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ABSTRACT

Motivation: Quantification of sequence abundance in RNA-Seq
experiments is often conflated by protocol-specific sequence bias.
The exact sources of the bias are unknown, but may be influenced by
polymerase chain reaction amplification, or differing primer affinities
and mixtures, for example. The result is decreased accuracy in
many applications, such as de novo gene annotation and transcript
quantification.

Results: We present a new method to measure and correct for
these influences using a simple graphical model. Our model does
not rely on existing gene annotations, and model selection is
performed automatically making it applicable with few assumptions.
We evaluate our method on several datasets, and by multiple criteria,
demonstrating that it effectively decreases bias and increases
uniformity. Additionally, we provide theoretical and empirical results
showing that the method is unlikely to have any effect on unbiased
data, suggesting it can be applied with little risk of spurious
adjustment.

Availability: The method is implemented in the segbias
R/Bioconductor package, available freely under the LGPL license
from [http://bioconductor.org|

Contact: [dcjones@cs.washington.eduy|

Supplementary information: Supplementary data are available at
Bioinformatics online.
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1 INTRODUCTION

In the last few years, RNA-Seq has emerged as a promising
alternative to microarrays in quantifying RNA abundance. But,
as microarray technology has brought with it technical challenges
ranging from developing robust normalization to accounting for
cross-hybridization, RNA-Seq presents a new set of challenges. As
first noted by ), a particular challenge is the often
complex and protocol-specific influence of nucleotide sequence on
quantification.

In an ideal experiment, the number of RNA-Seq reads mapping to
a particular position in the genome is a function of RNA abundance
and should not be additionally dependent on the sequence at that
position. Yet, this is not the case. As illustration, Figure [l plots this
non-uniformity in nucleotide frequencies on five datasets (Table[T)),
each using a different protocol.

*To whom correspondence should be addressed.

These biases may adversely effect transcript discovery, as
low level noise may be overreported in some regions, and in
others, active transcription may be underreported. They render
untrustworthy comparisons of relative abundance between genes
or isoforms, and any test of differential expression hangs on the
assumption that these biases are identical between replicates, an
undesirable assumption given that the causes of the bias are not well
understood. Additionally, in many tests of differential expression
higher read count will result in higher statistical confidence. It
follows that the sensitivity of such a test will also be biased by
sequence, affecting downstream analysis such as gene ontology
enrichment tests.

This bias, though observed primarily in the 5’ end of a read, is
not resolved by trimming the reads prior to mapping (m

) (Section 1 in Supplementary Material), suggesting it is not a
result of erroneous base calling, and that a more sophisticated means

of correction is needed.

Li et al. ) propose two models. The first is a Poisson
linear model, in which read counts across a transcript follow an
inhomogeneous Poisson process. The read count at position i within
the transcript is Poisson distributed with parameter X;, where, log(};)
is the sum of independent weights determined by the nucleotide
at each position surrounding the read start, in addition to a term
capturing the abundance of the transcript.

The second model is based on multiple additive regression trees,
or MART (Eriedman and Meulma, [2003). In their tests, the MART
model shows a moderate improvement over the Poisson linear
model. Both models are fit to a number of abundant test genes,
requiring existing gene annotations for the reference genome.

Another model, proposed by |H_ans_cn_eLaL] (IZQJQ), directly
estimates the distribution of initial heptamers within reads,
then estimates a presumed background heptamer distribution,
sampled from the ends of reads. The read count at a given
position is then adjusted by the ratio of the foreground and
background heptamer probabilities. Specifying two distributions
over heptamers (i.e. foreground and background distributions)
requires 2(47 —1)=32766 parameters, so while no gene annotations
are needed to train such a model, a significant number of reads are
required, and a number that increases exponentially with k, if it were
desirable to model k-mers for k > 7.

Lastly, M) have recently published a description
of another approach, in which sequence probabilities are modeled by
variable-order Markov chains. The structure of these Markov chains
are hard-coded, chosen in advance using a hill-climbing algorithm
on a representative dataset. This method is implemented in the latest
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Fig. 1. Nucleotide frequencies are plotted relative to the start (labeled position 0) of each mapped read, respecting strand, and grouped by platform (Illumina
or ABI SOLiD). The datasets plotted here are those used for evaluation, listed in Table[I] The sequence is taken from the genomic context surrounding the
read, so that —40 to —1, for example, fall outside the read sequence itself. The symmetrized Kullback—Leibler divergence is used to summarize the difference
in nucleotide frequency compared with a fixed estimate of background nucleotide frequencies made by sampling many positions near mapped reads. Under
the assumption that reads are sampled uniformly from transcripts, each of the plots should be essentially flat.

Table 1. Datasets on which the methods are evaluated

Experiment Species Platform  Protocol = Read
length
Wetterbom et al. (2010) Chimp. ABI mRNA 33
Katze,M.G. (unpublished data) = Macaque  ABI WT 50
Bullard et al. (2010) Human Illumina ~ mRNA 35
Mortazavi et al. (2008) Mouse Mlumina mRNA 33
Trapnell et al. (2010) Mouse Illumina ~ mRNA 75

The protocol column lists whether a poly-A priming step to select for polyadenylated
transcripts was used (mRNA), or depletion of ribosomal RNA with no step to select for
polyadenylated transcripts (WT).

version of Cufflinks (Trapnell ez afl, 2010), and tightly incorporated
into its estimation of transcript abundance, requiring either predicted
or existing gene annotations.

Here we propose a new approach, using Bayesian networks to
model sequence probabilities. Unlike the methods of Roberts or Li,
our model requires no gene annotations, nor even the assumption that
the short reads are derived from RNA. In this sense, we build on the
work done bylHans_qn_cLal] (]2Qld), generalizing their approach in
a way we find to be more robust and effective at correcting for bias
in a variety of protocols. Due to the weak assumptions required by
our model, it is applicable and potentially useful in any setting in
which short reads are aligned to a reference sequence.

2 METHODS
2.1 Principle

We begin with a natural model of an RNA-Seq experiment (and one that
is often assumed, whether implicitly or otherwise). The number of reads x;
aligned to genomic position 7 is an unbiased estimate of RNA abundance.
Furthermore, we assume reads may be treated as independent and identically

distributed samples. That is, if N reads are generated, and m; is the event
that a generated read maps to position i, then E[x;]=NPr[m;].

The experiment may be considered unbiased with regards to sequence
if, having observed the nucleotide sequence s; surrounding position i, the
expected number of reads sampled from position i is independent of s;, i.e. if

Elx;lsi]=N Pr[mj|s;]=N Pr[m;]=E[xi]

From Bayes’ rule,
Pr[s;|m;]Pr[m;]
Pr(si]
This suggests a natural scheme in which observations may be reweighted
to correct for bias. First, define the sequence bias b; at position i as b;=
Pr[s;1/Prlsi|m;].
Now, if we reweight the read count x; at position i by b;, we have,

Prlmi|s;]=

E[bixi|si]=b;E[xi|si]
=Nb;Pr[m;s;]

Pr[m;|s;]Pr[s;]
Pr[s;|m;]

=NPr[m;]

=El[x]

Thus, the reweighted read counts are made unbiased.

To estimate the bias b;, we must make estimates of the background
sequence probability Pr[s;] and the foreground sequence probability
Pr[s;|m;], the latter being the probability of the sequence given a read being
sampled from its position. Estimating bias is therefore a problem of finding
a model of sequence probability that is sufficiently complex to capture the
common features of the training data yet avoids overfitting.

Toward that end, we propose training a Bayesian network using examples
of foreground and background sequences. By training the model
discriminatively and penalizing model complexity, we can avoid a model that
is overparametrized, excluding parameters that are insufficiently informative
in discriminating between foreground and background. The Bayesian
network can then be used to evaluate sequence probability, and thus bias, at
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Fig. 2. An overview of the approach taken: (a) foreground sequences
are sampled from the regions surrounding the starts of mapped reads;
(b) background sequences are sampled by randomly offsetting foreground
positions; (¢) a Bayesian network is trained to discriminate between the
set of sampled foreground and background sequences; (d) and the model
is evaluated at each position within a locus, predicting bias. The predicted
bias can then be used to adjust read counts, as in (e). In (d) and (e), we
show the results of this method applied to the 3’ UTR of Apoa2, using data
fromm M). In bias coefficients predicted across 10 million
positions of chromosome 1, the logl0 bias of 95% of the positions were
between —1.14 and 0.63, suggesting that most adjustments are not large.
The R? measure, detailed in Section 3.2, gives the relative increase in log-
likelihood under a uniform sampling model, after correcting for bias, with
1.0 indicating a perfect fit, and the score of 0.38 here indicating a significant
increase.

any genomic position. Figure Dl gives a schematic overview of the proposed
model.

We have so far ignored one complication: the RNA abundance that
we wish to estimate is not itself independent of the nucleotide sequence.
Notably, exonic DNA tends to be more GC-rich than intergenic DNA. If
background sequences are sampled uniformly from the genome. we run the
risk of incorrectly adjusting for biological sequence bias, rather than technical
sequence bias. To avoid this, we propose using paired training data. Each
foreground training sequence is paired with a background sequence taken
from a nearby position that is likely to have similar abundance and general
nucleotide composition. Alternatively, we could pair foreground samples
with background samples from within the same transcript, but we prefer to
avoid dependence on existing gene annotations.

The methods proposed by M) and w,

) also treat bias correction as a problem of estimating foreground
and background sequence probabilities. They differ primarily in how these
sequence probabilities are estimated. ) estimate reweighting
coefficients (b;, in our notation) directly, given training data consisting of
long annotated, highly expressed transcripts.

2.2 Estimation

To estimate sequencing bias, we train a Bayesian network in which each
node represents a position in the sequence, relative to the read start, and

edges encode dependency between positions. Bayesian networks have been
applied to recognize motifs in nucleotide sequences in the past, in particular

in modeling splice sites (ICa,Lale d:IChen ez all, M) and transcription
factor binding sites mmmm

In our model, we do not rely on constraining the set of networks (e.g. to
trees), and instead approximate the NP-Hard problem of determining the
optimal network structure using a fast hill-climbing algorithm. Furthermore,
we train our model discriminatively; only parameters that are deemed
informative in discriminating between foreground and background sequences
are included in the model. We thus seek to train a model that reduces
bias, without including uninformative parameters that would only increase
variance.

Rood.

2.2.1 Sampling The model is trained on n sequences, one half labeled as
foreground, the other background, sampled from the reference genome. To
obtain the foreground sequences, we take sequences surrounding (extending
20nt to either side, by default) the start positions of a randomly sampled
set of n/2 aligned reads. To avoid the risk of the method being overfit to
reads deriving from a few highly expressed genes, we ignore duplicate reads,
which we define as two reads mapping to the same location in the genome.
The nucleotide sequence is taken from the genome, rather than the reads
themselves, allowing us to include positions outside of the read.

To obtain background training sequences, we randomly offset the positions
from which the foreground sequences were sampled. The offset is drawn from
a zero-mean Gaussian (with o= 10, by default), and rounded to the nearest
integer, away from zero. By using such a scheme, we attempt to mitigate the
effects of biological sequence bias, sampling positions that are more likely
to be biologically similar.

This procedure produces a training set of n sequences with accompanying
labels T={(s1,x1),(s2,X2),...,(Sn,xn)}. The label x; is binary, indicating
classification as background (x; =0) or foreground (x; =1).

2.2.2 Training To determine the structure and parameters of the Bayesian
network, we use a hill-climbing approach similar to the algorithm described

bylﬁmss.man_and_]lzminggs] M). The network structure is determined by

greedily optimizing the conditional log-likelihood:

n n
= ZlogPr[x,— Isi]= Zlog
i=1 i=1

where Pr[x] is flat (i.e. Pr[x=0]=Pr[x=1]=0.5) since we sample
foreground and background positions equally.

As we will be estimating parameters and evaluating the likelihood on the
same set of samples, simply maximizing the likelihood would severely overfit
the training set. We thus penalize model complexity heuristically using the
Bayesian information criterion ). Where m is the number of
parameters needed to specify the model, we maximize, £’ =2¢ —mlogn.

Some benefit might be obtained from a more highly tuned complexity
penalty. However, since the model is trained greedily, additional parameters
will be decreasingly informative, and increasingly similar between
foreground and background. Adding more parameters will have little
effect. Only when m is allowed to grow exponentially does the prediction
become polluted by small deviations between thousands of uninformative
parameters.

At each step of the optimization procedure, every possible edge or position
addition, removal or edge reversal that produces a valid, acyclic network is
evaluated, and the alteration that increases the score £’ the most is kept.
This process is repeated until a local maximum is found, in which no
single alteration to the network will increase the score. Given the network
structure, the parameters are estimated directly from the observed nucleotide
frequencies in the training data.

The run time of the training procedure is further reduced in practice by
imposing the following two restrictions on the structure of the network, First,
the in-degree (i.e. number of parents) of any node must be less than some

Pr[s;|x;]Pr[x;]
ZrE[O, 1y Prisi |x]Pr[x]
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Fig. 3. The network structures learned on each of the datasets are displayed. Positions are relative to the read start, which is labeled 0. Hollow circles
indicate positions that were not included in the model, being deemed uninformative, given the other positions and edges. The number of parameters needed
to specify each model is listed in parenthesis below. Applied to data with less bias, a sparser model is trained, as evinced by the Wetterbom dataset. Note that
dependencies (i.e. arrows) tend to span a short distances, and nodes tend to have a small in-degree (i.e. have few inward arrows). In practice, we save time in
training by prohibiting very distant dependencies (>10, by default) or very high in-degrees (> 4, by default).

number ppax. Secondly, for all edges (i,j), | —i| <dmax for some number
dmax. This latter rule encodes the assumption that distant nucleotides are
effectively independent. We choose pmax =4 and dpmax =10, as reasonable
default values (Section 2 in Supplementary Material).

Figure Blshows examples of the structure learned when this procedure is
applied to several datasets, using 100 000 reads from each.

3 RESULTS

Since we cannot observe directly the underlying RNA abundance,
our evaluation strategy relies on testing three assumptions we make
of an ideal, unbiased RNA-Seq experiment.

(1) Positional nucleotide frequencies (as in Fig.[I), measured from
reads within exons, should not differ greatly from frequencies
measured by sampling uniformly within the same exons.

(2) Read counts across a single exon should follow,
approximately, a Poisson process.

(3) Adjusting for bias in RNA-Seq should increase the agreement
between RNA-Seq and another method of quantification.

Evident from Figure 2] the assumption of uniform read coverage
often does not hold in typical RNA-Seq datasets. Although the
bias corrected read counts across the exon pictured in this example
are visibly more uniform, we sought a simple, objective tests
that could be applied genome-wide. To this end, we used cross-
validation tests (i.e. methods were trained and tested on disjoint
subsets of the same RNA-Seq datasets) of a quantitative measure
of the increase in uniformity of nucleotide frequencies (Kullback—
Leibler divergence in Section 3.1) and increase in uniformity of
read coverage (Poisson regression in Section 3.2). Additionally, we
compare RNA-Seq-based estimate of gene expression to quantitative
real-time PCR (qRT-PCR) based estimates for the same genes,
showing increased correlation between the two methods after bias
correction (Section 3.3).

To evaluate the first two assumption, we applied our procedure
(labeled ‘BN’) as well as those of ) (‘GLM’ and
‘MART’) and ) (7mer), which are implemented
in the R packages mseq and Genominator, respectlvely, to four
publicly available datasets (tB_ullard_eLalJ |21)_]

200d; rapnell ez o], 01d; Wetterbom ez all, .M) as well as an

unpublished dataset of our own (Table ).

Each method was trained on data taken from chromosomes 1-8
of the genome from which the reads were mapped (including
chromosomes 2a and 2b of the Chimpanzee genome). For
evaluation, we drew a set of long, highly expressed exons from the
remaining chromosomes. In particular, for each reference sequence,
beginning with the set of exons annotated by Ensembl release 60
(]H_ub_bar_d_eml],hmg), we removed any exons with known alternate
splice sites, then chose the top 1000 exons by read count, restricting
ourselves to those at least 100 nt long.

The differences in the methods being tested necessitated training
procedures unique to each. The total number of reads used to train
each method is listed in Section 3 in Supplementary Material, and

below we describe the procedure used for each.

Li et al. M) recommends that their MART and GLM models
be trained using the 100 most abundant genes. We used 1000 exons
from chromosomes 1-8, otherwise chosen in a manner identical to
that which was used to select the test exons. Both the GLM and
MART models were trained considering the initial read position
and 20 nt upstream and downstream, and otherwise using default
parameters.

Hansen et al. (2010) recommends using all the reads to estimate
heptamer frequencies used by their model. The training procedure
works by simple tallying of frequencies. The implementation of this
model in the Genominator package uses a great deal of memory, and
we were unable to train with the volume of data we wished, so we
reimplemented the model and trained it on all of the reads aligned
to chromosomes 1-8.

We evaluated several variations of the heptamer model. The
suggested method involved averaging the frequencies of the first
two heptamers of each read. Yet, we found that in every case,
this performed worse than simply counting the frequencies of
the initial heptamer, and thus we report only the latter. The
background frequencies are estimated from positions 18-23 in each
read.

Our own method was trained on the 100 000 randomly selected
reads from chromosomes 1-8, considering the initial read position
and 20 nt upstream and downstream.

All datasets were mapped using Bowtie (Langmead ez gll, 2009)
using default parameters against, respectively, the hgl9, mm9,
rheMac2 and panTro2 genome assemblies obtained from the UCSC

Genome Browser (Karolchik et all, R00S).
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Fig. 4. The KL divergence compares the frequency of k-mers (here, for k=1 and k=4) surrounding the starts of aligned reads to the frequencies expected
under the assumption of uniform sampling from within exons. A large divergence indicates significant bias. Plotted here is the divergence from unadjusted

read counts as well as after adjusting read counts using each method.

3.1 Kullback-Leibler divergence

Plotting the nucleotide frequencies (Fig. [I), we observe an obvious
bias. To quantify the non-uniformity observed in these plots, we use

the symmetrized Kullback-Leibler (KL.) divergence (Kullback and
Leibler, ).

If i is the background frequency of a k-mer x, and f; the observed
frequency, the KL divergence is computed as

Di(f.f) =) (floga(fe /) +f{loga (f/f))

where the sum is over all k-mers. This can be thought of as a
measure dissimilarity between two probability distributions. If fx
and f; for a k-mer x are approximately equal, their log-ratio will be
approximately zero, leading to a small KL divergence (exactly zero,
when the distributions are equal). Conversely, very different k-mer
frequencies will result in a larger KL divergence.

When computing the KL divergence, there is a risk of the measure
being dominated by a small number of reads with many duplicates.
Yet, given the high coverage of the exons being tested, if duplicate
reads are excluded, it may not capture the full effect of bias
correction. To account for these opposing concerns, we adopt the
following method: all reads contained within the exon being tested
are ranked by the number of duplicates. We then exclude reads that
are ranked in the lower half, and count each read ranked in the upper
half only once, ignoring duplicates.

Under the assumption of uniform sampling, the set of reads
ranked in the upper half should not depend on sequence, and
we should expect the KL divergence to be low. We compute the
divergence by reweighting the read counts using the predicted bias
coefficient before ranking the reads, choosing those reads ranked
in the upper half of each exon, ignoring duplicate reads, and then
tallying frequencies of overlapping k-mers. The k-mer distribution
obtained is then compared to a background distribution obtained by
redistributing reads uniformly at random within their exons.

We repeated the procedure for ke{l,2,3,4,5,6}. The results
of this analysis are plotted in Figure @ for k=1 and k=4. The
remaining cases are plotted in Section 4 in Supplementary Material.

3.2 Poisson regression

In this comparison, we measure the uniformity of the data, or
more precisely how well the counts conform to a Poisson process.

The assumption of positional read counts following a Poisson
distribution is known to be a poor fit dS_rizas_Lala_andLh_Qd, |21)_lﬂ),
but measuring the improvement in the fit derived from correcting
for bias remains a principled and easily interpreted criterion. This
increase in uniformity is illustrated in Figure 21

We perform maximum-likelihood fitting of two models. In the
null model, the Poisson rate is fixed for each test exon. That is, for
position j within exon i, the rate is A;; =a; where a; is the parameter
being fit. For comparison, we then fit a model in which the rate is
also proportional to the predicted bias coefficients: A;j =a;bj;.

If the null model has log-likelihood L, and the bias-corrected
model L, a simple goodness of fit measure is the improvement in
log-likelihood [a statistic commonly known as McFadden’s pseudo-
coefficient of determination m, @)], defined as, R?=
1-L'/L.

This measure can be interpreted as the improvement in fit over
the null model, with RZ=1 indicating a perfect fit, occurring when
the model being evaluated achieves a likelihood of 1. Smaller
number indicate an increasingly worse fit, with RZ=0 representing
no improvement over the null model, and R2=0.5, for example,
indicating the model has a log-likelihood equal to half that of the
null model (a large improvement, corresponding to, for example, the
likelihood increasing over 100-fold if the initial log-likelihood was
—9.6, which is the mean per-position log-likelihood under the null
model). This measure has the added advantage that it can take on
values <0, indicating that the model has worse fit than the null model
(i.e. when adjusting read counts according the bias coefficients leads
to less uniform read coverage).

We compute R? for each of the test exons, giving us a sense
of the variability of the effectiveness of each model. The results
of this analysis are plotted in Figure Bl To summarize each model
with a single number, we can examine the median R? value, as
listed in Table 2l Our method shows a highly statistically significant
improvement in performance over other methods in all but one
comparison, in which the MART method performs equally.

3.3 RT-PCR correlation

We used sequencing data previously published by Au_er all

) to evaluate the effect bias correction has on correlation
to measurements made by TagMan RT-PCR, made available by
the the Microarray Quality Control project (IM M).
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Fig. 5. For each of the 1000 test exons, we compute McFadden’s pseudo-
coefficient of determination R?, equivalent to the improvement in log-
likelihood under the bias-corrected model. The statistic is positive, and
increases as uniformity is increased, and negative when uniformity is
decreased. Marked with asterisks are methods over which the BN approach
showed a statistically significant improvement when applied to the same
data, according to a one-sided Wilcoxon signed-rank test. In each of those
marked, we observed P <1023, Boxes are plotted to mark the 25, 50 and
75% quantiles, with whiskers extending to 1.5 times the interquartile range
(i.e. the span between the 25% and 75% quantiles), and dots marking more
extreme values.

Table 2. The median R? goodness of fit statistic across test exons

BN MART GLM Tmer
Wetterbom 0.174 0.016 0.066 —-0.079
Katze 0.280 0.243 0.158 0.033
Bullard 0.267 0.163 0.224 0.157
Mortazavi 0.240 0.210 0.197 0.091
Trapnell 0.289 0.289 0.248 0.138

The R? statistic measures increased uniformity in read coverage, after correcting for
bias. Here the median R? across the test exons is listed for each method and sample. A
higher R? indicates a better fit. The highest value in each row is highlighted in bold.

The RNA-Seq data shows a pattern of bias similar to that seen
in the other samples sequenced on an Illumina platform (Section
6 in Supplementary Material). This evaluation does not rely on an
assumption that qRT-PCR is necessarily more accurate than RNA-
Seqg-based quantification, only that qRT-PCR is not biased in the
same way as the RNA-Seq data.

To evaluate the efficacy of each of the bias correction methods
considered, we counted reads overlapping each gene, defining the
gene by the union of every transcript in release 60 of the Ensembl
gene annotations. Counts were then normalized by dividing by the

Table 3. The Pearson’s correlation coefficient r between log-adjusted read
counts and log-adjusted TagMan values

Method Correlation
Unadjusted 0.6650**
Tmer 0.6680**
GLM 0.6874**
MART 0.6998*
BN 0.7086

We estimated the statistical significance of the improvement in correlation using the
BN method over the other methods using a simple boostrap procedure. A bootstrap
sample is formed by sampling, with replacement, 648 genes from the original set of the
same size. The correlation is then computed for this set, using the adjusted count from
each method. We repeated this procedure one million times, and counted the number
of times each of the competing methods achieved a higher correlation than the BN
method. Those marked with a single asterisk achieved a higher correlation fewer than
1000 times, resulting ina P < 1073, Those marked with two asterisks achieved a higher
correlation in none of the bootstrap samples, indicating a P < 1076,

length of these genes. We then removed any genes with a read count
<10, or that did not correspond to a unique TagMan probe.

Each method was trained in a manner identical to that used in the
analysis of Sections 3.1 and 3.2, but without restricting the training
data to the first eight chromosomes. After adjusting read counts
according to the predicted sequence bias, we computed the Pearson’s
correlation coefficient r between log read counts and log TagMan
expression values, which are averaged across three replicates. These
correlations are listed in Table Bl Our method shows a statistically
significant increase in correlation compared with the other methods.

3.4 Robustness

Training our model on more reads leads to more accurate estimation
of bias, but an increasingly long training time. For example, in our
tests, fitting our model to 100 000 reads from the Mortazavi data,
training time was approximately 45 min, running on one core of a
3 GHz Intel Xeon processor. However, limiting the training to 25 000
reads leads to a model that is nearly as accurate while requiring
<4 min to train. A full discussion of this trade-off is provided in
Section 6 in Supplementary Material.

The quality of the solution depends also on two other parameters:
the standard deviation at which background sequences are sampled,
and the weight applied to the penalty term of the BIC, yet it is not
particularly sensitive to their values. (The median R? goodness-of-
fit statistic used in Section 3.2 varied by <25% as these parameters
were varied over a range of 10*. See Section 2 in Supplementary
Material.) The same is true of the pmax and dmax parameters, used
restrict the in-degree and edge distance of the model, respectively, in
order to control training time. Our tests show that these parameters
need only be greater than zero for an adequate model to be trained
for the Mortazavi data. In all our evaluation, no special tuning of
the parameters was performed, suggesting it can be used effectively
across datasets without any intervention.

Additionally, experimental and theoretical analysis suggest that
the procedure is very resistant to inclusion of extraneous parameters.
In Section 11 in Supplementary Material, we prove an upper bound
on the probability of our model predicting any bias, if the experiment
is in fact unbiased, showing that there very little risk in the applying
the method to an unbiased data set. In particular, if >10 000 reads are
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used in the training procedure, the probability that any adjustment
at all will is made is <0.0004.

4 DISCUSSION

We have demonstrated that sequence bias can confound, sometimes
severely, quantification in RNA-Seq experiments, and we have
introduced an effective method to account for this bias without
the need of existing gene annotations. The analysis provided
demonstrates that our method shows significant improvement in
three aspects: uniformity of read coverage, consistency of nucleotide
frequencies and agreement with qRT-PCR.

In our results, estimating initial heptamer frequencies was not
seen to be as effective as the other models, even when data generated
using random hexamer priming was used. A possible explanation is,
given the large number of parameters needed to estimate heptamer
frequencies (47 =16383), these parameters are estimated with less
accuracy than in models requiring fewer parameters. Yet, we trained
the 7mer model on a minimum of 1.9 million reads (Section 3 in
Supplementary Material), a number that based on theoretical results,
following from work by ) and included in Section 10 in
Supplementary Material for completeness, suggests should lead to
accurate estimates

A perhaps more significant factor is that this method does not
capture bias outside of the initial heptamer, though many datasets
clearly are affected by bias in other positions. Thus to improve the
performance, it seems necessary to increase the size of the k-mers
being considered. However, exponentially more reads would be
required for an accurate estimate since the accuracy of the model,
as quantified by its KL divergence from the true distribution, is
(r—1)/2n, where r=4% is the number of parameters that must be
estimated (Section 10 in Supplementary Material).

Our method generalizes this approach, attempting to overcome
this problem by using an estimation of sequence probability that
requires fewer parameters and can account for bias outside of the
initial heptamer. In all our tests, this approach was at least as effective
as those of ), despite not requiring gene annotations
or manual selection of training examples.

We have not performed any direct comparison to the method
described by [Roberts et glf 2011) and implemented in Cufflinks

,M). Though this method is superficially similar
to our own, a proper comparison is difficult, as the software cannot
be applied independently of estimating transcript abundance in
FPKM (fragments per exonic kilobase, per million mapped reads)
using Cufflinks. Fairness would dictate that competing methods
be substituted in FPKM estimation, or that a separate interface be
written to the Cufflinks bias correction method—both comparisons
requiring significant effort.

Though the Cufflinks method and our own both use graphical
models to estimate sequence probabilities, we make no restriction
on the graph other than acyclicity. We go to considerable effort
to efficiently approximate the optimal structure for each dataset
rather than using a fixed structure, as in Cufflinks. A ‘one size
fits all’ approach likely works quite well in many cases, yet the
observed specificity of the bias to protocol and platform argues
against it. For example, the structures learned by our method (Fig.[3)
are considerably different between those sequenced on an [llumina
platform versus an ABI platform, and even vary within platform.

During the review of this article, another method addressing
sequence bias in RNA-Seq was published by W M).
Rather than fitting a model of the specific base-level sequence bias
surrounding read start, they propose making adjustments according
to summary statistics at the gene level. Such an approach is
disadvantaged in its inability to model the very specific pattern
of sequence bias we have observed. Yet, such an approach is
efficient, and though we have not yet evaluated it, claimed to be
effective.

Because we do not require annotations, ChIP-Seq, and other
high-throughput sequencing experiments, may also benefit from
our model. In a preliminary investigation, we found the sequence
bias in one ChIP-Seq experiment , ) was less
than that observed in any of the RNA-Seq data we evaluated,
however, our method is still able to effectively correct for the bias
that was observed (Section 7 in Supplementary Material). Protocol
differences, as we have seen, can result in significant differences in
observed nucleotide frequencies, so we cannot safely assert that bias
in ChIP-Seq data is always low. Given the weak assumptions made
by our model, our estimation of bias could easily be incorporated
into ChIP-Seq peak-calling algorithms, and potentially improve
accuracy.

To determine the extent to which polymerase chain reaction
amplification is responsible for the observed bias, we evaluated
data from the FRT-Seq method proposed by

). FRT-Seq avoids the PCR amplification step during library
preparation with reverse transcription occurring on the flowcell
surface. We observed that this data is not free from sequence
bias, yet unlike other data generated on the Illumina platform, it
appears to be effected only by relatively few positions adjacent
to the read start (Section 8 in Supplementary Material). Other
protocol improvements might further reduce sequence bias. Notably,
promising work by layaprakash er afl @2011)) proposes a pooled
adapter strategy to deal with this issue in small RNA sequencing
experiments.

RNA-Seq is most often used to compare levels of expression,
and so a natural concern is the consistency of the bias between
samples. In the data we examined, the bias appears to be largely,
but not entirely consistent (Section 9 in Supplementary Material).
Similarly, in Figure [Tl the three datasets sequenced on the Illumina
platform display similar patterns of non-uniformity, yet differ in
magnitude, suggesting that batch effects in RNA-Seq remain a
legitimate concern that should not be dismissed without evaluation.

In summary, we have demonstrated a relatively simple graphical
model that effectively corrects for sequence bias pervasive in RNA-
Seq, and to a lesser extent, ChIP-Seq experiments. In our tests,
this model performs at least as well, and often better than existing
methods, and involves fewer requirements or assumptions. Our
model leads to more accurate quantification, and would likely
provide a positive benefit when incorporated into downstream
analysis.
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