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ABSTRACT

Motivation: Polychromatic flow cytometry (PFC), has enormous
power as a tool to dissect complex immune responses (such as those
observed in HIV disease) at a single cell level. However, analysis tools
are severely lacking. Although high-throughput systems allow rapid
data collection from large cohorts, manual data analysis can take
months. Moreover, identification of cell populations can be subjective
and analysts rarely examine the entirety of the multidimensional
dataset (focusing instead on a limited number of subsets, the biology
of which has usually already been well-described). Thus, the value
of PFC as a discovery tool is largely wasted.
Results: To address this problem, we developed a computational
approach that automatically reveals all possible cell subsets. From
tens of thousands of subsets, those that correlate strongly with
clinical outcome are selected and grouped. Within each group,
markers that have minimal relevance to the biological outcome are
removed, thereby distilling the complex dataset into the simplest,
most clinically relevant subsets. This allows complex information
from PFC studies to be translated into clinical or resource-
poor settings, where multiparametric analysis is less feasible.
We demonstrate the utility of this approach in a large (n=466),
retrospective, 14-parameter PFC study of early HIV infection, where
we identify three T-cell subsets that strongly predict progression to
AIDS (only one of which was identified by an initial manual analysis).
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1 INTRODUCTION
The immune response to infection, vaccination or malignancy can be
characterized by examining changes in the expression of a wide array
of proteins expressed on leukocytes (either generally or on antigen-
specific B- or T-cells). These proteins identify an enormous variety
of cell types, and it is often not known which subsets of cells are
clinically relevant. In some settings, the immunologically-relevant
cell subset represents a small minority of the bulk cell population.
Therefore, gross measurements taken from heterogeneous samples
(as generally done with microarrays) may mask immunologically
or clinically significant signals. This limitation can be overcome
with polychromatic (>5 color) flow cytometry (PFC), where protein
expression can be assessed among a large number of cell subsets,
at the single cell level (Chattopadhyay et al., 2008b; Perfetto et al.,
2006).

The need for PFC is particularly apparent in studies of HIV,
were the strongest cellular correlate of clinical outcome (CD4+
T-cell count) provides little help in identifying those individuals who
would benefit from early initiation of highly active anti-retroviral
therapy (HAART) (Burgoyne and Tan, 2008; Conway and Coombs,
2011; Kitahata et al., 2009; Sax and Baden, 2009). Recent studies
of simian immunodeficiency virus (SIV) infection of non-human
primates provide some guidance, demonstrating that the level of
central memory T-cells may be a relevant predictor of the need for
early therapy (Kuhrt, 2010; Mattapallil et al., 2005; Veazey et al.,
1998). Similarly, our recent study of early HIV infection suggests
the presence of long-lived T-cells during early infection correlates
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with long-term progression, as does the absence of proliferating cells
(Ganesan et al., 2010). Likewise, measurements of polyfunctional
T-cells (simultaneously producing at least three of the following:
IFNγ , IL2, CD107a, MIP1β and TNFα) are relevant in individuals
whose disease progresses slowly (Klausner et al., 2003; Voronin
et al., 2010). Importantly, enumeration of central memory, long-
lived, proliferating or polyfunctional cells requires PFC technology,
since many markers are needed to discriminate each of these cell
types from other populations of leukocytes.

Thus, it is evident that highly multiplexed approaches (such as
PFC (Bendall et al., 2011; Ornatsky et al., 2010)) are critical,
at least as exploratory tools to identify potential correlates of
pathogenesis; however, despite recent developments in hardware
and reagents, the technology has not yet reached its full potential.
In particular, data analysis methodologies have not kept up with
instrumentation advances (Chattopadhyay and Roederer, 2010),
because of the challenges presented by the highly multidimensional
data. First, the identification of cell populations using manual
approaches requires a time-consuming and complex process of
successively applying polygon filters (i.e. gates) to 2D scatter plots.
This can also be an important source of experimental variation in
large, longitudinal or multicenter studies, and limits down-stream
analysis (De Rosa et al., 2001; Lugli et al., 2010; Maecker et al.,
2005, 2010). Second, even though a PFC experiment collects data
describing tens of thousands of cell subsets, only a small proportion
of those can be reasonably queried against a clinical outcome.
The choice of these subsets depends heavily on the investigator;
therefore, important immunophenotypes that were not initially
hypothesized to be important may be ignored (Chattopadhyay et al.,
2008a). A third challenge emerges when assessing the statistical
rigor of findings from manual data analysis. Since the number of
exploratory attempts at the analysis is rarely reported, adjustment
for multiple comparisons is not usually performed. Multiple testing
correction is complicated further when the choice of candidate cell
populations for exploratory analysis is biased by the results of
previous similar studies. A fourth challenge is the identification of
the minimal set of markers that describe a clinically relevant cell
type. Although thousands of immunophenotypes can be identified in
a PFC experiment, it is not clear how many of these subsets represent
functionally distinct cell populations. Moreover, for those cells that
are clinically relevant, the exact set of markers needed to identify
that cell subset is rarely known. This is a particularly important
problem, because it prevents the translation of results from PFC
studies to more widespread use in clinical or resource-poor settings
where complex instrumentation is often not available.

To address these problems, we developed a computational
approach for identifying biomarkers in PFC data with clinical
outcomes. Briefly, this approach first defines all possible
immunophenotypes within a dataset and assesses the relationship
between each and the clinical outcome. Importantly, the approach
combines completely automated analysis of markers with some level
of expert guidance to facilitate identification of rare subsets. Next,
it reveals the minimal set of markers needed to identify the cell
populations of interest. We demonstrate the utility of this approach
by applying it to a dataset derived from a large retrospective study
of individuals at the early stage of HIV infection. The dataset
included a well-defined clinical outcome (time to AIDS diagnosis or
death), against which the frequency of each immunophenotype was
correlated. We identified three groups of related T-cell subsets whose

frequency during early infection had a statistically and clinically
significant relationship with progression to AIDS. One of these
groups was closely related to a cell population identified previously
using standard manual approaches (Ganesan et al., 2010).

2 MATERIALS AND METHODS

2.1 The cohort
The United States Military HIV Natural History Study has collected clinical
data on HIV-infected military personnel since 1985. Basic demographic
characteristics of this dataset are described elsewhere (Weintrob et al., 2008).
We studied a subset of these subjects (n=466) with cryopreserved peripheral
blood mononuclear cells (PBMCs) stored within 18 months of their date
of seroconversion. The seroconversion date was estimated as the midpoint
between the documented HIV− and HIV+ dates. The cohort included 135
death/AIDS events as defined by 1993 guidelines (Castro et al., 1992). The
date of the last follow-up or initiation of HAART was considered a censoring
event. The immunologic and virologic characteristics of this subset were
previously published (Ganesan et al., 2010).

2.2 Flow cytometry assays
Antibodies, staining procedures and instrumentation were described
previously (Ganesan et al., 2010). Briefly, the staining panel enumerated
various subsets of naïve and memory T-cells defined by CD3, CD4, CD8,
CD45RO, CD27, CD28, CD57, CCR5, CCR7, CD127 and KI-67. CD14 and
V-amine dye were used to exclude monocytes and dead cells, respectively.
All study samples were treated the same way using methods common to
the field (i.e. gradient centrifugation of whole blood, isolation of PBMC,
cryopreservation and thawing). Therefore, the results presented are not
confounded by sample manipulation, and are applicable to most of the
settings in which HIV pathogenesis/vaccination studies are performed.
On average �400 000 cells including �120 000 T-cells were measured
(Supplementary Figure S6).

2.3 Population identification
Dead cells, doublets and cellular debris were removed and live T-cells
were selected by manual gating as previously described (Ganesan et al.,
2010). The flowMeans algorithm was used for cell population identification
within the T-cell compartment (Aghaeepour et al., 2011). The software
package, as well as the infrastructure for PFC data analysis (Hahne et al.,
2009) are available through Bioconductor (Gentleman et al., 2004). More
specifically, flowMeans identified many clusters in the data and repeatedly
merged adjacent ones based on the Mahalanobis distance between them until
the desired number of clusters was reached. For each of the 10 markers
in our data, flowMeans was used to identify a partition that divided the
cells into a positive and a negative population (a movie demonstrating this
partitioning is available in the Supplementary Material). This was based
on the assumption that the expression was either on or off (i.e. there are
two distinct cell populations). These 10 partitions could be combined in
210 possible ways, resulting in 1024 cell populations. To allow exclusion of
markers from subset identification (which later enabled us to identify the most
clinically meaningful markers), each marker could be assigned a ‘neutral’
value (i.e. that marker was excluded from the clustering—see Discussion);
thus, for any single subset, each marker could be negative, positive or neutral
(ignored). This increased the number of possible cell populations to 310

(59049). An example of all possible combinations of gates (partitions) for
two markers is shown in Figure 1A. Notably, the Ki-67+ population was rare
(<5% of the total number of cells), and could not be identified by flowMeans.
Therefore, for this marker, historical negative controls provided a static gate
to partition the cells. The appropriateness of gate was confirmed manually,
by visual inspection of each participant’s data.
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Fig. 1. The computational pipeline for discovering correlates of HIV protection using PFC. (A) 59069 cell populations were identified for 466 patients; a
CPHR model was used to select the immunophenotypes with significant predictive power; (C) the correlation between the immunophenotypes suggested 3
internally correlated groups, shown in the side-bar colors and circumscribed by the bright yellow squares on the diagonal; (D) each group was represented
by a specific combination of markers. The markers that were consistently positive or negative across all immunophenotypes are colored yellow and red,
respectively, the markers with a mix of positive and negative values are grey; (E) the redundant markers were removed without affecting the predictive power;
(F) the resulting immunophenotypes were used to partition the patients to two groups with different survival patterns.
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2.4 Predictive analysis
To measure the predictive power of each immunophenotype, a Cox
proportional hazards model (CPHR) was used to calculate the correlation
between the measured phenotypes’ cell frequencies (the number of cells in
that immunophenotype divided by the total number of T-cells) and the clinical
outcome (survival time) (Breslow, 1975). Next, the immunophenotypes with
a statistically significant correlation to the survival time were identified by the
log-rank test, after multiple testing correction using the Bonferroni method.

The sensitivity of the predictive power (measured by coefficient of
determination (R2) as the effect size of the log-rank test) was determined
using a bootstrapping procedure that tested the phenotypes of different
subsets of the cohort (Hesterberg et al., 2005). Specifically, for a given
vector S of subjects, a 95% confidence interval (CI) for the effect size can
be calculated using the following procedure:

(1) Repeat for 104 times: from S, draw a uniform random sample of size
|S| with replacement, fit the CPHR model and record the R2.

(2) Report the 2.5′th and 97.5′th percentiles of the distribution of R2

values from Step (1) as the lower and upper bounds of the CI,
respectively.

Thus, if an immunophenotype was measured over 104 subsets of the
cohort and every subject’s probability of selection [as defined in Equation (1)]
Pselection =0.63, then in 95% of the trials the R2 (and therefore the P-value)
would have been within the range of the CI.

Pselection =1−
( |S|−1

|S|
)|S|

�1− 1

e
�0.63 (1)

2.5 Phenotype extraction
Many of the cell populations identified were subsets of others (e.g.
CD28+CD45RO− cells are also CD28+), and therefore could be redundant.
We used an approach known as complete linkage hierarchical clustering
to find homogeneous groups of immunophenotypes that are similar to
each other (Everitt et al., 2001). Let fi be the vector of cell frequencies
across all subjects for immunophenotypes i∈{1,2,...,59049}. For the
hierarchical clustering, we used the distance function disti,j =cor(fi,fj)
where i and j are immunophenotype numbers and cor is the Pearson’s
correlation coefficient. The output of this procedure consists of several
groups of immunophenotypes; however, the immunophenotypes in each
group were highly correlated and likely to be subsets of the same parent
cell type. Therefore, two additional steps were employed to identify the cell
populations underlying these overlapping immunophenotypes.

2.5.1 Marker selection: This step was designed to identify the markers
that had a positive impact on the predictive power of a group of
immunophenotypes. To investigate this, we let the impact of a marker be
the absolute difference between (i) the means of CPHR R2 goodness-of-fit
scores for the given groups of immunophenotypes and (ii) the scores after
forcing that marker to be neutral. The impact value reflected the increase
in the error of the CPHR model when that specific marker was excluded
(see Supplementary Material for example). To identify the markers with
impacts significantly higher than zero, the same bootstrapping procedure
described in the predictive analysis section was applied to given groups of
immunophenotypes. Combining these markers identified the candidate cell
population representative of the immunophenotypes in the respective group.

2.5.2 Backward marker elimination: In the previous step, we selected
the markers that, on average, had a positive impact on the predictions of the
respective groups of immunophenotypes. The next step was to identify the
markers that were redundant (i.e. were uninformative in presence of others).
For each immunophenotype, we sequentially removed markers starting with
the one with lowest impact. At every step, the P-value of the log-rank test was
calculated and evaluated (false discovery date =0.05 after adjustment). The
last statistically significant cell population was selected. This cell population

could define the immunophenotypes in the respective group with a minimum
number of markers.

2.6 Sensitivity analysis
The pipeline is an exploratory analysis tool that outputs a list of
immunophenotypes (and not a multivariate predictive model). Therefore,
cross-validation or holdout-validation (i.e. keeping a test-set) are not
meaningfully applicable. Instead, we used the following bootstrapping
procedure to assess the generalizability of the selected immunophenotypes
to previously unseen data:

(1) Repeat for K times: from the given set of subjects, S, draw a uniform
random sample of size |S| with replacement, run the pipeline and
record the selected immunophenotypes;

(2) Report the proportion of iterations in Step (1) in which each
immunophenotype was selected,

where K is the number of iterations, set manually by considering the amount
of variation in the data and the computing resources available. To measure
the sensitivity of the pipeline to different subsets of the cohort, this procedure
measures the proportion of trials on subsets of the subjects in which a
given immunophenotype was selected by the pipeline. Like the previous
bootstrapping step, it can be shown that the probability of every sample
being included in the subset is 0.63. Therefore, phenotypes that are selected
in a high proportion of trials (with different subject compositions of 37% on
average) are not sensitive to variations within the cohort of subjects.

3 RESULTS

3.1 Identification of cell subsets related to clinical
outcome

Cell populations were identified (as described in Methods) and the
frequencies of the 59049 immunophenotypes were calculated (Fig.
1A). Next, these immunophenotypes were related to each patient’s
time to AIDS/death by CPHR analysis (Fig. 1B). In total, 101
of these immunophenotypes were revealed as candidate correlates
of HIV disease progression by the predictive model; these were
analyzed in two ways. First, we examined the correlations between
cell frequencies using a clustered heat map, shown in Figure 1C and
in more detail in Supplementary Figure S1. The ‘correct’ number
of clusters (as in any other clustering algorithm) is subjective;
our choice to use three groups is justified later in this section.
Second, all 101 immunophenotypes were listed, using the order
determined by the heatmap clustering (see Supplementary Table S1).
To make it easier to observe patterns among the immunophenotypes
represented, the immunophenotype names are illustrated with a
heat map in Supplementary Figure S1. The dendrogram and the
side-bar are identical to Figure 1C. The immunophenotype names
in Supplementary Figure S1 are consistent with the clusters of
immunophenotypes identified in Figure 1C based on correlation
between cell frequencies. These figures show that closely correlated
immunophenotypes have similar combinations of markers. This
process allowed us to define the immunophenotypes that exhibited
high correlation (i.e. describe almost identical cell types).

Next, we identified the minimum set of markers necessary to
describe each of the three groups of immunophenotypes. This
helped define the clinically relevant cells using the simplest
possible immunophenotype, which described the most general cell
population of those measured. As described in the previous section,
this process was carried out in two steps: (i) selection of the markers
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Table 1. The final immunophenotypes

Immunophenotype P-value P-value CI Adjusted CPHR R2 Cell
P-value coefficient frequency

Ki-67+CD127− 2.7×10−08 2.9×10−15, 2.1×10−6 1×10−3 19 0.069 0.01
CD45RO−CD8+CD57+CCR5− CD27+CCR7−CD127− 3.1×10−07 1.5×10−11, 1.6×10−2 1×10−2 633 0.059 6×10−4

CD28−CD45RO+CD57− 5.6×10−7 1.1×10−11, 2.6×10−4 2e-02 12 0.056 5×10−2

The largest cell population (calculated as cell population with the highest mean proportion calculated respective to the total number of T-cells per respective sample) with a P-value
higher than the Bonferroni cut-off was selected as the representative of the respective group.

with a positive impact on the predictive power and (ii) elimination
of the redundant markers.

3.2 Impact of individual markers
For each immunophenotype group, we selected the markers that
had a positive impact on the immunophenotype, as measured by the
changes in mean effect size (Fig. 1D). The 95% CIs were calculated
using bootstrapping (over the patient cohort). Thus, for the three
groups of immunophenotypes, the predictive power depended on
the combination of different markers included in the measurements
(Fig. 1D). It is important to note that the impact value depends on
the effect-size (R2) of the original immunophenotypes in a given
group. Different immunophenotype groups had different mean R2

(and P-values); therefore, impact values cannot be compared across
multiple groups.

We used the impact value to confirm that the heat map
clustered by frequency described three groups (and not two or four;
Supplementary Figures S3 and S4). With only two groups, a mix
of positive and negative labels was observed, suggesting that the
groups consisted of heterogeneous subpopulations. When the impact
values for four groups were analyzed, two had very similar marker
impacts, suggesting that we had bisected a single homogeneous cell
population into two populations artificially. Finally, those markers
with impacts significantly higher than zero, as indicated by the
CIs (Supplementary Table S3), were selected as representatives
of each phenotypic group, in order to define the most clinically
relevant immunophenotype. By selecting markers that, on average,
had a positive impact on the predictions of the respective groups
of immunophenotypes, we narrowed down the list of potential
immunophenotypes to three (Supplementary Table S3).

3.2.1 Marker elimination: Next, we identified the markers
that were uninformative in the presence of others. For each of
the immunophenotype groups, we removed the markers one at
a time, starting with the one with lowest impact, until only the
marker with the highest impact remained. Figure 1E lists the
P-values after every removal step. The first phenotypic group
was originally described as Ki-67+CD4−CCR5+CD127− (panel
A). However, the iterative removal of markers only affected
the P-value when CD4 and CCR5 were removed from the
analysis, indicating that the relationship to disease progression in
this immunophenotype is driven by Ki-67 and CD127. For the
second phenotypic group, the P-value remains significant for a
combination of eight markers (CD45RO−CD8+CD4−CD57+
CCR5−CD27+CCR7−CD127−). Finally, the representative
immunophenotype of the third group was simplified
from CD28−CD45RO+CD4−CD57− CD27−CD127− to

CD28−CD45RO+ CD57−. The most frequent cell population
with a P-value higher than the threshold determined by
multiple comparisons adjustment (i.e. the statistically significant
immunophenotype with minimum number of markers) was reported
as the representative immunophenotype of the respective group
(Table 1). Representative examples are illustrated in Supplementary
Figures S7–S12.

3.3 Confirmatory analysis
We performed several experiments to confirm the results obtained
by the pipeline. We manually identified CD28−CD45RO+CD57−
cells using conventional methods (polygon gates on two scatter
plots as demonstrated in Supplementary Figure S5) and confirmed
the relationship between frequencies of these cells and survival
time (P=7×10−6). This result is similar to that obtained with
the automated pipeline (P=5×10−7); any difference is likely due
to minor variations in the data that cannot be captured using the
manual analysis. A second confirmatory analysis was performed
by using the three identified immunophenotypes to partition the
patients into two groups by thresholding the cell frequencies; these
groups had different survival patterns (Fig. 1F), confirming the
ability of the automated pipeline to identify clinically meaningful
cell populations. Finally, the sensitivity of the automated pipeline
was determined after 100 bootstrap iterations, which required
nearly 2000 CPU days. The immunophenotypes selected in the
first and third groups were clearly dominant as demonstrated in
Supplementary Figure S5 panels D, E and F. However, the second
phenotypic group could be labelled CD4− or CD8+, according
to this analysis. Importantly, these populations likely overlap
significantly, as expression of CD4 and CD8 are usually mutually
exclusive on T-cells in the peripheral blood. Thus, the CD4− label
includes primarily CD8+ T-cells (Korber et al., 2006).

4 DISCUSSION
We described a computational approach to analyze a high-
dimensional clinical flow cytometry dataset that was previously
investigated through laborious manual inspection. The findings from
our analysis both replicate and extend the original analysis by
human experts, revealing the T cell subsets and markers most highly
correlated with HIV progression. The pipeline consists of five steps:
(i) automated identification of positive and negative populations
for each marker; (ii) quantification of subsets defined by every
combination of markers; (iii) identification of those cell subsets
whose frequency is most highly associated with clinical outcome;
(iv) calculation of the impact of each individual marker; and (v)
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identification of the minimal set of markers needed to describe
significant cell populations.

The first step in the pipeline delineates positive and negative
populations for every channel. This step uses a clustering tool
that was developed exclusively for PFC data (Aghaeepour et al.,
2011). Many such tools have been developed for identifying cell
populations in a multidimensional setting, but several limitations
have kept these algorithms from replacing manual analysis. Firstly,
the use of these algorithms (as any other clustering tool) is highly
subjective and complicated – often, the concept of what comprises a
cluster/cell population is not well-defined. Clustering tools are also
limited in their ability to find rare cell populations. Furthermore,
meta-clustering of candidate clusters must be performed to identify
clinically relevant immunophenotypes; however, for this, clusters
must be linked to subjectively-defined categories of cells. It is also
difficult to visualize and interpret results because clusters cannot
be described using marker names. Lastly, biological information
is rarely incorporated into the clustering process. The algorithm
presented here overcomes these limitations by partitioning cells one
marker at a time and by using combinations of the partitions to
extract immunophenotypes/features for predictive analysis.

A potential shortcoming of this approach is the underlying
assumption that every channel has only two well-separated cell
populations (i.e. expression is either on or off). However, some
cellular proteins exhibit a continuum of expression across a cell
population, with cells that lack expression, others with low levels
of expression, and some with very high levels of expression.
Furthermore, for some markers these differences are known to be
biologically meaningful; CCR7 expression is high on naive T-cells,
but low on more differentiated central memory T-cells (Ganesan
et al., 2010). Thus, a potential limitation of our approach is that
CCR7bright and CCR7dim cells would be classified as a single cell
population, or conceivably, that the CCR7dim would be grouped
with the CCR7−. To address this limitation, the pipeline could
be modified to support automatic gating of more than two cell
populations. This will become particularly important for bar-coded
samples (where dozens of different populations are represented by
the bar-code (Krutzik and Nolan, 2006)), although in this case the
problem is lessened by having prior knowledge of the number
of populations present. Nevertheless, because these cells differ in
expression of other markers, the populations may be resolved when
the complete phenotypic combinations using the rest of markers are
created (Sallusto et al., 1999).

The second step lists all possible combinations of markers, and
assesses the frequency of each immunophenotype within patient
samples. By designating positive and negative populations for each
of the 10 markers studied, 210 (1024) terminal immunophenotypes
were identified. Thus, every subset, defined by any combination of
markers, was examined. However, this assumes that every marker
is relevant to clinical outcome, which is unlikely. To examine
immunophenotypes defined both by combinations of all markers,
and by combinations of all subsets of markers, our algorithm
allowed markers to be neutral. It is thus possible to measure
the frequency of each of the parent populations as well as the
terminal ones. For example, our algorithm identified and quantified
not only CD4+CD45RA−CCR7+Ki-67+CD57−CD27+ cells, but
also cells in the CD4+CD45RA−CCR7+ parent population (i.e.
CD4+CD45RA−CCR7+Ki-67N CD57N CD27N , where N marks
the neutral state). This ability to allow neutral markers is important

to discovery efforts, since it enables researchers to include markers
in their experimental design without knowing ahead of time whether
they are clinically relevant. This process resulted in the identification
of 310 (59049) immunophenotypes, defined by all combinations of
positive and negative populations over all combinations of the 10
markers.

The third step determines whether the frequency of each of
these immunophenotypes is associated with the clinical outcome
by CPHR and the log-rank test. Because of the high number of
candidate immunophenotypes, adjustment for multiple comparisons
is critical. We chose the conservative approach of using Bonferroni’s
method, knowing that the level of false positives would be low, at
the cost of some statistical power. Alternatively, less conservative
approaches used in other high-dimensional biological assays (Noble,
2009) could be employed. At this step, the pipeline identified
101 phenotypes with a statistically significant relationship with the
clinical outcome (time to AIDS/death).

However, since the second element of the algorithm allows for
inclusion of parent populations, some of the phenotypes identified
are overlapping and highly correlated. To unravel relationships
that are driven by parent populations from uniquely important
cell subsets, the fourth step of our pipeline calculates the impact
of each individual marker. This is determined by clustering the
immunophenotypes based on the Pearson’s correlation between
them, and then assuming that each cluster of immunophenotypes
represents a single cell type, uniquely related to the clinical outcome.
In the dataset presented here, we find three distinct populations of
cells that predicted time to AIDS/death.

Finally, the fifth step of the pipeline simplifies the cell populations
with the strongest relationship to clinical outcome by identifying
the minimal set of markers that can be used to define them. Unlike
subjective methods that are based on a researcher’s assessment of
which markers are important, this step is based on ‘impact’ values
calculated by the algorithm. One disadvantage of this method is
that it is a greedy approach, capable of finding the subtractively
minimal marker set, but potentially not the globally optimal markers.
In future, graph theory (Needham et al., 2007) or graphical modeling
tools could be developed both to visualize connections between
the cell populations that affect clinical outcome, and to find
globally optimized marker sets defining them. Nevertheless, even
in its current form, the algorithm can distill the complexity of a
multivariate data set into immunophenotypes that can be assessed
in resource-poor or clinical settings.

The three cell populations defined by the algorithm included one
closely related to the CD8+ Ki-67+ (proliferating) cells identified
in the previous analysis (Ganesan et al., 2010). However, our
computational pipeline showed that the presence of these cells in
both the CD4+ and CD8+ T-cell compartment had predictive value.
Moreover, the pipeline refined the definition of these cells to include
only those that were lacking a receptor involved in homoeostatic
proliferation (CD127−). These cells may represent antigen-
experienced memory and effector cells, proliferating in response to
the immune activation that occurs during HIV infection. A second
population identified by the algorithm was CD45RO−CD8+CD57+
CCR5−CD27+CCR7−CD127−. Interestingly, this cell type could
not be defined by fewer markers (i.e. it was not flagged as
redundant by the backward elimination algorithm in step five, thus
demonstrating the importance of multiparametric measurements.
The immunophenotype of these cells is consistent with highly
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differentiated (terminal) effector T-cells (which have re-expressed
CD45RA, not measured, and CD27). Notably, these cells represent
the polar opposite of naive cells, which were found to have slight
predictive power in the manual analysis. The number of markers
necessary to define these cells likely reflects the expression of
markers of terminal effector cells (like CD57) within other memory
cell populations. Thus, the automated algorithm has honed in on
the best possible definition of this cell type. Finally, the algorithm
identified CD28−CD45RO+CD57− cells as clinically relevant.
This population likely includes cells capable of strong effector
function, which have not yet lost the ability to proliferate or
differentiate. The biological function of these cells is not well
understood, but the predictive value of this immunophenotype
suggests that studies to further characterize these cells is necessary.
In the future, cell ontology approaches may be developed to define
a consistent nomenclature for the subsets identified in PFC analysis,
particularly those that have unique clinical importance. Such efforts
would facilitate our understanding of the underlying biology and
would allow simpler meta analysis of data across studies (Bard et al.,
2005; Smith et al., 2007). Following this direction, it will be possible
to connect PFC studies to the existing efforts of system biologists
(Nurse, 2003).

Importantly, all three cell subtypes are rare after removing
the redundant markers (Table 1); this highlights another major
advantage of this pipeline over standard methods: manual or
computational identification of rare cell subtypes is challenging
(Altschuler and Wu, 2010; De Rosa et al., 2001). However, a large
number of rare cell subtypes exist in the human immune system,
and it is well established that rare cells play an important role in the
immune system (e.g. HIV (Franz et al., 2011), stem cell research
(Notta et al., 2011) and cancer (Zimmerlin et al., 2011)).

We allowed the automated pipeline to search for clinically relevant
subsets from the entire T-cells, rather than within only CD4+ or
CD8+ T-cell compartments (as is typically done with standard
methods). This approach has two advantages. First, it limits the
preliminary gates that are needed to prepare the data, making
the analysis easier and less susceptible to error or subjectivity.
Second, some of the immunophenotypes identified may be relevant
to both CD4+ and CD8+ T-cell biology, as is the case for
immunophenotypes where the algorithm identified that the CD4 and
CD8 markers are irrelevant. Given the stark differences between
CD4+ and CD8+ T-cell biology in HIV (one cell type is infected
and depleted, while the other expands), immunophenotypes that
are clinically relevant and shared between the two compartments
may be particularly interesting for future study. Supplementary
Table S2 demonstrates the projection of these populations into
the cytotoxic and helper populations. The table shows that the
cytotoxic compartment has a stronger predictive power than the
helper compartment, which confirms the findings of previous
manual analysis (Ganesan et al., 2010). In addition, similar results
were reported in a recent comparison of these cells against other
components of the immune system (i.e. natural killer (NK) cells
and B-cells) in SIV infection (Elemans et al., 2011).

Although much of our effort was geared toward development of
an automated pipeline, we embedded a number of opportunities for
users to integrate their biological knowledge into the analysis, with
the aim of producing a more robust system. For example, biological
knowledge could be used to exclude irrelevant cells (e.g. B-cells,
dead cells and debris cells, and doublets); therefore, we allowed

manual identification of live, CD3+ T-cells. In addition, for low-
frequency populations (e.g. Ki-67+ cells), we offered the ability to
set a threshold gate based on a negative control. Finally, the number
of phenotype groups reported by the algorithm could be limited,
based on the investigator’s biological knowledge.

In summary, our pipeline allowed the identification of a large
number of rare populations associated with clinical outcome and
then described these cell types using only the most impactful
markers. Although it was applied to an HIV dataset in this work,
it can be applied in its current form to any PFC study, across a
wide variety of disciplines (including but not limited to studying
malaria, tuberculosis, autoimmune diseases and various blood
cancer subtypes). In particular, this computational approach holds
significant potential for: (i) detailed exploratory analysis of the
immune system (using a high number of markers to parse the cell
populations); (ii) analysis of large cohorts of subjects (e.g. clinical
studies and vaccine/drug trials); and (iii) screening studies to identify
appropriate marker panels for further clinical investigation.
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