Skip to main content
. 2012 Jan 27;28(7):907–913. doi: 10.1093/bioinformatics/bts053

Table 2.

Parameters in the model are learned using the EM algorithm as discussed below, while hyper-parameters are fixed to the value given

Parameter Description Value
δ Pseudo counts in Dirichlet prior on π gN\gT AA AB BB
AA 1e5 1e2 1e2
AB 1e2 1e3 1e2
BB 1e1 1e1 1e3
π Multinomial distribution over joint genotypes Estimated by EM (M-step)
Gi Genotype at position i Estimated by EM (E-step)
axi Number of bases matching the reference genome at position i in genome x∈{N, T} Observed (JointSNVMix1 only)
ax:jxi Indicator that base jx at position i matches reference in genome x∈{N, T} Latent (JointSNVMix2 only)
zx:jxi Indicator that base jx at position i is correctly aligned x∈{N, T} Latent (JointSNVMix2 only)
dxi Depth of coverage at position i in genome x∈{N, T} Observed
qx:jxi Probability that base call is correct in genome x∈{N, T} Observed (JointSNVMix2 only)
rx:jxi Probability that alignment is correct in genome x∈{N, T} Observed (JointSNVMix2 only)
μx:gx Parameter of Binomial distribution for genotype gx in genome x∈{N, T} Estimated by EM (M-step)
αx:gx α parameter in Beta prior distribution on μx:gx AA AB BB
Normal 1000 500 2
Tumour 1000 500 2
βx:gx β parameter in Beta prior distribution on μx:gx AA AB BB
Normal 2 500 1000
Tumour 2 500 1000
HHS Vulnerability Disclosure