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Abstract

Researchers use community-detection algorithms to reveal large-scale organization in biological and social networks, but
community detection is useful only if the communities are significant and not a result of noisy data. To assess the statistical
significance of the network communities, or the robustness of the detected structure, one approach is to perturb the
network structure by removing links and measure how much the communities change. However, perturbing sparse
networks is challenging because they are inherently sensitive; they shatter easily if links are removed. Here we propose a
simple method to perturb sparse networks and assess the significance of their communities. We generate resampled
networks by adding extra links based on local information, then we aggregate the information from multiple resampled
networks to find a coarse-grained description of significant clusters. In addition to testing our method on benchmark
networks, we use our method on the sparse network of the European Court of Justice (ECJ) case law, to detect significant
and insignificant areas of law. We use our significance analysis to draw a map of the ECJ case law network that reveals the
relations between the areas of law.

Citation: Mirshahvalad A, Lindholm J, Derlén M, Rosvall M (2012) Significant Communities in Large Sparse Networks. PLoS ONE 7(3): e33721. doi:10.1371/
journal.pone.0033721

Editor: Alessandro Vespignani, Northeastern University, United States of America

Received September 28, 2011; Accepted February 15, 2012; Published March 30, 2012

Copyright: � 2012 Mirshahvalad et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: MR was supported by Swedish Research Council grant 2009-5344. The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: atieh.mirshahvalad@physics.umu.se

Introduction

Network theory provides a good framework for studying systems

composed of many interacting components. Recently, researchers

have been interested in highlighting highly interconnected

structures, communities, in biological and social networks [1–8],

because often communities correspond to behavioral or functional

components. For example, in social networks, communities can

represent friendship groups; on the web, they can represent related

pages on a specific topic; and in metabolic networks, they can

represent cycles or other functional groupings. Here we show that

communities can also capture disciplines of judgements in case law

systems [9]. However, similar to many real-world networks, the

network of ECJ case law is sparse because of missing links. The

challenge in finding significant structures in sparse networks is

twofold: random noise directly propagates to the community

results, and communities easily shatter because of missing links. To

find reliable communities in sparse networks with missing links,

here we propose a simple method based on link prediction. First

we show that our method performs well on benchmark networks.

Then we apply our method to the ECJ case law network and

generate a significance map of EU law.

Researchers use two main approaches to find statistically

significant communities in networks: approaches based on explicit

underlying null models in the clustering algorithms and approach-

es based on perturbation techniques. In the null-model approach-

es, communities are significant if the probability of finding them in

a random network is lower than a given threshold [10–12]. This is

a solid approach when we are interested in how a network was

formed. But when researchers are interested in highlighting

functional aspects of an instantiated network, such as dynamics on

a given network, they often use perturbation techniques [13–16].

Taking this approach, researchers assume random noise in the

data. When they perform the statistical analysis, they repeatedly

perturb and cluster the data and then aggregate the results.

Therefore, they can use any clustering algorithm and are not

restricted to a particular null model. But for many sparse networks,

the main source of error is not random noise in the data, but

rather missing links with different effects on the clustering. For

example, many clustering algorithms identify more clusters in

sparse networks than in the corresponding networks without

missing links [17,18]. Accordingly, we consider a network to be

sparse if a clustering algorithm finds significantly more modules

after a fraction of the links have been removed. To take this

shattering effect into account when we perform significance

analysis on sparse networks with missing links, we introduce

resampling based on link prediction.

To assess the significance of sparse networks with missing links,

we combine perturbation techniques and link prediction. In

practice, we resample sparse networks by completing triangles. For

undirected networks, completing triangles corresponds to the

simple and effective link prediction method called common

neighbor [19]. With this approach, our aim is to add links that

are missing because of insufficient data but avoid connecting nodes

that factually are disconnected. After explaining our approach in

detail, first we show that we can recover shattered modules in

benchmark networks as long as the mixing between modules is

moderate and not too many links are deleted. Then we apply the

method to identify significant areas in the network of ECJ case law.

This network consists of more than 8,000 court cases connected by

about 32,000 citations over the time period 1954–2010, clearly a
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sparse network. We create a significance map and connect several

insignificant clusters into complete areas of EU law.

Methods

Resampling based on Completing Triangles
To generate resamples of inherently sensitive sparse networks,

we need a method that efficiently adds extra links while preserving

the core structure of the network. That is, if we apply community

detection algorithms for partitioning sparse networks with missing

links, we will often find small shattered modules. On the other

hand, if we just add links randomly to prevent shattering, most

likely we will connect nodes that should be disconnected because

they are not directly related. Accordingly, we note that the

problem of aggregating shattered modules by adding links is

similar to the problem of predicting missing links. Missing links

prediction methods operate by estimating the likelihood of a link

between a pair of vertices based on their similarity. To evaluate the

similarity between vertices based on the structural properties of the

network, indices like common neighbors [19], Jaccard coefficient

[20], degree product, shortest paths, and hierarchical structure

[21] have been proposed and used to predict future links on real

data [22]. All similarity indices use specific assumptions about the

positions of the missing links that often make them complicated

and computationally expensive to calculate. But these assumptions

might not reveal meaningful information in all real networks. To

significantly analyze networks’ communities by generating resam-

pled networks, however, we do not need to exactly predict missing

links; we only need to add extra links in a non-destructive way so

we can measure the robustness of the communities. Therefore, we

perturb sparse networks with a simple and general method:

triangle completion. That is, we complete a fraction of open

triangles that exist in the original data, see Figure 1. By adopting

triangle completion, we assume that communities should have

high density of triangles. With this implicit null model, we can

aggregate related shattered communities with a simple and general

assumption about the network. Triangles are the smallest unit of

communities, and completing them strengthens local connections

and the important core of the communities. As a result, shattered

communities combine with each other and the community size

grows. Figure 1 shows an example network in which black links

indicate existing links in the network and the four inner circles

correspond to communities in the network. When we add links by

completing the triangles (dashed lines), we aggregate the small

communities into two big communities. Of course, by completing

triangles we might add links between nodes that should not be

connected. If more information is available about the network,

other more sophisticated null models that may work better can be

applied [21,22]. But as we show in the next section, the simple and

general triangle completion method performs well on benchmark

networks.

Benchmark Networks
To validate our method, we tested triangle completion followed

by clustering with the infomap algorithm [23] on artificial networks

with a built-in community structure. The benchmark graphs that

we use resemble real-world network and was introduced by

Lancichinetti et al. [24]. The benchmark networks have tunable

exponents and we use exponent {2 for the degree distribution

and exponent {1 for the community size distribution. Further,

the mixing parameter m determines the ratio between the external

degree of a node with respect to its community and the total

degree of that node. We use this framework to generate undirected

networks with built-in community structures. Figure 2A schemat-

ically shows a network with 100 nodes and four built-in

communities. By removing 50% of the links, communities fall

apart and small modules are detected (Figure 2B), But with

triangle completion, related shattered modules are combined with

each other (Figure 2C).

To quantitatively show that triangle completion perturbs the

network in a non-destructive way, we used normalized mutual

information (NMI) to measure the similarity between the

community structure of the original network and the community

structure of the perturbed network [25,26].

Figure 3 shows the result of using the perturbation method on

benchmark networks with 1000 nodes, average degree SkT~10,

community sizes between 10 and 50, and two different levels of

mixing between communities. We generated sparse networks with

missing links by randomly removing 30 and 60 percent of the links

in the benchmark networks. In the figure, we use relative link

perturbation to refer to the normalized difference between the

number of links in the perturbed and unperturbed network. The

first row shows the result of triangle completion for low mixing,

m~0:25, and well-defined communities. Low m, less than 0.5,

means that, on average, each node has more links going to nodes

within the same community than to nodes in other communities.

So when we use our triangle completion method for perturbing

such networks, we strengthen the structure inside the communities

more than the structure between the communities. Therefore, we

amplify the coarse-grain structure of the network, and the

community structure of the perturbed network will be similar to

the community structure of the original network, disregarding the

number of extra links that we added. This reasoning is valid both

when we perturb the original raw network and when we perturb

the reduced networks. By adding extra links to the reduced

networks, shattered and weakly connected modules aggregate and

module sizes grow. For reference, the gray lines in Figure 3 show

that if we randomly add links, we completely destroy the

community structure of the network.

We use the ratio between the average module size of the

perturbed network, vSiwlink{added , and the average module size

of the original network, vSiworiginal , to quantify module growth:

MS ratio~
vSiwlink{added

vSiworiginal

ð1Þ

When the built-in community structure is well-defined for low m,

the module size ratio does not exceed one and the community

structure never collapses. On the other hand, in networks with

high m and comparable number of links within and between

communities, we destroy the community structure. That is, when

we use triangle completion to perturb the network, module sizes

grow quickly and finally collapse (Figure 3C,D). We have also

analyzed networks with large communities, varying in size

between 20 and 100 nodes, and found similar results. When

completing triangles, the mutual information remains approxi-

Figure 1. Completing triangles followed by clustering aggre-
gate shattered communities. Dashed lines show different possibil-
ities for completing triangles.
doi:10.1371/journal.pone.0033721.g001
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mately constant and module sizes grow toward the original sizes as

long as the mixing parameter is sufficiently low. In general, we find

that m~0:5 is the threshold at which triangle completion works

(Figure 4). When m is higher than 0.5, there are not enough

regularities in the network to use for non-destructive perturbation.

Figure 4 also shows that for denser and less challenging networks, the

difference between triangle completion and random link addition

decreases. For sufficiently dense networks, other methods, including

link removal, can be used. But the more sparse the network is, the

better is triangle completion over random link addition.

By repeatedly completing triangles and clustering link-added

networks, we can generate bootstrap resamples for assessing

significant communities in sparse networks with missing links. In

the next section, we use this resampling technique to identify

significant and insignificant communities in the network of ECJ

case law.

Results and Discussion

ECJ case Law Network
Case law is continuously evolving and changing over time. New

cases build on old cases and areas of law emerge, vanish, evolve or

remain constant over time. Citation patterns between cases allow

us to track and capture the evolution of areas of law. For example,

Bommarito II et al. used a dynamic citation network to find

meaningful clusters in the network of the United Supreme Court

by means of a distance measure [27]. Here we use approximately

32,000 citations between more than 8,000 court cases (1954–2010)

from the Court of Justice of the EU to better understand the

overall structure of ECJ case law.

The European Court of Justice ensures the correct interpreta-

tion and application of EU law [28]. When it comes to the

judgments of the ECJ, legal scholars traditionally begin by

Figure 3. Test of triangle completion on unweighted undirected benchmark networks. The panels show the similarity between the
community structure of the original and the perturbed networks as a function of relative link perturbation, in A and B for low module mixing and in C
and D for high module mixing. Panels A and C quantifies the similarity in terms of the normalized mutual information (NMI) and panels B and D
quantifies the similarity in terms of the module size ratio. Filled circles correspond to the similarity after link removal. Open symbols correspond to the
similarity after subsequently adding links by triangle completion (colored circles) and random link addition (gray squares). Link addition starts at 0, 30,
and 60 percent link removal. Each point corresponds to an average over 100 networks.
doi:10.1371/journal.pone.0033721.g003

Figure 2. Triangle completion aggregates shattered modules. Original network with 4 communities in A, removing links leads to small
shattered communities in B, and completing triangles in the shattered network integrates small communities in C.
doi:10.1371/journal.pone.0033721.g002
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distinguishing cases primarily concerning substantive issues from

cases primarily concerning constitutional issues. Substantive issues

regard questions about specific rights and obligations of individ-

uals, Member States, and EU institutions under EU law. However,

constitutional issues regard questions about the division of power

between EU and Member States or the duties of Member States to

enforce substantive rights. We find that the distinction between

substantive and constitutional issues is supported by the network of

ECJ case law. In addition to being substantive or constitutional,

every judgment has also a procedural dimension in the sense that

the ECJ enjoys jurisdiction over each case on one of eleven

possible grounds [29]. More information about the Court’s cases is

available on the EU law website [30].

We generated and clustered bootstrap networks from the

network of ECJ case law to detect significant areas of law and to

better understand the overall structure. In the time-directed

network of ECJ case law, each vertex corresponds to a court case

and an arc from case A to case B shows that the newer case A cites

the older case B, as schematically illustrated in Figure 5. Similar to

many other time-directed networks, the network of ECJ case law is

sparse, as, in the beginning, there were few cases to cite. However,

because the number of cases increases with time, new cases have

more options to cite. Completing the triangles in the time-directed

network of ECJ case law corresponds to one of the three situations

depicted in Figure 5. In all three situations, the added citation

corresponds to a potential citation that we predict could have been

considered and materialized in the first place.

To show that our perturbation method does not destroy the

core structure of the law network, we would like to compare the

community structure of the link-added network to the community

structure of the original raw network in terms of NMI. But the

actual community structure of the original raw network is not

known in this case. To overcome this problem, we use the case law

directory code, the official classification system of the court, as our

reference point. With this reference point, the NMI will be low but

when we complete triangles we can use the trend of the NMI to

validate our method. As Figure 6 shows, perturbing the ECJ case

law network by completing triangles does not destroy the core

structure of the network. For example, even when we make the

network 12 times denser, NMI stays almost constant, but at the

same time, the module sizes grow as we desire.

For a significance analysis of the ECJ case law network, we first

partition the network with a clustering algorithm to capture

regularities in the raw network. To cluster with respect to citation

flow between the court cases, we use the map equation framework

with a generalized flow model for time-directed networks [23].

However, we emphasize that the significance analysis method

works for any clustering algorithm. To assess the significance of

detected clusters, we generate 100 resample networks by the

triangle completion method without making any assumption about

the underlying distribution of the resampled networks. Each

resample network has twice the number of links as the raw

network. Then we partition all resampled networks by using the

same clustering method we used for the raw network. To identify

Figure 4. The success of triangle completion depends on the module mixing. Similarity between the community structure of the original
network and the perturbed networks for three different average degrees SkT as a function of the module mixing parameter m. In panel A the
similarity is quantified in terms of the normalized mutual information (NMI) and in panel B the similarity is quantified in terms of the module size ratio.
Filled lines and circles correspond to triangle completion and dashed lines and open circles correspond to random link addition. No links were
removed prior link addition and the number of links were doubled in all networks by link addition. Each point corresponds to an average over 100
networks.
doi:10.1371/journal.pone.0033721.g004

Figure 5. Three possibilities for completing triangles in the
time-directed network of ECJ case law. Given two citations
between three cases, A being more recent than B, which in turn is more
recent than C, we can complete triangles in three different situations.
Panel A: If a new case A cites two older cases B and C, but B does not
cite C, we can make B cite C. Panel B: If a new case A cites B, and B cites
C but A does not cite C, we can make A cite C. Panel C: If two new cases
A and B both cite an old case C and the newest case A does not cite B,
we can make A cite B.
doi:10.1371/journal.pone.0033721.g005
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significant clusters, cluster cores, we search for the biggest subset of

nodes in each cluster that gathered together in more than 90% of

the resampled networks. We define the size of a subset to

correspond to the number of nodes in the subset and also to the

volume of flow through the subset, weighted equally. So by finding

the core of each cluster, we can assess which nodes significantly

belong to a cluster and which do not. In addition to identifying

significant and insignificant nodes within each cluster, the

resampled networks can provide us with information about which

clusters are significantly stand-alone and which are probably

subsets of other clusters. We consider a cluster as significantly

stand-alone if its core is not partitioned with another cluster in at

least 90% of the resampled networks. That is, two clusters are

mutually insignificant if their cores are partitioned together in

more than 10% of the resampled networks. In this regard, each

cluster could be insignificant with more than one other cluster,

which means there is not enough support from the data for these

clusters to exist as significantly stand-alone.

Figure 7 shows the map of the ECJ case law network illustrating

the 40 top clusters, which we have manually named by analyzing

which cases are clustered together. The size of nodes and links

represent the citation flow within and between clusters, and we

have highlighted mutually insignificant clusters by blue shaded

areas.

Figure 6. Completing triangles in the court case network generates non-destroyed resample networks. Panel A: Normalized mutual
information (NMI) between the original network and the link-added networks as a function of the relative link perturbation. Panel B: Module size ratio
between the original network and the link-added networks as a function of the relative link perturbation. Each point corresponds to an average over
100 runs.
doi:10.1371/journal.pone.0033721.g006

Figure 7. Map of ECJ case law. We partitioned 8,200 court case documents with 32,000 citations. Afterwards, we generated 100 resampled
networks using the triangle completion method. By clustering these resampled networks and comparing them to the clustering of the raw network,
we can estimate how much support the data provide in partitioning the raw network. The map represents the 40 top modules. Insignificant clusters
and their mutually insignificant friends are shaded with blue areas.
doi:10.1371/journal.pone.0033721.g007
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Several of the identified clusters represent well-established areas

of law. One example is Equal treatment (125 cases with 25 cases in

the significant core, or 25/125 cases for short), which aggregates

cases concerning discrimination of individuals based on national-

ity. Less intuitive, but seemingly valid, is the clustering of cases

concerning the justification of such discrimination into a separate

cluster, Justifying unequal treatment of persons (113/134 cases).

Interestingly, completing triangles aggregates not these two

clusters but the latter with cases concerning Members States’

(MS) justification of other violations of substantive rights in the

highlighted area MS justifying restrictions of basic freedoms in Figure 7.

Legal scholars have speculated in a convergence of these areas of

law without being able to conclusively demonstrate this trend.

Another example of a structure that does not fit squarely into the

traditional legal classification is Borderline cases in the internal market

(36/74 cases). The cluster works as a hub between different areas

of law, bringing together cases involving several different

substantive issues, including inter alia equal treatment.

The significance map in Figure 7 demonstrates that a single

clustering of the sparse network is insufficient and can be

misleading. For example, the map contains two clusters repre-

senting cases concerning Value Added Tax (VAT) (83/113 and

89/101 cases, respectively), even though there are no considerable

differences between cases belonging to the two clusters. The

significance analysis reveals that the two clusters are not

significantly stand alone, because the significant cores are clustered

together in 80 percent of all bootstrap networks. By completing

triangles and aggregating the clusters, we can resolve the problem

caused by missing links. The same is true for Public service contracts

(33/60 and 25/46 cases with 83 percent co-clustering of significant

cores). The same is also true for Infringement proceedings (10/58, 34/

44, and 2/51 cases with 31 percent co-clustering between the least

co-clustered pair of significant cores) and Adoption & review of EU

legislation (51/116, 31/43, and 5/38 cases with 31 percent co-

clustering between the least co-clustered pair of significant cores).

These clusters are also interesting because the cases are clustered

based on the grounds for jurisdiction (procedural clusters), which

would likely be absent in a more traditional legal categorization of

the case law.

We also find, somewhat surprising from a legal perspective, that

substantive, constitutional, and procedural clusters are closely

related. For example, we find that there is a strong relationship

between National procedural autonomy (28/77 cases), which aggregates

cases concerning the constitutional issue of procedural adequacy of

national courts enforcing EU law, and The principle of equal pay (74/

84 cases), a cluster representing the substantive issue of the right of

men and women to equal pay for equal work. The pattern of

interconnected substantive and constitutional clusters remains on

the level of aggregated clusters. Completing triangles and

aggregating mutually insignificant clusters reveal a strong

relationship between the highlighted constitutional area Effective

enforcement and the highlighted substantive area Equality between men

and women.

These results confirm that combining our resampling method

with the significance analysis of the preliminary clusters can

provide reliable aggregated clusters that help us better understand

the modular organization of a system with missing information.

To summarize, using communities as the principal component

of complex systems is reliable only if the communities are

statistically significant and not the result of noisy or incomplete

data. To assess the significance of communities in networks with

missing links, we have suggested a simple approach that perturbs

the sparse networks in a constructive way by adding links based on

triangle completion. The remaining challenge is to estimate the

optimal number of links to be added, but our benchmark tests

indicate that results are insensitive to the number of added links.

We used our method to identify significantly stand-alone

communities and aggregate mutually insignificant communities

in the sparse network of European Court of Justice case law. With

a significance map of ECJ case law, for the first time we can

analyze the large-scale organization of European law. We have,

for example, identified structures and relationships that do not fit

into the traditional legal classification system and empirically

confirmed trends that legal scholars have only speculated in.

Author Contributions

Conceived and designed the experiments: AM MR. Performed the

experiments: AM MR. Analyzed the data: AM JL MD MR. Wrote the

paper: AM JL MD MR.

References

1. Girvan M, Newman MEJ (2002) Community structure in social and biological

networks. Natl Acad Sci USA 99: 7821–7826.

2. Radicchi F, Castellano C, Cecconi F, Loreto V, Parisi D (2004) Defining and

identifying communities in networks. Natl Acad Sci USA 101: 2658–2663.

3. Newman MEJ (2004) Fast algorithm for detecting community structure in

networks. Phys Rev E 69: 066133.

4. Danon L, Dı́az-Guilera A, Arenas A (2006) The effect of size heterogeneity on

community identification in complex networks. Stat Mech 2006: P11010.

5. Blondel VD, Guillaume JL, Lambiotte R, Lefebvre E (2008) Fast unfolding of

communities in large networks. Stat Mech 2008: P10008.

6. Hastings MB (2006) Community detection as an inference problem. Phys Rev E

74: 035102.

7. Rosvall M, Bergstrom CT (2007) An information-theoretic framework for resolving

community structure in complex networks. Natl Acad Sci USA 104: 7327–7331.

8. Palla G, Derenyi I, Farkas I, Vicsek T (2005) Uncovering the overlapping

community structure of complex networks in nature and society. Nature 435:

814–818.

9. Leicht EA, Clarkson G, Shedden K, Newman ME (2007) Large-scale structure

of time evolving citation networks. Eur Phys J B 59: 75–83.

10. Spirin V, Mirny LA (2003) Protein complexes and functional modules in

molecular networks. Proceedings of the National Academy of Sciences 100:

12123–12128.

11. Lancichinetti A, Radicchi F, Ramasco JJ (2010) Statistical significance of

communities in networks. Phys Rev E 81: 046110.

12. Lancichinetti A, Radicchi F, Ramasco J, Fortunato S (2011) Finding statistically

significant communities in networks. PloS one 6: e18961.

13. Gfeller D, Chappelier JC, De Los Rios P (2005) Finding instabilities in the

community structure of complex networks. Phys Rev E 72: 056135.

14. Karrer B, Levina E, Newman MEJ (2008) Robustness of community structure in

networks. Phys Rev E 77: 046119.

15. Hu Y, Nie Y, Yang H, Cheng J, Fan Y, et al. (2010) Measuring the significance

of community structure in complex networks. Phys Rev E 82: 066106.

16. Rosvall M, Bergstrom CT (2010) Mapping change in large networks. PLoS

ONE 5: e8694.

17. Reichardt J, Leone M (2008) (un)detectable cluster structure in sparse networks.

Phys Rev Lett 101: 078701.

18. Lancichinetti A, Fortunato S (2009) Community detection algorithms: A

comparative analysis. Phys Rev E 80: 056117.

19. Lorrain F, White HC, Math J (1971) Structural equivalence of individual in

social networks. Sociol 1: 49.

20. Jaccard P (1901) Distribution de la ore alpine: dans le bassin des dranses et dans

quelques régions voisines. Bulletin de la Societe vaudoise des Sciences Naturelle

37: 547.

21. Clauset A, Moore C, Newman MEJ (2008) Hierarchical structure and the

prediction of missing links in networks. Nature 453: 98–101.

22. Liben-Nowell D, Kleinberg J (2007) The link-prediction problem for social

networks. JASIST 58: 1019–1031.

23. Rosvall M, Bergstrom CT (2008) Maps of random walks on complex networks

reveal community structure. Natl Acad Sci USA 105: 1118–1123.

24. Lancichinetti A, Fortunato S (2009) Benchmarks for testing community

detection algorithms on directed and weighted graphs with overlapping

communities. Phys Rev E 80: 016118.

Significant Communities in Large Sparse Networks

PLoS ONE | www.plosone.org 6 March 2012 | Volume 7 | Issue 3 | e33721



25. Danon L, Dı́az-Guilera A, Duch J, Arenas A (2005) Comparing community

structure identification. J Stat Mech. P09008 p.

26. Lancichinetti A, Fortunato S, Kertész J (2009) Detecting the overlapping and

hierarchical community structure in complex networks. New J Phys 11: 033015.

27. II MJB, Katz DM, Zelner JL, Fowler JH (2010) Distance measures for dynamic

citation networks. Physica A 389: 4201 - 4208.

28. EUR-Lex website. Article 19 (1) of the treaty on european union. Available:

http://eur-lex.europa.eu/en/treaties/index.htm. Accessed 2011 Sep, 1.
29. EUR-Lex website. Articles 258–273 in treaty on the functioning of the european

union. Available: http://eur-lex.europa.eu/en/treaties/index.htm. Accessed

2011 Sep, 1.
30. EUR-Lex website. Access to european union law. Available: http://eur-lex.

europa.eu Accessed 2011 Sep, 1.

Significant Communities in Large Sparse Networks

PLoS ONE | www.plosone.org 7 March 2012 | Volume 7 | Issue 3 | e33721


