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ABSTRACT Chitin, a polymer of N-acetylglucosamine, is an essential component of the fungal cell wall. Chitosan, a deacetylated
form of chitin, is also important in maintaining cell wall integrity and is essential for Cryptococcus neoformans virulence. In
their article, Gilbert et al. [N. M. Gilbert, L. G. Baker, C. A. Specht, and J. K. Lodge, mBio 3(1):e00007-12, 2012] demonstrate that
the enzyme responsible for chitosan synthesis, chitin deacetylase (CDA), is differentially attached to the cell membrane and wall.
Bioactivity is localized to the cell membrane, where it is covalently linked via a glycosylphosphatidylinositol (GPI) anchor. Find-
ings from this study significantly enhance our understanding of cryptococcal cell wall biology. Besides the role of chitin in sup-
porting structural stability, chitin and host enzymes with chitinase activity have an important role in host defense and modifying
the inflammatory response. Thus, chitin appears to provide a link between the fungus and host that involves both innate and
adaptive immune responses. Recently, there has been increased attention to the role of chitinases in the pathogenesis of allergic

inflammation, especially asthma. We review these findings and explore the possible connection between fungal infections, the

induction of chitinases, and asthma.

CHITIN AND THE FUNGAL CELL WALL

The fungal cell wall is a complex organelle that is a composite of
glucan and chitin fibers held together by proteins and mannan.
The second most common polysaccharide in the environment,
chitin, is a polymer of N-acetylglucosamine. The content and lo-
calization of chitin vary among the fungi. Though the primary role
of chitin appears to be related to its role in structural integrity
(including responses to environmental changes and replication),
other roles have been hypothesized, including epithelial adhesion
(1,2),linkage between the cell wall and capsule (3), and antifungal
resistance (4). Chitosan is the deacetylated form of chitin and has
been investigated as a vehicle for a variety of therapeutics. In re-
cent studies, chitosan has been shown to be essential for cell wall
integrity and virulence for Cryptococcus neoformans (5).

In their article, Gilbert et al. (6) explore the mechanisms by
which chitin deacetylase (CDA), the enzyme responsible for chi-
tosan production, is linked to the fungal cell wall. The authors find
that CDA is present in both the cell wall and the cell membrane but
that the attachment mechanism is organelle specific, so that cell
membrane attachment but not cell wall attachment is dependent
on covalent binding via a glycosylphosphatidylinositol (GPI) link-
age. Importantly, biological activity correlates with the cell
membrane-associated CDA. A noncovalent association between
CDA and the cell wall is distinct from the mechanism previously
elucidated for the phospholipase of C. neoformans (7) but parallels
the description for an acid phosphatase of Aspergillus fumigatus
(8). Findings from this study provide important new insights into
chitin biology and mechanisms by which proteins are associated
with the external surface of C. neoformans. The connection of
chitin not to the cell, but to the host response and inflammation,
has also garnered significant interest.

CHITIN AS AN IMMUNE MODULATOR

Given the importance of chitin to a variety of pathogens, it makes
sense that humans have evolved mechanisms to recognize and
respond to chitin exposures. However, studies attempting to elu-
cidate the type of inflammation that chitin elicits have yielded
conflicting results. Early studies highlighted the immunoadjuvant
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activities of chitin and indicated that chitin and chitin derivatives
(partially deacetylated chitin) induced interleukin-1 (IL-1) ex-
pression and increased antibody production and antitumor activ-
ity, although the extent of these activities was affected by the chitin
preparation (9, 10). Consistent with these findings of enhanced
TH1 inflammation, inoculation of chitin and chitosan particles
ameliorated allergic inflammation in murine models of asthma
(11). In direct contrast with these findings, recent studies suggest
that chitin induces TH2 inflammation by enhancing accumula-
tion of eosinophils and basophils within the airways (12, 13). Still,
some studies have suggested that chitin is proinflammatory, lead-
ing to enhanced IL-17A expression by macrophages via a TLR2-
dependent mechanism (14). Finally, some studies have attributed
anti-inflammatory properties to chitin, including the inhibition
of T cell proliferation (15) and blockage of dectin 1-mediated
inflammation (16). The basis for these conflicting findings regard-
ing the inflammatory properties of chitin is not known but may be
related to differences in the sizes of chitin particles (17) and
amounts and modes of administration and to differences in poly-
mer structures.

ANTIFUNGAL ACTIVITY OF CHITINASE

Mammalian cells do not contain chitin, but they do produce sev-
eral forms of chitinases with chitinolytic activity, including chito-
triosidase (CHIT1), acidic mammalian chitinase (AMCase), and
other chitinases that apparently lack activity, like YKL-40. Chiti-
nases with chitinolytic activity are thought to play a role in the
innate immune response to fungal and parasitic infections.
CHIT1 is produced by activated macrophages, and elevated levels
of CHIT1 in serum are present in humans during infection, in-
cluding but not limited to fungal infections (18). AMCase is ex-
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pressed in the lungs of rats with pulmonary cryptococcosis (19),
and elevated serum chitotriosidase levels were present in guinea
pigs with systemic aspergillosis (20). CHIT1 inhibits fungal
growth both in vitro and in vivo (21). Increased CHIT1 expression
is protective in murine models of fungal infection, including cryp-
tococcosis (22). Transgenic plants that overexpress chitinase and
are resistant to fungal infections have been developed (23). None-
theless, the relative contribution of this enzyme to the host re-
sponse to fungal infection remains to be determined. It is conceiv-
able that the role of chitinase in the host response is fungal type
specific and also related to the host immune status.

CHITINASES AND ALLERGIC INFLAMMATION

Independent of their role in host defense, chitinases have been
increasingly recognized for their role as mediators of allergic in-
flammation. Early studies in mice demonstrated that Ym1 and
Ym2 (murine-specific chitinases) and AMCase are induced in an
experimental model of asthma (24). In this model, AMCase is
elicited by IL-13 and is an essential downstream mediator of IL-13
activity, including the induction of eosinophilia and airway hyper-
reactivity (25). On the other hand, AMCase, by virtue of its chi-
tinolytic activity, has been reported to reduce allergic inflamma-
tion induced by chitin (12). Some studies, but not others, have
linked AMCase polymorphisms to asthma in humans (26, 27).
The nonchitinolytic chitinase YKL-40 has also been linked to al-
lergic inflammation. Mice genetically deficient in YKL-40 exhibit
less allergic inflammation than do normal mice. Additional stud-
ies in this system suggest that YKL-40 promotes inflammation by
preventing the death of inflammatory cells (including eosino-
phils) and promoting alternative activation of macrophages (28).
In humans, YKL-40 levels are elevated in the serum and bron-
choalveolar lavage (BAL) fluid of asthmatics (29). Furthermore,
increased YKL-40 levels correlated with asthma severity and are
elevated in response to allergen challenge (30). Thus, chitinases

appear to play a protective role in the innate response to fungal
infection but also mediate adaptive TH2 inflammation.

BREAKING THE MOLD: EMERGING CONCEPTS IN SEVERE
ASTHMA, FUNGAL INFECTION, AND CHITINASES

In concert with an increased understanding of chitinases in aller-
gic inflammation, there has been increased attention devoted to
the potential role of fungal infections in asthma. Fungal antigens
are an important cause of allergen-induced asthma. Sensitization
to fungal allergens is thought to occur as a result of transient,
repeated exposures without invasion or colonization of host tis-
sue. Nonetheless, it is well recognized that fungi can also elicit
asthma symptoms in association with persistent colonization or
superficial invasion of host tissue. Airway colonization with
Aspergillus causes allergic bronchopulmonary aspergillosis
(ABPA) in patients with cystic fibrosis or chronic asthma. While
ABPA is most commonly associated with A. fumigatus, other
Aspergillus species and fungi have been implicated (31-33).
Chronic fungal infections outside the respiratory tract (including
skin infections) can also exacerbate allergic symptoms (34, 35).
Together with our colleagues, we have explored the potential
contribution of ongoing fungal infection to asthma and the role of
the chitinase pathway by using C. neoformans as a model patho-
gen. Because of its association with pigeon droppings, subclinical
infection with C. neoformans is common among individuals (in-
cluding children) living in an urban area (36). C. neoformans is
also well recognized for its tendency to cause persistent infections
(37-39) and allergic inflammation in animal models (40, 41).
Cryptococcal virulence has been linked to its capacity to elicit TH2
inflammation, which is mediated in part through IL-13 (42, 43).
In a rat model, persistent pulmonary C. neoformans infection is
associated with increased IL-13 levels and enhancement of many
of the features of asthma, including allergic inflammation, airway
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FIG 1 Model of hypothesized role of chitinases in fungus-associated asthma. Mutations resulting in decreased activity of chitotriosidase confer increased
susceptibility to fungal infection, thereby contributing to increased asthma severity, possibly via enhanced induction of YKL-40.
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hyperreactivity, and increased goblet cell numbers (44). Antifun-
gal therapy ameliorates these effects.

IS THE CONNECTION BETWEEN PERSISTENT FUNGAL
INFECTION AND SEVERE ASTHMA RELATED TO ACTIVATION
OF THE CHITINASE PATHWAY?

While associations between fungal infection and asthma are well
described in the literature, they are frequently viewed as uncom-
mon phenomena or coincidental observations. Recent data, how-
ever, suggest that fungi may play a larger role, particularly in the
context of severe disease. A newly described subtype of asthma,
termed severe asthma with fungal sensitization (SAFS), highlights
the expanding awareness of fungi in asthma (45). SAFS— charac-
terized by failure of step 4 asthma therapy, elevated serum IgE
levels, and sensitization to one of several environmental fungi—
may represent one point on a spectrum of fungus-associated
asthma. Importantly, asthma control is improved in SAFS patients
using prolonged itraconazole therapy. Since the initial description
of SAFS, numerous cases have been reported, but its true preva-
lence remains unknown. However, we recently demonstrated a
high prevalence of SAFS (>40%), as well as significant differences
in lung function, in a small cohort of severe asthmatics from the
greater New York City area (A. G. Vicencio, M. Tyberg, M. T.
Santiago, E. A. Foley, D. Bush, A. Casadevall, and D. L. Goldman,
submitted for publication). In addition, we previously demon-
strated increased IgA and IgG reactivity to fungal proteins in the
bronchoalveolar lavage fluid of children with severe asthma (46).
Hence, the contribution of fungi to the development and persis-
tence of asthma may be underestimated.

Although the precise mechanisms underlying fungus-
associated asthma remain unclear, emerging evidence suggests a
potential role for chitinases. We propose that fungus-associated
asthma could represent an imbalance between chitinolytic and
nonchitinolytic chitinases. Specifically, we hypothesize that mu-
tations resulting in decreased activity of chitotriosidase confer in-
creased susceptibility to fungal infection, thereby contributing to
increased asthma severity, possibly via enhanced induction of
YKL-40 (Fig. 1). In support of this hypothesis, we previously de-
scribed 6 children who fitted modified pediatric criteria for SAFS,
all of whom were heterozygous for a 24-bp duplication in CHIT1,
which results in a 50% decrease in enzymatic activity (47). In
further support, polymorphisms in CHIT1 have been associated
with asthma exacerbations in children but are dependent on en-
vironmental fungal burden (48). Certainly, additional studies are
warranted to more precisely define the complex interactions be-
tween host chitinases, fungal exposures, and subsequent inflam-
matory responses in the airway.

SUMMARY

Chitin and its derivatives may represent a critical link between
fungal pathogens and their interactions with the environment.
Host responses to this important polysaccharide may depend in
part on complex interactions between fungal chitin and host chiti-
nases. Future studies focusing on not only the role of chitin in
fungal pathogenesis but also the host response to the polysaccha-
ride will hopefully strengthen the “chitin connection.”
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