses also serve a second crucial function. They
modulate brain processes to ensure that significant experiences are stored effectively into
long-term memory. Thus, emotional arousal serves an important adaptive role in initiating
rapid responses to momentary fluctuations in environmental conditions, and in regulating
neural representations of these changes. This review discusses experimental approaches and
relevant findings that provide the foundation for current understanding of coordinated
interactions between arousal activated peripheral hormones and brain processes that
modulate memory formation.

2. EFFECTS OF AROUSAL ON PERIPHERAL HORMONES & CENTRAL
NOREPINEPHRINE

Emotional arousal produced by aversive stressors or highly rewarding events results in the
release of epinephrine (adrenalin) and glucocorticoids (cortisol; corticosterone in rats) from
the adrenal glands (Roozendaal et al., 2009a). Drugs and other treatments that increase
concentrations of epinephrine or glucocorticoids during, or following, learning enhance
memory in rats and mice (Gold and van Buskirk, 1978; Introini-Collison et al., 1992;
Jurado-Berbel et al., 2010; King and Williams, 2009; Liang et al., 1995; Roozendaal et al.,
2006; Williams and McGaugh, 1993; Williams et al., 2000; Williams et al., 1998) as well as
human subjects (Cahill and Alkire, 2003; Kuhlmann and Wolf, 2006; Moor et al., 2005;
Zoladz et al., 2011). These peripherally acting hormones must, of course, interact with the
central nervous system to modulate memory formation. Extensive evidence indicates that
they influence memory consolidation by stimulating the release of norepinephrine in the
amygdala. Experimental manipulations that disrupt amygdala functioning block the memory
enhancement induced by systemic administration of epinephrine or corticosterone. Lesions
of the amygdala (Liang et al., 1990; Roozendaal et al., 1996) or the major input and/or
output pathways from the amygdala (Liang and McGaugh, 1983; Roozendaal and McGaugh,
1996) block epinephrine-induced memory enhancement. Further, drugs that block receptors
that bind norepinephrine in the amygdala (Liang et al., 1986; Quirarte et al., 1997), or
deplete norepinephrine concentrations (Liang et al., 1995), block the memory enhancing
actions of epinephrine and corticosterone. Direct infusions of norepinephrine or beta-
noradrenergic agonists into the basolateral complex of the amygdala (BLA) after training
improve memory for many kinds of tasks (Ferry and McGaugh, 1999; Ferry et al., 1999;
Hatfield and McGaugh, 1999; Huff et al., 2006; LaLumiere et al., 2003). Moreover, the
memory deficits observed following adrenalectomy, which severely depletes peripheral
concentrations of epinephrine and glucocorticoids (Borrell et al., 1983; Liang et al., 1986),
are reversed by direct infusion of norepinephrine into the amygdala (Liang et al., 1986).

Training conditions that evoke emotional arousal (e.g. footshock stimulation), or direct
injections of epinephrine or corticosterone in doses that facilitate memory, significantly
increase norepinephrine release in the amygdala (Galvez et al., 1996; McReynolds et al.,
2010; Williams et al., 2000; Williams et al., 1998). When rats were trained to avoid a
footshock in a single trial inhibitory avoidance task, extracellular concentrations of
norepinephrine in the amygdala increased to 300% above basal levels and norepinephrine
levels were highly correlated with memory retention performance tested 24 hours later.
Unexpectedly, norepinephrine levels remained elevated for two hours after inhibitory
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avoidance training (McIntyre et al., 2002). Studies using in vivo electrophysiological
recordings also demonstrated that delivery of a footshock during inhibitory avoidance
training significantly increased the firing rate of lateral/basolateral amygdala neurons in cats
for two hours following training (Pelletier et al., 2005). These findings fit well with evidence
that memory-modulating drugs can be effective when infused into the amygdala within
hours after training (McGaugh and Roozendaal, 2009).

2.1 Arousal enhances human memory
Experiments using procedures modified from those first developed by Heuer and Reisberg
(1990) have demonstrated that arousing stimuli are also well remembered by human
subjects. The procedure consisted of presenting a series of pictures accompanying one of
two stories. Identical pictures were presented to all participants, but the narrative describing
visual scenes in the story was emotionally neutral for control subjects and emotionally
arousing for the experimental group. The subjects were then given a surprise memory test
several weeks later. Subjects in the experimental group recalled a significantly greater
number of the slides relative to subjects that heard only the emotionally neutral story (Cahill
et al., 1995).

In subsequent studies, control and experimental groups heard the same emotionally neutral
narrative during the first and last phases of a three-part story. The two groups differed only
in the middle phase of the study where an emotionally arousing narrative was presented to
the experimental group. A common finding of these studies is that heart rate, blood pressure
and other sympathetic aspects of arousal, such as the galvanic skin response, are
significantly elevated following presentation of emotionally arousing information
(Abercrombie et al., 2008; Anderson et al., 2006; Cahill and Alkire, 2003; Cahill et al.,
1994; Critchley et al., 2002; Moor et al., 2005; Nielson et al., 2005). More importantly, the
magnitude of indices of arousal reliably predicts the percentage of emotional, but not
neutral, components of the story that are recalled during retention testing. Elevations in
physiological arousal are significant predictors of later memory as emotion-induced
improvements in memory are observed when the delay between initial learning and
subsequent tests for retention with humans is as short as 30 min or even as long as one and a
half months (Anderson et al., 2006; Cahill et al., 1994; Nielson et al., 2005; Quevedo et al.,
2003; Steidl et al., 2011).

2.2 A role for epinephrine in human memory consolidation
Human studies combining behavioral and physiological measures have been instrumental in
identifying some of the processes underlying memory enhancement induced by emotional
arousal. The findings of such studies fit well with those obtained in animal experiments. For
example, animal studies provided the initial evidence that exposure to emotionally arousing
learning conditions elicits secretion of the adrenal hormone epinephrine (Mabry et al., 1995;
McCarty and Gold, 1981) that, in turn, produces a host of sympathetic responses (Vincent et
al., 1986; Vincent et al., 1983) by binding to beta-adrenergic receptors. Human studies
reveal that exposure to pictures that evoke emotional arousal produce significant elevations
in epinephrine secretion that leads to increased heart rate (Gerra et al., 1996). Epinephrine
involvement in mediating the consequences of emotional arousal on memory is also
indicated by findings of human studies using experimental procedures that increase the
release of this adrenal hormone. For instance, many posttraining procedures that increase
epinephrine release, including increases in muscle tension (Nielson and Jensen, 1994),
application of cold press stressors, or direct administration of epinephrine (Cahill and
Alkire, 2003; Moor et al., 2005) produce significant improvements in memory. Further, the
memory enhancement produced by these treatments is blocked by drugs (such as
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propranolol) that prevent epinephrine from binding to beta-adrenergic receptors (Cahill et
al., 1994; Hurlemann et al., 2005; van Stegeren, 2008; van Stegeren et al., 1998).

There is also evidence that emotional arousal induces norepinephrine release in human
subjects (Segal and Cahill, 2009>). As in vivo assessment of norepinephrine activity in the
human brain is not possible, salivary alpha-amylase (sAA) is used as a biological marker of
endogenous norepinephrine activity. Levels of secretion of sAA correlate significantly with
levels of norepinephrine measured in plasma (Chatterton et al., 1996). Segal and Cahill
(2009) reported that sAA levels assessed shortly after presentation of emotionally arousing
material correlated significantly (+0.72) with memory of material assessed on a surprise
retention test one week later.

There is extensive evidence that in human subjects, as well as rats, emotional arousal effects
on memory involve activation of the amygdala. Several studies using positron emission
topography (PET) or functional magnetic imaging (fMRI) report that neuronal activity
assessed in the amygdala at the time of encoding emotionally arousing stimuli correlates
significantly with the strength of subsequent memory (Cahill et al., 1996; Canli et al., 2000;
Hamann et al., 1999). The involvement of the amygdala in mediating these effects is further
indicated by the evidence that a human subject with amygdala damage resulting from
Urbach-Wiethe did not display enhanced recall of emotional information (Cahill et al., 1995;
Markowitsch et al., 1994). Studies using functional brain imaging provide additional
evidence concerning the involvement of the amygdala and norepinephrine release in
emotionally enhanced memory. Studies by van Stegeren and colleagues (2006; 2005) using
functional brain imaging while participants view emotionally arousing slides reveal
concomitant increases in amygdala activity and sAA levels. These effects were significantly
reduced by administration of the beta-adrenergic receptor antagonist propranolol (van
Stegeren et al., 2006; van Stegeren et al., 2005). It is interesting to note that blocking beta-
adrenergic receptors only suppresses activity in response to emotionally arousing, as
opposed to neutral, visual slides (van Stegeren et al., 2005).

3. PATHWAYS FOR CONVEYING EFFECTS OF AROUSAL HORMONES ON
THE BRAIN

Findings indicating that amygdala norepinephrine levels are sensitive to epinephrine
secretion provide strong evidence suggesting that emotion-induced secretion of epinephrine
facilitates memory by direct actions on the amygdala. However, this implication is
complicated by evidence that, even in highly stressful situations, epinephrine does not pass
from the peripheral circulation into the brain (Arai et al., 1981; Pluta et al., 1994). As such,
an understanding of how emotional arousal affects memory will not be complete without
identifying the neural mechanism(s) that permit this hormone to regulate norepinephrine in
the brain.

3.1 Role of the vagus nerve
Despite the limited access of epinephrine to the central circulation, exogenous peripheral
administration of this hormone modulates several functions in the brain that regulate arousal,
cerebral auditory evoked responses, attention, cortical information processing and memory
storage (Berntson et al., 2003; Dahlgren et al., 1980; Elwood et al., 1986; Gold and van
Buskirk, 1978; Introini-Collison et al., 1992; Williams et al., 1998). Reports from
anatomical, electrophysiological and pharmacological experiments suggest that
epinephrine's actions on memory and in potentiating norepinephrine output in the amygdala
may be initiated by the activation of peripheral vagal fibers that project to the brain. By
tracing the course of human vagal fibers from an area below the diaphragm to the adrenals,
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Kollmann (1860) provided the first sign of a possible relationship between the adrenal
gland, which releases epinephrine, and the vagus nerve. Using more sophisticated
anatomical procedures, Teitelbaum (1933) and Coupland, Parker, Kesse, and Mohamed
(1989) confirmed the finding that dorsal and ventral branches of the vagus nerve innervate
the adrenal glands. Other studies show that electrical stimulation of the adrenal nerve evokes
action potentials in the vagus nerve (Niijima, 1992). The possibility that ascending vagal
fibers may have central stimulant effects mediated primarily by peripheral adrenergic
mechanisms was originally postulated by Izquierdo et al. over 50 years ago (Izquierdo et al.,
1959, 1960). As ascending fibers of the vagus contain adrenergic receptors in both rats
(Schreurs et al., 1986) and humans (Lawrence et al., 1995), activated vagal fibers can
convey input regarding changes in hormonal release to the brain.

An electrophysiological study provided more direct evidence that epinephrine's actions on
the brain may be mediated by activating ascending fibers of the vagus nerve (Miyashita and
Williams, 2006). This study assessed vagal activity with physiological recordings of the
nerve in anesthetized rats given saline, epinephrine, the peripherally acting beta-adrenergic
antagonist sotalol, or sotalol followed by epinephrine. Epinephrine produced a significant
increase in vagal nerve firing relative to controls, and blockade of peripheral beta-adrenergic
receptors with sotalol completely abolished the capacity for epinephrine to influence neural
discharge along the vagus. These findings demonstrate that peripheral fibers of the vagus
nerve are responsive to fluctuations in circulating levels of epinephrine, and also show that
the excitatory actions of epinephrine on vagal neural discharge are mediated through
influences on peripheral beta-adrenergic receptors.

3.2 Activation of the locus coeruleus
Seymour Kety suggested, four decades ago, that emotionally arousing experiences would
activate the locus coeruleus (LC), producing release of norepinephrine in a variety of
cortical and subcortical brain regions, to enhance synaptic plasticity and memory (1970).
Supporting evidence has mounted since Kety's insightful prediction. Information regarding
heightened activity in visceral sensory organs is transmitted by ascending vagal fibers to the
nucleus of the solitary tract (NTS) located in the brainstem (Kalia and Sullivan, 1982; Sumal
et al., 1983). In response to this activation, NTS neurons influence central noradrenergic
activity through direct synapses on neurons in the LC (Van Bockstaele et al., 1999).

It is well established that the majority of noradrenergic terminals innervating the BLA
originate in the LC (Asan, 1998; Fallon et al., 1978; Loughlin et al., 1986; Ricardo and Koh,
1978). Studies using in vivo microdialysis in behaving animals demonstrate that reversible
inactivation of NTS neurons suppresses epinephrine-induced increases in amygdala
concentrations (Williams et al., 1998). Other findings show that pharmacological blockade
of the NTS also attenuates the improvement in memory produced by peripheral injection of
epinephrine (Williams and McGaugh, 1993). Combined with evidence that intra-amygdala
infusion of a beta-noradrenergic antagonist blocks memory enhancement produced by
systemic administration of epinephrine (Liang et al., 1986), these studies imply that
brainstem neurons in the NTS influence memory consolidation by regulating norepinephrine
release in the amygdala. In a simplistic scheme, these findings indicate that a neural circuit
involved in the physiological components of emotional arousal, including the vagus nerve,
NTS, and LC, regulates norepinephrine release in the amygdala to modulate memory storage
(Figure 1). Although the LC receives a diverse number of inputs from the brainstem NTS,
parabrachial nuclei, paragigantocellular nucleus, prefrontal cortex, hypothalamus, insular
cortex, and central amygdala, findings characterizing how these connections regulate
norepinephrine release from LC neurons are scant (Cedarbaum and Aghajanian, 1978; Jodo
and Aston-Jones, 1997; Lee et al., 2005; Luppi et al., 2006).
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Clues to understanding how LC activity and the central release of norepinephrine are
influenced by arousal are revealed by studies using a number of different approaches. For
example, peripheral administration of epinephrine, in doses that affect memory, increases
the firing rate of neurons in the LC (Holdefer and Jensen, 1987) and increases the number of
NTS or LC neurons that express c-fos, an immediate early gene that serves as a marker for
neuronal activation (Racotta et al., 1995). Afferent vagal fibers may mediate spontaneous
activity in the LC, which is depressed when the vagus nerve is severed at the cervical level
with vagotomy (Svensson and Thorén, 1979). Moreover, electrical stimulation of ascending
vagal fibers produce significant burst firing in LC neurons (Dorr and Debonnel, 2006;
Groves et al., 2005). Importantly, electrical stimulation of the vagus nerve immediately after
training enhances long-term memory for inhibitory avoidance in rats (Clark et al., 1998),
and verbal recognition in humans (Clark et al., 1999). Excitatory changes induced in LC
neurons by vagal activation may explain this memory enhancement. Experiments using in
vivo microdialysis to measure extracellular norepinephrine in the BLA of awake, behaving
animals provide more direct evidence of functional interactions between the vagus nerve,
LC and amygdala norepinephrine activity. For example, stimulation of the vagus nerve, at
an intensity identical to that which improves memory in rodents, produces a long-lasting
increase in norepinephrine output in the amygdala that persists for up to 180 min post-
stimulation (Hassert et al., 2004). Since vagal input to the brain is limited almost exclusively
to the NTS, these findings provide evidence that neuronal firing in the amygdala is
regulated, at least in part, by input received from projection neurons originating in the NTS
that influence LC functioning.

3.3 The NTS integrates effects of peripheral arousal on the brain
The amino acid glutamate is the primary neurotransmitter mediating synaptic
communication between vagal afferents and neurons they synapse on in the NTS. Direct
stimulation of ascending vagal fibers causes a significant increase in glutamate
concentrations measured in the NTS (Allchin et al., 1994; Granata and Reis, 1983). A recent
series of experiments demonstrated the importance of glutamate activation of NTS neurons
in modulating memory in rats. Exposure to novel contexts produce heightened states of
arousal and activation of the brain that facilitate memory storage (Okuda et al., 2004).
Blocking glutamate receptors in the NTS with the AMPA receptor antagonist CNQX
attenuates novelty induced enhancement in fear conditioning that occurs by conditioning
animals in an unfamiliar context (King and Williams, 2009). AMPA and NMDA receptors
are distributed throughout the NTS (de Paula et al., 2007; Vardhan et al., 1993a, b) and this
study selectively targeted AMPA receptors with a dose of CNQX previously shown to
suppress NTS neuronal firing in response to stimulation of the vagus nerve (Granata and
Reis, 1983; Andresen and Yang, 1990).

As blocking beta-adrenergic receptors with sotalol produced a reduction in fear retention
similar to that produced by CNQX infusions into the NTS, a subsequent experiment
examined whether memory enhancement resulting from novelty-induced arousal may
involve peripheral hormonal secretion. This study found that increasing peripheral
sympathetic output with epinephrine injections in habituated subjects enhanced the marginal
levels of fear conditioning retention exhibited by subjects that were habituated to the
conditioning chamber. Moreover, and importantly, blocking NTS glutamatergic receptors
with CNQX attenuated the enhancement in memory produced by epinephrine injections
(King and Williams, 2009). This study extends our understanding of the consequences of
arousal on cognitive processes by indicating that postsynaptic AMPA receptors in the NTS
play an important role in transmitting the physiological changes from novelty-induced
arousal on brain systems that encode memory. Other studies provide additional evidence that
increased glutamate transmission in the NTS enhances memory for emotionally arousing
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experiences. For instance, posttraining microinjections of glutamate into the NTS, where its
neurons synapse with vagal afferents, improves memory for inhibitory avoidance (Kerfoot et
al., 2008; Kerfoot and Williams, 2011; Miyashita and Williams, 2002), and also produces
significant and long-lasting increases in norepinephrine concentrations sampled from the
amygdala (Miyashita and Williams, 2002).

4. THE AMYGDALA MODULATES MEMORY CONSOLIDATION BY
INTERACTING WITH OTHER BRAIN REGIONS

As discussed above, extensive evidence indicates that activation of the amygdala by stress
hormones modulates the consolidation of emotionally arousing memories. It does not
follow, however, that memory should be impaired by the loss of the amygdala, or that the
amygdala is the site of storage of emotionally arousing memories. Inactivation of the
amygdala prior to training or retention does not impair performance on a spatial water maze
task, or a spatial win-shift or win-stay, stimulus-response task in rats (McDonald and White,
1993; McDonald et al., 2010). The evidence that intra-amygdala infusions of d-
amphetamine and other drugs can affect performance on tasks such as these (Packard et al.,
1994; Packard and Gabriele, 2009) suggests that the amygdala is a modulatory structure;
although it can influence memory, it is not necessary for maintaining or expressing memory.
The evidence that memory for the aversive inhibitory avoidance task is not lost when the
amygdala is inactivated or lesioned one day to one month after training (Bevilaqua et al.,
1997; Izquierdo et al., 1997; Parent et al., 1995; Parent et al., 1994), indicates that the
amygdala is not the final storage site for emotionally arousing memories.

Packard, Cahill, and McGaugh (1994) found compelling evidence that the amygdala
modulates memory storage in efferent brain regions in rats. Posttraining infusions of d-
amphetamine administered directly into the dorsal hippocampus enhanced long-term
memory for a spatial version of a water maze task and infusions into the caudate nucleus
enhanced memory for a stimulus-response version of the water maze task. Posttraining
infusions of d-amphetamine into the amygdala enhanced long-term memory for both
versions of the water maze task. Importantly, inactivation of the amygdala prior to retention
testing did not block the memory enhancement induced by posttraining intra-amygdala d-
amphetamine infusions (Table 1). These findings support the view that the amygdala is
activated during times of arousal to facilitate the storage of information but it is not the site
of memory storage (McGaugh, 2004; McGaugh et al., 1996). Consistent with this view, the
amygdala shares extensive connections with cortical and subcortical regions implicated in
memory storage processes (McDonald, 1991a, b; Petrovich et al., 2001). Packard and
colleagues recently observed that anxiogenic drugs impair hippocampus-dependent spatial
memory and enhance caudate nucleus-dependent stimulus-response memory, and the
amygdala plays a critical role in this differential effect (Packard and Gabriele, 2009).

Findings subsequent to Packard, Cahill and McGaugh's initial discovery revealed memory
consolidation-related interactions of the amygdala with many brain regions, including the
nucleus accumbens (LaLumiere et al., 2005; Setlow et al., 2000), insular cortex (Miranda
and McGaugh, 2004), entorhinal cortex (Roesler et al., 2002), rostral anterior cingulate
cortex (Malin et al., 2007), medial prefrontal cortex (Roozendaal et al., 2004), cerebellum
(Zhu et al., 2011), primary visual cortex (Dringenberg et al., 2004), and primary auditory
cortex (Chavez et al., 2009). One extensively studied interaction is that of the BLA with the
dorsal hippocampus. In particular, activation of beta-adrenergic receptors in the BLA
appears to be involved in the modulatory influence of intra-dorsal hippocampus
glucocorticoid infusions. Posttraining infusions of a beta-adrenergic receptor antagonist into
the BLA blocked the memory enhancing effects of a glucocorticoid-receptor agonist
administered into the hippocampus after inhibitory avoidance training (Roozendaal et al.,
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1999). Electrophysiological findings complement these behavioral findings. Fear-
conditioned stimuli elicit theta activity in both the amygdala (Paré et al., 2002) and the
hippocampus (Moita et al., 2003), and it is synchronized between the two structures
(Narayanan et al., 2007; Pape et al., 2005; Seidenbecher et al., 2003) suggesting that theta
synchrony in the circuit plays a role in such learning (Lesting et al., 2011).

The concept of “synaptic tagging”, first described by Frey and Morris (1997), was based on
the seminal finding that transient synaptic potentiation induced by weak stimulation could
be made to persist as long-term potentiation (LTP) if another synapse of the same neuron
was given stronger stimulation. Because protein synthesis is required for LTP and tight
temporal association was necessary for the facilitating effect, these authors proposed that
proteins synthesized by the strong stimulation aided in maintaining the potentiation of
weakly stimulated, “tagged” synapses. This concept is appealing because it attempts to
explain the long-lasting stabilization of specific synapses that might underlie long-term
memory. The synaptic tagging hypothesis was further developed by groups studying
memory and emotion. For example “behavioral tagging” describes an analogous process
using behavioral stimulation. Evidence for behavioral tagging comes from studies indicating
that exposure to a novel stimulus within hours of training can produce long-lasting memory
of tasks that would otherwise not be remembered for the long term. This effect depends
upon protein synthesis at the time of exposure to the novel stimulus (Ballarini et al., 2009).
Likewise, the concept of “emotional tagging” was suggested by findings of
electrophysiological studies linking hippocampal plasticity with emotional arousal,
amygdala activation and memory enhancement (Bergado et al., 2011; Richter-Levin and
Akirav, 2003). It suggests that synaptic activity in the hippocampus initiates long-term
plasticity (and memory) only if it is associated with arousal-induced amygdala activity. In
support of the concept, high frequency stimulation of the BLA facilitates population spike
LTP in the dentate gyrus of the hippocampus (Ikegaya et al., 1995), and the potentiation
depends on activation of BLA beta-adrenergic receptors (Ikegaya et al., 1997). Similarly,
dentate gyrus LTP is enhanced when tentanic stimulation of the perforant path is
accompanied by appetitive or aversive stimuli (Seidenbecher et al., 1997). Perhaps most
importantly, stimulation of the amygdala can transform transient into long-lasting, protein
synthesis-dependent plasticity in the hippocampus (Frey et al., 2001). Taken together, these
results provide strong support for the “emotional tagging” theory.

4.1 Amygdala modulation of multiple memory systems in humans
Findings of human brain imaging and memory studies provide additional evidence that the
amygdala and medial temporal lobe interact to consolidate memories of emotionally
arousing material. The finding that patients with medial temporal lobe lesions do not show
enhancement of emotional memory suggests that the connections between the amygdala and
medial temporal lobe may be essential for amygdala-modulated enhancement of memory
(Richardson et al., 2004). Kilpatrick and Cahill used structural equation modeling to identify
candidate connections with the amygdala in human subjects during viewing of emotional or
neutral films. Regions showing different functional connectivity under the two conditions
were the parahippocampal gyrus and prefrontal cortex (Kilpatrick and Cahill, 2003). Results
of neuroimaging investigations indicate that successful encoding of emotional material is
associated with enhanced functional connectivity between the amygdala and the
hippocampus (Dolcos et al., 2004; Hamann et al., 1999; Kensinger and Corkin, 2004; Murty
et al., 2010; Murty et al., 2009; St Jacques et al., 2009). In addition, co-activation of the left
inferior frontal gyrus, amygdala, and hippocampus during reappraisal of negative pictures
was associated with performance on a memory test given to healthy subjects two weeks later
(Hayes et al., 2010). Thus, the evidence from imaging experiments is highly consistent with
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that of animal experiments indicating that the influences of emotional activation on memory
consolidation involves amygdala interactions with regions in the medial temporal lobe.

5. SYNAPTIC MECHANISMS OF AMYGDALA MODULATION OF LONG-
TERM MEMORY

As discussed above, considerable evidence indicates that amygdala modulation of memory
consolidation involves influences on other brain regions, but little is known about the
synaptic mechanisms of this interaction. One way to observe the effects of BLA activity on
synaptic activity elsewhere in the brain is to measure expression of immediate early genes
(IEGs) that are rapidly induced in response to synaptic activity. The IEG Arc (also Arg 3.1)
is of particular interest as it appears to be a specific marker of memory-related plasticity
(Miyashita et al., 2008). It is expressed primarily in calcium/calmodulin protein kinase II-
positive cells (Vazdarjanova et al., 2006) and it is present in the postsynaptic densities of
recently activated synapses (Moga et al., 2004). Blockade of Arc protein expression with
intra-cranial infusions of Arc antisense oligodioxinucleotides impairs long-term memory
without affecting acquisition, and maintenance of LTP without affecting induction
(Guzowski et al., 2000; Holloway and McIntyre, 2011; Ploski et al., 2008). Expression of
Arc mRNA and its protein product has been examined in the hippocampus following
training on emotionally arousing tasks and after posttraining intra-BLA administration of
memory-modulating drugs (Huff et al., 2006; McIntyre et al., 2005; McReynolds et al.,
2010). The findings indicate that, like exposure to a novel context (Guzowski et al., 2001;
Miyashita et al., 2009; Vazdarjanova et al., 2006), training on aversive tasks increased
expression of Arc mRNA in the dorsal hippocampus. Memory enhancing, posttraining
infusions of the beta-adrenergic receptor agonist clenbuterol administered into the BLA
resulted in increased expression of Arc protein in the dorsal hippocampus, but no increase in
Arc mRNA above training-induced levels (2005). This result is notable because of evidence
that Arc mRNA is transported to stimulated regions of dendrites where it can be translated in
synapses (Steward and Schuman, 2001; Steward et al., 1998; Yin et al., 2002). In light of the
finding that BLA stimulation can transform transient plasticity into protein synthesis-
dependent long-term plasticity in the hippocampus (Bergado et al., 2003; Frey et al., 2001;
Uzakov et al., 2005), these findings suggest that hippocampal activity produced by the novel
context induces transcription and transport of Arc mRNA to stimulated synapses where it is
more likely to be translated to protein if the BLA is stimulated subsequently by drug
infusions, electrically, or by endogenous stress hormones (Figure 2).

The amygdala also interacts with cortical areas during memory consolidation. For example,
Malin and colleagues (2007) found that posttraining infusions of the cholinergic agonist
oxotremorine into the rostral anterior cingulate cortex enhanced memory for inhibitory
avoidance but lesions of the BLA blocked this memory enhancement. Lesions of the BLA
alone did not impair memory retention. A similar result was found with infusions of the
cyclic adenosine monophosphate analog 8-Bromo-cAMP administered into the entorhinal
cortex immediately after inhibitory avoidance training; BLA lesions blocked the memory
enhancement (Roesler et al., 2002). Electrophysiological findings also indicate that the BLA
interacts with the entorhinal cortex. Neuronal activity in the BLA oscillates in phase with
that in the entorhinal cortex (Paré and Gaudreau, 1996) and spontaneous discharges of BLA
neurons induce short-latency “sharp potentials” in the entorhinal cortex (Paré et al., 1995).
Further, BLA stimulation induces fast, low amplitude activity in neocortical
electroencephalograms and electrocorticograms (Dringenberg and Vanderwolf, 1996). The
influence of the BLA on cortical activity appears to depend on the cholinergic system as
inactivation of the basal forebrain blocks cortical activation produced by amygdala
stimulation (Dringenberg and Vanderwolf, 1996).
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Two studies demonstrated that amygdala stimulation induces synaptic plasticity in primary
sensory cortices. Dringenberg and colleagues found that early phase LTP could be converted
to late phase LTP in thalamo-cortical synapses of the primary visual cortex when theta burst
stimulation of the dorsal lateral geniculate was followed immediately by stimulation of the
amygdala (Dringenberg et al., 2004). This effect was blocked by the centrally acting
cholinergic antagonist scopolamine, but not by the peripherally acting cholinergic
antagonist, methyl-scopolamine (Dringenberg et al., 2004). In the auditory cortex, multiunit
extracellular recordings revealed receptive fields that respond preferentially to specific tone
frequencies. These receptive fields can shift in response to training or stimulation of the
nucleus basalis and this cortical plasticity, like that in the visual cortex, depends on
activation of central muscarinic acetylcholine receptors (Weinberger and Bakin, 1998). In a
recent study by Chavez and colleagues, pairing of BLA stimulation with a tone shifted the
tuning of neurons in the primary auditory cortex (Chavez et al., 2009). These modifications
of primary sensory cortex representations provide additional evidence of amygdala
influences on synaptic plasticity mediating the modulation of storage of emotionally
arousing memory.

The neuromodulators norepinephrine and acetylcholine arise from brainstem and basal
forebrain regions that have widespread projections throughout the brain, and both are
involved in memory consolidation and synaptic plasticity. When norepinephrine is released
in the BLA by LC afferents, it is also released in other limbic and cortical regions (Loizou,
1969). Stimulation of the LC can initiate protein synthesis-dependent LTP in the dentate
gyrus (Gelinas and Nguyen, 2005; Walling and Harley, 2004) and administration of a beta-
adrenergic receptor agonist transforms early phase LTP to late phase LTP in the rat
hippocampus in a manner that depends on dendritic protein synthesis (Gelinas and Nguyen,
2005). In a recent study, norepinephrine induced hippocampal LTP when paired with a mild
electrical stimulation, but not when administered alone (Hu et al., 2007), indicating that
synapses become potentiated when emotional arousal is coupled with an increase in
norepinephrine availability. The observation that norepinephrine application enhances
neuronal responses while reducing background spontaneous activity has led some to the
conclusion that norepinephrine may increase the signal-to-noise ratio in the cortex and
hippocampus (Sara, 1985; Segal and Bloom, 1976a, b; Woodward et al., 1979). A similar
change in signal-to-noise ratio is seen in the auditory cortex (Foote et al., 1983) and the
visual cortex (Kasamatsu and Heggelund, 1982) in response to sensory stimuli. It is
therefore conceivable, that norepinephrine may be required in both the BLA and in cortical
synapses, in synchrony, to effect change. Similarly, acetylcholine released by the basal
forebrain is necessary for emotional arousal-induced memory enhancement and cortical
plasticity. Lesions of corticopetal projections from the nucleus basalis magnocellularis
(NBM) using 192 IgG-saporin block memory enhancement induced by intra-BLA infusions
of norepinephrine (Power et al., 2002). Therefore, the BLA may modulate memory and
cortical plasticity through its direct projections to the NBM and LC, or by coincident actions
on the neocortex (Figure 2).

Thus far, only unidirectional effects of BLA stimulation on target brain regions have been
discussed. However, bidirectional connections may also play a role in BLA-influenced
memory consolidation. For example, findings of a recent study indicate that glucocorticoids
affect memory consolidation through a bidirectional interaction of the medial prefrontal
cortex (mPFC) and the BLA (Roozendaal et al., 2009b). It is well-established that systemic
administration of the stress hormone corticosterone enhances long-term memory for
emotionally arousing tasks, and this effect is critically dependent upon beta-adrenergic
receptors in the BLA, despite the fact that corticosterone freely enters the brain and binds to
central receptors (Roozendaal et al., 2009a). Glucocorticoid enhancement of memory
involves projections from the BLA to other regions of the brain including the bed nucleus of
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the stria terminalis (Roozendaal and McGaugh, 1996), the nucleus accumbens (Setlow et al.,
2000), and the hippocampus (McReynolds et al., 2010; Roozendaal and McGaugh, 1997).
But mounting evidence indicates that the mPFC exerts an inhibitory influence on the BLA
(Milad et al., 2004; Quirk and Gehlert, 2003; Rosenkranz et al., 2003). Stress and
glucocorticoids can alter mPFC functioning, releasing the BLA from mPFC inhibitory
control, thereby increasing BLA response readiness. In support of this idea, posttraining
intra-mPFC infusions of the glucocorticoid receptor (GR) agonist RU 28362 enhanced
memory for the inhibitory avoidance task and increased phosphorylation of the microtubule-
associated protein-2 (MAP2) kinase Erk I/II in the BLA. Similarly, administration of the GR
agonist into the BLA enhanced memory for the task and increased phosphorylation of Erk I/
II in the mPFC. Interference with the Erk response through infusions of a MAP kinase
(MEK) inhibitor into either the BLA or the mPFC blocked memory enhancement produced
by intra-cranial infusions of the GR agonist, indicating that glucocorticoid effects are
regulated by a bidirectional BLA-mPFC circuit (Roozendaal et al., 2009b).

6. CLINICAL RELEVANCE
“The usefulness of all the passions consists in their strengthening and prolonging in
the soul thoughts which are good for it to conserve… and all the harm they can do
consists in their strengthening and conserving these thoughts more than is
necessary”

Descartes, the Passions of the Soul, 1647

The knowledge garnered from the studies described above may contribute to the
development of treatments for individuals suffering from memory and anxiety disorders.
Firstly, it informs research designed to determine the pathologies underlying the disorders.
Secondly, recent studies have begun to use the information available to treat anxiety-based
memory disorders using pharmacological therapy.

6.1 Understanding memory and anxiety
Individuals with age-associated memory impairment (Esler, Kaye, Thompson, Jennings,
Cox, Turner, Lambert, & Seals, 1995) or those diagnosed with Alzheimer's disease
(Umegaki, Ikari, Nakahata, Yoshimura, Endo, Yamamoto, & Iguchi, 2000; Borson, Barnes,
Veith, Halter, & Raskind, 1989) show significantly blunted or reduced epinephrine
responses at rest or in response to stress. Findings from the studies discussed above suggest
that epinephrine released in the periphery during emotionally arousing experiences plays a
critical role in modulating the conversion of new information into memory storage.
Therefore, it is possible that the impairment in encoding new information into memory in
these individuals may result, at least partly, from decreased availability of epinephrine to
affect mnemonic processing.

The extensive evidence that stress hormones influence the consolidation of emotionally
arousing memories is beginning to influence investigations of stress-related individual
differences that may predispose certain individuals to posttraumatic stress disorder (PTSD).
For example, a single-nucleotide polymorphism of the glucocorticoid receptor gene (Bcl1) is
associated with hypersensitivity to glucocorticoids and lower circulating cortisol levels. A
recent investigation found that cardiac surgery patients with a homozygous Bcl1
polymorphism had more anxiety and long-term traumatic memories of their experiences in
the intensive care unit than heterozygous Bcl1 patients. Patients with the polymorphism also
exhibited significantly higher PTSD symptom scores (Hauer et al., 2011). In an earlier
study, de Quervain and colleagues found a functional polymorphism in a gene encoding the
alpha-2B-adrenergic receptor (ADRA2B) that was associated with the strength of emotional
memories in healthy humans, and traumatic memories in survivors of the Rwandan civil war
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(de Quervain et al., 2007). This group subsequently found that carriers of the genetic variant
exhibited increased amygdala activation that was coupled with activation of the insular
region of the cortex (Rasch et al., 2009). Both brain regions are hyperactive in PTSD
(Liberzon and Martis, 2006). In a more recent study, subjects with PTSD showed
exaggerated amygdala and hippocampal activity during encoding of stimuli that were rated
as negative. Hippocampal activation was associated with better memory (Brohawn et al.,
2010). These results are consistent with those of animal research indicating that
glucocorticoids and the adrenergic system are involved in the enhancement of memories that
are emotionally arousing. They also support the notion that the amygdala interacts with
other brain regions during the consolidation period to strengthen emotionally arousing
memories. Alterations to these systems may result in pathological memory for traumatic
events.

A role for the vagus nerve in translating peripheral release of stress hormones to memory
and brain plasticity is strongly supported by the animal research. Interestingly, poor vagal
tone is a common predictor of anxiety disorders in humans (Friedman, 2007) including
PTSD (Sack et al., 2004; Sahar et al., 2001). This observation may be relevant to recent
research examining memory extinction. Extinction of conditioned fear is not forgetting but,
rather, replacing the associations of cues that once marked danger with more neutral
associations. In a controlled laboratory setting, identical twins – one with PTSD and the
other without – were trained on a fear conditioning task where a colored light signaled a
mild electrical shock. Fear conditioning was measured by galvanic skin response following
exposure to the conditioned stimulus (the colored light). Extinction trials were administered
the following day. During extinction trials, the colored light was presented in the absence of
the electrical shock. Results suggested that the twins with PTSD are impaired in their ability
to extinguish conditioned fear (Milad et al., 2008). An example of natural extinction would
be seen in the responses of a soldier returning home from combat. The sound of a helicopter
may provoke a strong fear response at first but, over time, the veteran might acquire new
associations with the sound of the helicopter and no longer express fear in response to the
sound. Alternatively, if the fear response did not resolve over time and instead continued to
worsen, the veteran would likely be diagnosed as having PTSD. Approximately 20–30% of
people exposed to a trauma develop PTSD (Resnick et al., 1993). Therefore, PTSD is not
always the predicted consequence of traumatic experiences. Results of the twin study
suggest that an environmental factor contributes to the ability to extinguish conditioned fear
and the development of PTSD. An attractive hypothesis based on these findings is that the
normal vagal response to fear-conditioned cue-induced epinephrine release facilitates the
consolidation of new memories and thus enables the extinction of conditioned fear.
Therefore, poor vagal tone could contribute to the impairment observed in extinction in
PTSD patients because reduced vagal responsiveness would mark impaired memory
consolidation and extinction of old memories requires consolidation of new memories.

6.2 Treating memory and anxiety disorders
Research examining the influence of stress on memory has also provided potential tools to
be used in the treatment of memory and anxiety disorders. Therapies founded on this
research may intervene at several points in the circuitry described above. One site for
potential intervention is the vagus nerve. An attractive hypothesis based on the work
described here is that cognitive behavior therapy (CBT), a primary treatment approach in
PTSD, may be paired with vagus nerve stimulation (VNS) to enhance the effects of the
therapy. Extinction in rats is an established model for a form of CBT called exposure
therapy in humans (Anderson and Insel, 2006; Milad et al., 2006). Previous findings indicate
that posttraining infusions of norepinephrine directly into the BLA enhance the effects of
extinction (Berlau and McGaugh, 2006) and VNS increases norepinephrine levels in the
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BLA (Hassert et al., 2004). Taken together, these findings suggest that VNS should enhance
both extinction and exposure therapy. VNS has been used safely to treat intractable epilepsy
since 1994 and was given approval by the Food and Drug Administration in the United
States in 1997 (George and Aston-Jones, 2010). Stimulation similar to that given in epilepsy
treatment enhances memory consolidation in humans (Clark et al., 1999) and VNS
repeatedly paired with exposure to a tone produces dramatic auditory cortex plasticity
(Engineer et al., 2011). Information gained from VNS research may be used to conceive of
new approaches to enhance the efficacy of exposure therapy. Walker and colleagues
(Walker et al., 2002) found that systemic or intra-amygdala infusions of the partial NMDA
agonist d-cycloserine enhanced extinction of fear conditioning in rats and this research led
directly to clinical trials demonstrating that d-cycloserine enhances the effect of exposure
therapy in patients with acrophobia (Ressler et al., 2004). Such adjunct therapy has the
potential to benefit patients suffering from several disorders, such as phobia, obsessive
compulsive disorder, PTSD, and may even facilitate the prevention of substance abuse in
addicts.

Many studies have attempted to block the effects of epinephrine by administering the beta-
adrenergic receptor antagonist propranolol. Based on the observations in animals that
elevated epinephrine levels following an aversive event modulate the storage of memory for
the event, Pitman and colleagues administered propranolol to patients as soon after the
trauma as possible (Pitman et al., 2002). This was a departure from the more common
approach of chronic administration of anxiolytic drugs, including propranolol, to patients
already diagnosed with PTSD. Pitman reasoned that this post-trauma approach was a
relatively safe, prophylactic measure to prevent the development of PTSD. Results of the
early pilot study were encouraging, but findings of subsequent studies are inconsistent. In
one study, rates of PTSD were lower in patients given propranolol 2–20 hours after the
trauma (Vaiva et al., 2003). Another study measured no effect of propranolol on incidence
of PTSD, however propranolol was administered within 48 hours after the trauma (Stein et
al., 2007). According to results of animal research, posttraining drug administration is
generally effective only up to 4 hours after training, and is most effective immediately after
training (McGaugh and Roozendaal, 2009). After that timeframe, the window of opportunity
to influence the consolidation of the memory may be passed. Interestingly, a recent
examination of PTSD diagnosis in military personnel suffering from traumatic brain injury
determined that administration of morphine shortly after trauma significantly reduced the
incidence of PTSD (Holbrook et al., 2010). This finding is noteworthy in the context of this
review because the opioid morphine reduces norepinephrine levels in the amygdala and
impairs the consolidation of long-term memory when administered immediately after
training (Introini et al., 1985; Quirarte et al., 1998). While the obvious conclusion is that
morphine reduces the pain and therefore lessens the degree of trauma, an alternative
explanation is that morphine administration impairs the consolidation of the memory
through its effects on amygdala norepinephrine.

Findings of animal research reviewed here indicate that glucocorticoids, released by the
adrenal cortex, play a role in the consolidation of emotionally arousing memories. However,
de Quervain and colleagues (1998; 2000) found that elevated glucocorticoid levels at the
time of retrieval impaired memory performance in rats and humans. According to extensive
research carried out by Yehuda and others, cortisol levels are reduced in PTSD patients and
individuals who have lower cortisol responses to trauma are more likely to develop PTSD
(Yehuda, 2002). This finding may seem to contradict the results of animal studies showing
glucocorticoid-induced enhancement of memory consolidation, but PTSD is not necessarily
a consequence of enhanced consolidation of a traumatic memory. In some cases, PTSD
patients have very poor memories of the events to which they attribute their PTSD. Rather,
PTSD is characterized by intrusive recollections, flashbacks and nightmares of highly
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disturbing events, suggesting that excessive memory retrieval may be a culprit in the
memory disorder. Consistent with this theory, Schelling and colleagues reported a beneficial
effect of chronic cortisol administration in intensive care patients. The patients given doses
of hydrocortisone that were comparable to levels produced by stress were less likely to show
symptoms of PTSD following septic shock and related treatment (2001). Cortisol
administration offers an additional benefit of enhancing the consolidation of extinction
memory (Cai et al., 2006), potentially providing further protection from the symptoms of
PTSD. Based on these apparent benefits of cortisol, Aerni and colleagues carried out a pilot
study to investigate the effect of chronic administration of low-dose cortisol on PTSD
symptoms and reported that a significant reduction in PTSD symptoms was observed in
cortisol-treated patients (Aerni et al., 2004). For review of glucocorticoids, memory and
PTSD, see (Schelling et al., 2004) and (de Quervain, 2008).

7. CONCLUSIONS
The amygdala is well-positioned to translate sympathetic arousal into synaptic plasticity that
is distributed throughout the brain. A physiological mechanism to promote brain plasticity
and rapid consolidation of memory for events that have a bearing on survival and well-being
can have both adaptive and maladaptive implications. Here, we propose that the sympathetic
“fight or flight” response goes beyond the peripheral nervous system by implementing
epinephrine stimulation of the vagus nerve, which bridges the peripheral and central nervous
systems by stimulating the nucleus of the solitary tract in the brainstem. As a result of
adrenergic actions on the vagus nerve, norepinephrine is released from neurons of the locus
coeruleus that are activated by afferents of the nucleus of the solitary tract (Figure 1). Levels
of the neuromodulator norepinephrine increase in the BLA following stress hormone
administration, stimulation of the vagus nerve or nucleus of the solitary tract, or training on
an aversive task (Table 2). Norepinephrine administration promotes plasticity in cortical and
hippocampal synapses, especially when paired with emotional arousal or amygdala
stimulation. In consideration of evidence indicating amygdala interactions with limbic and
temporal lobe structures in human and non-human animals, emotional arousal-induced
norepinephrine actions promote amygdala modulation of synapses in target areas that are
engaged in memory processing. Target regions respond to sensory and cognitive input while
they are simultaneously infused with the neuromodulators norepinephrine and acetylcholine,
and tuned by BLA influences (Figure 2). Although this cannot be a complete picture, the
model is presumed to be the beginning of an assembly of critical mechanisms, processes and
substrates necessary for the enhancement of emotionally arousing memory.
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Highlights

• Stress hormones contribute to fight-or-flight response and enhance memory for
important events

• The vagus nerve bridges the peripheral stress response with memory processes
in the brain

• The amygdala influences synaptic strength in other areas of the brain that are
involved in memory

• Results reveal potential underlying causes of and therapies for stress-related
memory disorders
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Figure 1. Schematic diagram depicting the contribution of the nucleus tractus solitarius (NTS) as
both a recipient of peripheral inputs from the vagus nerve and a transmitter of these visceral
signals to limbic structures that process memory after emotionally arousing events
Feedback regarding fluctuations in peripheral visceral systems are conveyed to the brain via
peripheral vagal fibers. The terminals of the vagus nerve synapse directly within the NTS.
After activation by vagal afferents, NTS neurons convey information to structures that
process memory such as the amygdala, hippocampus and frontal cortex via a polysynaptic
pathway to the locus coeruleus (LC). Norepinephrine (NE) is known as one of the primary
transmitters to mediate synaptic communication between these structures.
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Figure 2. Schematic diagram depicting a theoretical model of how the basolateral complex of the
amygdala (BLA) modulates synaptic plasticity in the hippocampus
Contextual/sensory input initiates transcription of the immediate early gene Arc in
pyramidal cells of the CA1 region of the dorsal hippocampus. Arc mRNA is transported to
the postsynaptic density of synapses stimulated by the novel context. In position to modify
engaged synapses, Arc is either translated to protein, and can thus affect the strength of the
synapse, or it is degraded. The coincident and long-lasting amygdala response to stress
hormones contributes, directly or indirectly (through entorhinal cortex or septal region), to
protein synthesis-dependent changes that underlie long-term plasticity and memory by
influencing the translation or degredation of Arc, and possibly other plasticity-related
proteins. (Hippocampus illustration, Cajal, 1911).
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Table 1

Amygdala modulation of hippocampus- and caudate nucleus-dependent memory tasks.

/------------Memory retention-----------/

Spatial task Cued task

Posttraining infusions

d-amphetamine, hippocampus Enhanced No effect

d-amphetamine, caudate nucleus No effect Enhanced

d-amphetamine, amygdala Enhanced Enhanced

Posttraining & Pretesting infusions

Post: d-amphetamine, amygdala Enhanced Enhanced

Pretest: lidocaine, amygdala
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Table 2

Treatment effects on memory and amygdala norepinephrine levels

Treatment
a Memory effect Amygdala norepinephrine Reference

Footshock (FS) Varies with FS intensity Varies with FS intensity Quirarte et al. 1998

Vagus Stimulation Enhances Increases Hassert et al., 2004

IA training Varies with FS intensity Increases
b McIntyre et al. 2002

Epinephrine Enhances
c Increases Williams et al. 1998

Corticosterone Enhances
c Increases McReynolds et al., 2010

Muscimol Impairs Decreases Hatfield et al. 1999

Picrotoxin Enhances Increases Hatfield et al. 1999

β-endorphin Impairs Decreases Quirarte et al. 1998

Naloxone Enhances Increases Quirarte et al. 1998

a
All treatments given immediately posttraining.

b
Training-induced increase in norepinephrine correlates with retention performance tested 24 hours later.

c
Epinephrine and corticosterone produce inverted U dose-response effects on memory retention. Effects presented here are based on administration

of memory-enhancing doses.

Neurosci Biobehav Rev. Author manuscript; available in PMC 2013 August 01.


