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ABSTRACT

Motivation: Eukaryotic proteins are highly modular, containing
multiple interaction interfaces that mediate binding to a network
of regulators and effectors. Recent advances in high-throughput
proteomics have rapidly expanded the number of known protein–
protein interactions (PPIs); however, the molecular basis for the
majority of these interactions remains to be elucidated. There has
been a growing appreciation of the importance of a subset of
these PPIs, namely those mediated by short linear motifs (SLiMs),
particularly the canonical and ubiquitous SH2, SH3 and PDZ domain-
binding motifs. However, these motif classes represent only a small
fraction of known SLiMs and outside these examples little effort has
been made, either bioinformatically or experimentally, to discover the
full complement of motif instances.
Results: In this article, interaction data are analysed to identify and
characterize an important subset of PPIs, those involving SLiMs
binding to globular domains. To do this, we introduce iELM, a method
to identify interactions mediated by SLiMs and add molecular details
of the interaction interfaces to both interacting proteins. The method
identifies SLiM-mediated interfaces from PPI data by searching
for known SLiM–domain pairs. This approach was applied to the
human interactome to identify a set of high-confidence putative
SLiM-mediated PPIs.
Availability: iELM is freely available at http://elmint.embl.de
Contact: toby.gibson@embl.de
Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION
Short linear motifs (SLiMs) are compact domain binding interfaces
ubiquitous in eukaryotic proteomes. They mediate a range
of important cellular processes including protein scaffolding
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[e.g. SOS1 SH3 motifs (Kaneko et al., 2008)], cell signalling
[e.g. PDZ motifs (Lee and Zheng, 2010)], subcellular compartment
targeting (e.g. nuclear localization signals (Fontes et al., 2003)],
post-translational modification [e.g. sumoylation (Yang and
Gregoire, 2006)] and cleavage [e.g. caspase 3 cleavage sites (Pop
and Salvesen, 2009)]. SLiMs consist of ∼3–10 amino acids though
usually only 2–4 residues are strictly required for binding. As a
result of the limited number of residues contacting their binding
partner, SLiMs bind with low affinity [usually between 1.0 and
150 micromolar (Diella et al., 2008)] distinguishing them from
domain–domain interactions that often have an affinity in the
nanomolar range (Neduva et al., 2005). This attribute of a weak-
binding affinity renders SLiM-mediated interactions difficult to
detect experimentally (Diella et al., 2008). A number of resource-
and time-intensive experiments are therefore required to properly
validate a SLiM, ranging from mutational analysis to structural
studies (Davey et al., 2012). The use of bioinformatics is therefore
an important technique to direct or augment the experimental
elucidation of SLiMs.

A number of databases have been developed to facilitate our
understanding of SLiMs. The Eukaryotic Linear Motif (ELM)
resource (Dinkel et al., 2012) contains over 1600 experimentally
validated SLiM instances while the Minimotif Miner (Mi et al.,
2012) database has collected over 880 consensus sequences. These
datasets generate insights into the attributes of SLiMs, such as their
conservation among homologues and enrichment in disorder. This
enables the development of prediction servers within both the ELM
and Minimotif Miner resources to filter novel instances based on
the attributes of the curated regular expressions. However, both
servers have issues with over-prediction. The SLiMSearch resource
(Davey et al., 2011) expands this methodology to whole proteome
searches. This method scores a SLiM instance by assessing the
sequence conservation of the motif in its orthologous proteins,
however, disordered regions are often poorly aligned and this can
lead to an artificially low score for some motifs (Perrodou et al.,
2008). The Anchor (Meszaros et al., 2009) predictors rely on the
propensity for SLiMs to undergo a disorder-to-order transition upon
binding and α-MORF-Pred (Mohan et al., 2006) identifies patterns
in a disorder prediction output. Other resources have focused on a
subset of SLiMs (Hui and Bader, 2010; Li et al., 2008), for example,
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ScanSite (Obenauer et al., 2003) was established to identify short
protein sequence motifs based on peptide library and phage display
experiments.

The growth in the number of protein complexes with a determined
3D structure has facilitated the development of structural tools
to predict SLiM specificities (Betel et al., 2007; Encinar et al.,
2009; King and Bradley, 2010; Petsalaki et al., 2009; Stein and
Aloy, 2010). The ADAN database (Encinar et al., 2009) utilizes
the FoldX algorithm (Schymkowitz et al., 2005) to perform an
assessment of the stability and affinity of peptide–domain complexes
under in silico mutagenesis analysis. However, the requirement for
extensive knowledge of these interfaces has generally curtailed this
type of method to well-studied and ubiquitous domains, such as
the SH3, SH2 and PDZ domains (Encinar et al., 2009; Stein and
Aloy, 2010). The exception is PepSite (Petsalaki et al., 2009), which
provides a generic method to predict peptide binding by using a
position-specific scoring matrix to predict peptide binding though
this all-encompassing approach lead to a decrease in accuracy
when compared with domain-specific methods. SLiM prediction
has also taken advantage of the recent advances in high-throughput
proteomics (Beltrao and Serrano, 2005; Edwards et al., 2007;
Linding et al., 2007; Neduva et al., 2005), for example, Dilimot
(Neduva et al., 2005) and SLiMFinder (Edwards et al., 2007)
identify novel SLiM classes by searching for enriched motifs
within interaction data while NetworKIN (Linding et al., 2007)
uses protein–protein interaction (PPI) data to elucidate the kinase
associated with a particular phosphorylation site. However, the
inherent noise within PPI networks hinders these methods. Despite
these advances in the area of SLiM discovery tools, outside the
intensively experimentally studied SH3, SH2 and PDZ domains,
the expected deluge of new SLiM instances and classes has not
occurred. Nevertheless, there is clearly signal in each of the methods
described as demonstrated by the positive results produced in the
analyses of Translin (Neduva et al., 2005), EH-1 (Copley, 2005)
and KENBox (Michael et al., 2008) SLiM classes, as well as, the
identification of kinases associated with particular phosphorylation
sites by NetworKin (Linding et al., 2007).

In this study, we produce a high-confidence list of human
SLiM-mediated interfaces by creating a method (iELM) that
identifies SLiM–domain partners from interaction data. A dataset
of SLiM-binding domains and SLiM-mediated interactions was
manually curated from the literature. These annotated domains
were used to train Hidden Markov Models (HMMs) to specifically
recognize SLiM-binding domains associated with a particular ELM
class. To identify true SLiM instances a combination of methods,
relying on known SLiM attributes, were incorporated allowing the
assessment of a binary interaction for a complimentary SLiM-
domain partnership. This association is also assessed for structural
feasibility by the structural bioinformatics tool, PepSite. The iELM
method enables the analysis of the human interactome for SLiM-
mediated interfaces and interactions. A list of high-confidence
SLiM-mediated interfaces for the human interactome is produced
and can be accessed at http://elmint.embl.de.

2 METHODS
iELM assesses a binary interaction for a SLiM–domain interface and, if
present, outputs the SLiM sequence and the globular domain putatively
responsible for binding.

2.1 Datasets
The SLiM functional classes used in iELM were extracted, in the form of a
regular expression, from the ELM database (2011-03). The ELM resource
annotation did not include information about the binding partners and binding
domain for each ELM class. To identify this information, the 3DID resource
(Stein et al., 2011) was parsed for the SLiM-binding domains in complex
with a peptide from an ELM class; however, this search only identified 28%
(44) of the binding domains for the ELM classes. To identify the remaining
72% (112) of SLiM-binding domains a literature search was undertaken.
The annotation process recorded the UniProt ID, the binding domain and the
domain’s position within the sequence as well as, when possible, the affinity
of the binding (see Supplementary Table S3).

2.1.1 Annotation of true positive SLiM-mediated interface dataset The
true positive dataset is the experimentally annotated dataset of SLiM–domain
interaction interfaces (SLiMDoM dataset) based on the aforementioned
literature survey and the crystal structures retrieved from the 3DID database.
The SLiMDom test dataset consists of 1080 SLiM–domain-mediated
interactions and the training set comprises of 434 SLiM–domain-mediated
interactions. This dataset was divided for each ELM class in a 3:1 divide
with respect to testing and training.

A second true positive dataset based on the annotation from the Domino
(Ceol et al., 2007) resource (version 2009-10) was also assembled. The
Domino database annotates the sequences of peptides experimentally shown
to bind to a particular globular domain. With our a priori knowledge of the
Pfam domain (Finn et al., 2010) that binds an ELM class, the appropriate
ELM regular expression (Dinkel et al., 2012) was used to search within the
binding peptides. The results were recorded and are referred to as the Domino
dataset (Supplementary Table S4) consisting of 1684 interactions.

2.1.2 False positive or control SLiM-mediated interface datasets
Experimentally validated negative instances are too rare to be used as a
control group. Instead a false positive dataset of SLiM-mediated interfaces
unlikely to be true was constructed. The majority of these interfaces are likely
to be true negatives, however, since our knowledge of SLiMs and PPIs is
incomplete, this set will undoubtedly contain functional instances and true
interactions.

Two false positive datasets (SLiMDoM- and Domino-False Positive
Datasets) were created to be specific controls for each of the aforementioned
true positive datasets and the same procedure was applied to each. First, all
proteins in these datasets were collected along with their associated ELM
class(es). These proteins were combined in all possible combinations such
that in a dataset of 10 proteins, each protein would have nine interactions.
This list was then filtered for proteins associated with the same ELM class
as well as for known interactions [using STRING resource v9.0 (Szklarczyk
et al., 2011)].After these filtering steps, 211 600 protein pairs were present for
the false positive SLiMDoM dataset and 111 156 pairs were present within
the false positive Domino dataset. These datasets were pruned to produce two
datasets each containing 30 000 interactions. The datasets used to train the
support vector machine (SVM) algorithm are described in the Supplementary
Material.

A final test dataset was constructed to assess the performance of the
iELM method on ‘real-world’ PPI data from the BioGrid (Stark et al., 2011)
database (version 3.1.70). This PPI network was randomized by node degree
conservation using the Neat web server (Brohee et al., 2008) to ensure the
underlying structure of the network remained intact.

2.2 HMM production
The HMMs were trained on a multiple sequence alignment consisting
of the experimentally annotated SLiM-binding domain instance and its
orthologous proteins. The underlying assumption of this being that the
orthologous domains of the annotated domain would also bind the motif.
The orthologous sequences of the annotated protein were identified using
the Gopher programme (Davey et al., 2007) to search the UniProt database
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(UniProt release 2011-05) (UniProt Consortium, 2010) by BLAST reciprocal
best hit for each species (Altschul et al., 1990). These orthologous proteins
were aligned using the multiple sequence alignment programme Muscle
(Edgar, 2004) and the position of the SLiM-binding domain identified
within the alignment. To remove poorly sequenced and/or incorrectly
identified orthologues, aligned domains with indels covering >10% of
the reference domain sequence were removed. The sequences were then
iteratively realigned and poorly aligned sequences removed until a set of
orthologues were identified with <10% indel coverage compared with the
curated reference SLiM-binding domain. The HMMs were trained on this
alignment using the HMMer programme’s (Eddy, 1998) HMMBuild. The
HMMs produced by this process are the ‘domain identifier’ HMMs. For the
benchmarking, only the 434 HMMs made from the SLiMDom training set
were used.

2.3 Modelling domains for PepSite
PepSite requires a Protein Data Bank (PDB) structure in order to predict
the binding position of a peptide. The sequences of all the 3D structures
from the PDBe database (Velankar and Kleywegt, 2011) were blasted
against the human UniProt (UniProt Consortium, 2010) sequences for
matches with a sequence identity of >30%. For all the non-identical
matches detected, structural models of the domain were produced using the
MODELLER programme (Eswar et al., 2006) (see Supplementary Fig. S4
for receiver-operating characteristic curve (ROC) for PepSite benchmarking
on models).

2.4 Training SVM kernel
The score for the iELM resource is calculated using a SVM learning
algorithm (Joachims, 2002). The SVM algorithm was trained on the SVM
true positive and SVM false positive datasets (see Supplementary Material).
The iELM method was run with 75% of the data used as a training dataset
and 25% as a test dataset and a SVM trained model produced.

2.5 Method outline
2.5.1 Domain identifier The HMMer package’s HMMSearch programme
was used to search a sequence using the domain identifier HMMs. The
domain identifier uses an E-value cut-off of 0.01 (Finn et al., 2010) and,
in order to remove fragment hits, all hits with a length of <80% of the
annotated SLiM-binding domain’s length were also rejected; if a result is
returned, the E-value score(s) is converted into a domain score. The domain
score is a similarity score to the optimal score of an annotated SLiM-binding
domain of similar length. This calculation was based on the equation of
the regression line calculated from the optimal E-value hit for each domain
against the length of the annotated HMM (Pearson’s correlation value 0.96).
The HMM_length is the length of the HMM used to make the prediction
and the E-value is the estimated likelihood calculated by the HMMSearch
programme:

X= −1.93E−value

HMM_length−1.076

2.5.2 iELM method iELM predicts the SLiM-mediated interfaces of a
single binary interaction by combining the domain identifier with the
motif discovery programme SLiMSearch (Davey et al., 2011), the disorder
predictor IUPred (Dosztanyi et al., 2005) and the structural analysis
programme PepSite (Petsalaki et al., 2009) (see workflow in Fig. 1).

2.5.3 Interface-pair identification A binary interaction is first queried for
interacting domains as annotated in the 3DID resource (Stein et al., 2011).
The identification of a putative domain–domain interaction between the
binary partners leads to the search being discontinued and the domain–
domain interaction being returned. Otherwise, the two proteins in the binary
interaction are searched using the following two procedures. The Domain

identifier searches a sequence using the domain identifier HMMs in order to
identify putative SLiM-binding domains. If a putative SLiM-binding domain
is present, a search is undertaken for the corresponding SLiM of the same
ELM class in the interacting protein. The SLiMSearch programme uses a
regular expression, annotated within the ELM resource, to identify potential
SLiMs and assigns a Relative Local Conservation (RLC) score of the residues
based on a multiple alignment of the sequence and its orthologues [see
Davey et al. (2011) for details]. The SLiM and its surrounding residues
are then assessed for their propensity to be in a region of intrinsic disorder
using IUPred. The SLiMSearch programme also outputs a score for the
Conservation Score (Chica et al., 2008) and a RLC variance score indicating
the differences in conservation between the individual amino acids of the
SLiM instance. Contextual information such as overlapping Pfam Domains
and PDB structures (Velankar and Kleywegt, 2011) is also included.

2.5.4 Interface-pair scoring If a complimentary SLiM–domain
association is found then the score from the domain identifier and the SLiM
detection methods are assessed using a SVM trained model, otherwise the
search discontinues. The following scores are considered using SVMlight

classify programme (Joachims, 2002) for assessment: Domain score, RLC
score, RLC variance, IUPred disorder score, the Conservation score and
HMM length. Finally, the SLiM–domain interface is assessed using PepSite,
to test whether or not the binding is biophysically feasible. This requires a
PDB structure (or a model) of the putative SLiM-binding domain. If such
a 3-dimensional structure is available, PepSite analyses the SLiM-binding
domain for the likely binding position of the peptide, producing a putative
binary complex and a score for the likelihood of the interaction. This score
is not included in the iELM score calculated by the SVM, because identified
SLiM-binding domains often do not have known 3D structures with >30%
sequence identity and therefore cannot be assessed using PepSite.

2.6 Method assessment
2.6.1 Dataset assessment The datasets were split into training and test
datasets and assessed for sensitivity and specificity:

Sensititvity=
Number of true positives

Number of true positives+Number of false negatives

Specificity=
Number of true negatives

Number of true negatives+Number of false positives
The true hits are considered correct if the annotated SLiM and SLiM-

binding domain positions were predicted to bind with a score above the set
threshold.

3 RESULTS

3.1 Features of SLiM–domain interfaces
The annotated SLiMDom dataset reveals that many globular domain
classes bind to multiple ELM classes (156 ELM classes annotated
to 85 globular domain functional classes). Those globular domain
Pfam families that bind multiple ELM classes can be broadly divided
into two categories. The first type, have an over-arching canonical
SLiM with subgroups, in general, defined by slight differences in
flanking residues of the motif. These classes partially overlap with
changes in binding affinity distinguishing closely related subgroups
[e.g. Huang et al. (2008); Kay et al. (2000)]. For example, the core
constituent of the canonical SH3-binding SLiM is PxxP (x = any
amino acid) with the specificity of the subgroups of this domain
class arising from the flanking residues (e.g. YxxPxxP as compared
to PxxPxR) (Li, 2005). The second category can also be divided into
subgroups, however in contrast to the first type, no over-arching
canonical SLiM can be defined, as the SLiMs associated with
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Fig. 1. A workflow for the iELM method. The pipeline proceeds through
four major stages utilizing the 3DID resource (purple), the SLiM-binding
domain identification method (green), the SLiMSearch methods (yellow)
and the PepSite structural bioinformatic methods (red). After this step, the
bioinformatic pipeline ends and laboratory verification is required.

this type of domain family are too diverse. These subgroups often
contain only paralogous proteins and have SLiM specificities that are
very definitive and often exclusive to each subgroup. For example,
the WD40 domains of beta-TrCP (uniprot: Q9Y297) bind to a
phospho-dependent degron SLiM (LIG_SCF_TrCP_1 - DSGxxS)
while the WD40 repeats of PEX7 (uniprot: O00628) binds to a
seemingly unrelated SLiM (TRG_PTS2 – Rxxx[LIV]xx[HQ][LIF])
(Stirnimann et al., 2010).

A method for identifying SLiM-domains must be able to
distinguish between the aforementioned subgroups. The use of
HMMs to identify globular domains and transmembrane regions
is well established (Eddy, 1998; Finn et al., 2010) and incorporated
into resources such as Pfam. The HMMs trained by Pfam recognize
functional domain groups and could therefore be used to identify
SLiM-binding domains. However, these HMMs are not able to
distinguish the aforementioned intra-domain binding specificities,
since the training of Pfam HMMs does not take into account
the subcategorization of a domain family by SLiM specificities.
We therefore used the annotated and experimentally validated
SLiM-binding domains (and their orthologues) to train HMMs. By
incorporating known binding specificities, those HMMs trained to
recognize SLiM-binding domain should distinguish the subgroups

of those functional globular domains that bind multiple ELM classes
(see Supplementary Material for details).

3.2 Benchmarking the domain identifier
Two types of HMMs were used: those extracted from Pfam (version
25.0) and those that we generated based on the experimentally
validated SLiM-binding domains (domain identifier HMMs) (from
the training set—see Section 2 for details). For each of the SLiM–
domain interactions from the SLiMDoM dataset, the benchmarking
assessed whether either the Pfam- or domain identifier HMMs
identified the known binding domain. The domain identifier HMMs
achieved a sensitivity of 84.0% (907/1080) and a specificity of
90.1% [false positive rate (FPR): 2696/30 000]. Pfam HMMs
accomplished a sensitivity and specificity of 65.1% (703/1080)
and 72.1% (FPR: 8370/30 000), respectively (see ROC curves in
Fig. 2a) suggesting that the use of HMMs trained on SLiM-binding
domains is a more effective way of identifying putative SLiM-
binding domains. The domain identifier HMMs were also assessed
for intra-domain specificities using the annotated SH2 and SH3
domains. The domain identifier HMMs achieved a specificity of
83.9% and a sensitivity of 80.3% (see Supplementary Fig. S2).

3.3 iELM benchmark
The iELM method was benchmarked using two separate datasets.
The first consists of experimentally validated SLiM-mediated
interaction data (SLiMDoM dataset) and the second is based on
the Domino dataset, which is curated from the Domino database’s
experimentally annotated peptide–domain interactions (for full
results see Supplementary Table S5). The performance of iELM on
the SLiMDoM dataset using the domain identifier HMMs (cut-off
= −1.0) was a sensitivity of 84.8% (916/1080) and a specificity of
86.5% (FPR: 4050/30 000) while using the Pfam HMMs decreased
both the sensitivity and specificity scores to 76.1% (822/1080) and
80.4% (FPR: 5880/30 000), respectively (Fig. 2b). Using iELM
(cut-off = −1.0) with the domain identifier HMMs on the Domino
benchmark dataset achieved a sensitivity of 75.5% (1272/1684) and
a specificity of 83.4% (FPR: 4980/30 000). In comparison, the use
of Pfam HMMs managed a sensitivity and specificity of 60.9%
(1025/1684) and 79.4% (FPR: 6180/30 000), respectively (Fig. 2c).
The application of the SVM was contrasted to using a cut-off system,
based on the recommendations in the respective papers. The cut-
off version of iELM (IUPred: 0.4; Motif score: 0.5; Domain score:
0.4) on the SLiMDoM dataset achieved a slightly better specificity
89.3% (FPR: 3111/30 000) but a much lower sensitivity of 70.4%
(760/1080) than the SVM-based method.

The iELM method was also benchmarked on ‘real world’ data
whose interactions were collected independently of whether or
not they were SLiM mediated. The BioGrid interaction dataset
and a randomized version of this dataset (both containing 46 676
interactions) were assessed using iELM (cut-off = −1.0) with the
domain identifier HMMs. Within the BioGrid interaction dataset,
11 153 SLiM-mediated interactions were identified compared to
1112 in the randomized network suggesting a FPR of 9.97%.

3.4 Human interactome analysis
The interfaces for the majority of PPIs are still unknown and it is
therefore of interest to detect novel motif-mediated interfaces on
a proteome-wide scale. A human PPI network comprising 306 211
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(a) (b)

(c) (d)

Fig. 2. ROC curves and SVM kernel weights. Plots describing the properties
of the domain identifier and iELM methods. (a), (b) and (c) are ROC
curves. These curves are a graphical plot of sensitivity versus 1 - specificity
as compared with random (the grey line). The ROC curves demonstrate
that for detecting SLiM-binding domains and SLiM-mediated interfaces,
respectively, the two methods are a considerable improvement over random.
Furthermore, they illustrate the advantages of training HMMs on annotated
SLiM-binding domains. (a) Benchmark dataset results for domain identifier
method. (b) The iELM method as benchmarked against SLiMDom dataset.
(c) The iELM method as benchmarked against Domino data. (d) A bar plot of
the percentage of the total weight as assigned by the SVM kernel. (Domain
= Domain Score, RLC_var = RLC variance, length = domain-length, IDR =
intrinsic disordered regions, CS = conservation score). The ratio of weights
was consistent during multiple testing with a standard deviation of 0.0087,
0.019, 0.012, 0.0068, 0.016 and 0.017 for the domain score, RLC, RLC_var,
length, IDR and CS, respectively.

interactions [extracted from STRING (Szklarczyk et al., 2011) v9.0;
PPIs; cut-off = 0.6] was assessed using the iELM method (cut-off
= −1.0). In total, 12 562 PPIs and 35 476 interfaces were predicted
as SLiM-mediated by iELM, including 7251 predicted structures
(PepSite score < 0.25) (Fig. 3b and Supplementary Table S2). A
large number of these PPIs are mediated by multiple SLiM classes
or SLiM instances, for example, in the interaction between GRB2
(uniprot:P62993) and SOS1 (uniprot:Q07889); SOS1 has seven
putative SH3 motifs and GRB2 has two SH3 domains, potentially
this can equate to 14 binding interfaces for a single PPI. The
putative motif interface map of the human interactome, produced
by the iELM method, identified a large number of potentially novel
SLiM-mediated interfaces as well as demonstrating the ability of
iELM to automatically annotate the edges of interactions within
a PPI network. To explore the interactome produced by iELM,
the putative SLiM-mediated-interaction interfaces associated with
the cell division cycle protein 20 (CDC20; uniprot: Q12834)
were studied. CDC20 is a regulatory subunit of the anaphase-
promoting complex (APC/C) that targets proteins for ubiquitination

Fig. 3. SLiM-mediated Human Interface Interactome. A summary of the
iELM results for the human interactome. (a) A cytoscape image (Cline et al.,
2007) of a subset of the interactions found to be motif-mediated within the
human interactome. The heavily-shaded and highly connected nodes (in dark
purple) are the SLiM-binding-domain-containing proteins (in a clockwise
order from the top left are): NEDD4, TS101, GGA3 and CLH1. In a slightly
lighter shading are highlighted those nodes, identified by iELM as, containing
SLiMs binding to the aforementioned SLiM-binding domains. (b) Statistics
for the number of interactions and interfaces for all the SLiM-mediated
interactions and then divided by type using ELM resource distinctions (LIG
= ligand, MOD = modification, TRG = targeting, CLV = cleavage). (c) A
table derived from the interactome shown in (a) depicting those ELM classes
found with the number of times they occur. (d) The modular interactions of
HGS found from the previous network. Also mapped on are interactions
found from the 3DID resource (in orange or lighter shading).

and subsequent degradation by the 26S proteasome (Peters, 2006).
In early mitosis, CDC20 joins the APC/C complex and targets
substrates for ubiquitination containing either a destruction box
SLiM (Glotzer et al., 1991) (D-box – RxxLxxϕ−ϕ = hydrophobic
amino acid) or a KEN-box (Pfleger and Kirschner, 2000) (xKENx).
The iELM method identified 34 PPIs (from 246 binary interactions)
with 41 putative SLiM-mediated interfaces that bind to CDC20 via
a D-box motif. All the experimentally annotated (seven instances)
ELM instances of D-box SLiMs (including human orthologues of
non-human instances) were identified as well as five additional
experimentally validated SLiMs (Peters, 2006). iELM identified
a number of interesting candidate interfaces binding to CDC20
including the sperm-associated antigen 5 (SPAG5), a protein
necessary for spindle formation during mitosis, a process whose
completion synchronizes with the formation of the APC/C complex
(Song and Rape, 2010) (see Supplementary Fig. S3).
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In addition, we investigated a subnetwork of the human
SLIM-mediated PPI network associated with four SLiM binding
proteins: Clathrin heavy chain 1 (CLH1) (uniprot: Q00610),
ADP-ribosylation factor-binding protein GGA3 (GGA3) (uniprot:
Q9NZ52), E3 ubiquitin-protein ligase NEDD4 (NEDD4) (uniprot:
P46934) and tumour susceptibility gene 101 protein (TSG101)
(uniprot: Q99816), and their interactions (Fig. 3a). This subnetwork
contains 810 interactions, 173 of which are predicted by iELM as
SLiM-mediated interactions. This number includes SLiM interfaces
from three different categories of ELM (LIG or ligand, MOD
or modification, and TRG or targeting) and 14 different classes
(Fig. 3c). Of these 173 putative interactions, approximately half are
predicted to bind to NEDD4 via a WW-binding motif associated
with ubiquitinating substrates. The remainder of the putative
protein interfaces function within endocytic-related pathways;
for example, the Clathrin-Box motif-mediated interactions are
associated with clathrin-mediated vesicular trafficking. The protein
hepatocyte growth factor-regulated tyrosine kinase substrate (HGS)
(uniprot: O14964) was extracted from this network and its module
architecture investigated (Fig. 3d). This protein contains putative
SLiMs for targeting HGS for ubiquitination (via NEDD4), clathrin-
mediated endocytosis (via CLH1), signalling via Grb2 and P85A
(uniprot: P27986) as well as an annotated PTAP SLiM, involved in
the ESCRT signalling. Furthermore, 3DID data predict a domain–
domain interaction with Tom1 (uniprot: O60784). This subnetwork
highlights the information about functionality and directionality that
can be garnered by mapping SLiM-predictions onto PPI networks.

4 DISCUSSION
SLiM-mediated binding interfaces are key components of the human
proteome (Jorgensen and Linding, 2008) and are abundant within
the signalling pathways of the cell (Pawson, 2007). In this article, we
manually annotated domain-binding partners for 156 ELM classes
and curated 1514 SLiM-mediated interfaces, thus generating a high-
quality dataset for studying the interfaces between specific ELM
classes and their interacting domains. This dataset enabled us to train
HMMs for identifying SLiM-binding domains. These models were
then incorporated into a novel method called iELM with the aim of
detecting SLiM-mediated interfaces. iELM was able to distinguish
specificities within SLiM-binding domains (see Supplementary
Fig. S2), as well as identify SLiM-mediated interactions from a
background of PPIs (Fig. 3). The iELM method uses an SVM
algorithm in preference to a simple cut-off system due to our wish
to develop a method with the best ratio between sensitivity and
specificity. A comparison of these two techniques identifies the SVM
model as having a higher sensitivity but a lower specificity, with the
ratio weighted in favour of the SVM model. This suggests that using
the SVM will identify a greater number of true positive interactions
with only a slight increase in the FPR. iELM, so far, covers only
linear motifs as they are annotated in the ELM resource, but is easily
extendible to any SLiM, in the form of a regular expression, for
which the interacting SLiM-binding domain is known.

The importance of a number of canonical and ubiquitous domains
(e.g. SH2, SH3, PDZ and Pkinase) in signalling and regulatory
networks has lead to a great deal of work focusing on their SLiM-
binding properties (Beltrao and Serrano, 2005; Encinar et al., 2009;
Gfeller et al., 2011; Huang et al., 2008; Hui and Bader, 2010;

Li, 2005; Linding et al., 2007; Stein and Aloy, 2010). These
domains are abundant in higher eukaryotes with small differences
in amino acid composition leading to subtle shifts in specificities
(Encinar et al., 2009; Gfeller et al., 2011; Huang et al., 2008).
In the ELM resource, and by association in iELM, however, these
subtle shifts in specificity are not necessarily fully explored. This is
because for a particular SLiM functional class the ELM resource’s
annotation process aims to curate the full spectrum of variation
within eukaryotes; potentially this can allow too broad a specificity
for a SLiM and lead to false positive results. Despite these potential
problems, the iELM method performed strongly on benchmarking
datasets and was able to distinguish specificities for these ubiquitous
domains. More importantly, iELM incorporates the less well-known
SLiM classes (over two-thirds of those annotated in ELM) that
do not have this overlapping intra-domain specificity enabling a
more extensive array of SLiM-mediated interfaces to be predicted
for the human interactome. This is illustrated by those interactions
associated with targeting proteins for destruction, using D-box
motifs, as well as by a subnetwork of interconnected SLiM-mediated
interactions linked to endocytosis.

The automatic annotation of the molecular detail of a protein–
protein interface is an important step in understanding the function
of many of the interactions identified by proteomic experiments.
In this study, we developed a novel method enabling for the first
time, to our knowledge, the fast and automatic annotation of SLiM-
mediated interactions on large-scale datasets. The development
of iELM permitted us to produce an edge-based interactome of
12 562 interactions with 35 476 interfaces representing ∼4% of
the known human interactome. This number is likely to represent
only a small fraction of the SLiM-mediated interactions within the
interactome, as it is only based on 156 ELM classes and SLiM-
mediated interactions are known to be under-represented in mass
spectrometry-derived proteomic data (Gavin et al., 2006). The final
percentage is difficult to estimate as the total number of SLiM classes
is unknown but taking into consideration that there are over 13 000
globular domain classes annotated in Pfam, the potential influence
of SLiM-mediated interactions is prodigious.

The annotation of the edges of PPI networks allows a more
biologically realistic edge-based analysis of PPI networks to be
implemented. This is important, as proteins are modular entities
whose function can vary depending on their interaction partners.
Furthermore, as proteins have a finite number of binding sites, an
appreciation of the location of their interaction surface will facilitate
models to consider mutually exclusive binding. The use of a node-
based view generalizes these properties and therefore loses the
subtleties of a protein’s behaviour, while an edge-based view would
distinguish this difference enabling a more accurate portrayal of
cellular networks.
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