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Abstract

Gonadotropin Regulated Testicular RNA Helicase (GRTH/Ddx25) is a testis-specific multifunctional RNA helicase and an
essential post-transcriptional regulator of spermatogenesis. GRTH transports relevant mRNAs from nucleus to cytoplasmic
sites of meiotic and haploid germ cells and associates with actively translating polyribosomes. It is also a negative regulator
of steroidogenesis in Leydig cells. To obtain a genome-wide perspective of GRTH regulated genes, in particularly those
associated with polyribosomes, microarray differential gene expression analysis was performed using polysome-bound RNA
isolated from testes of wild type (WT) and GRTH KO mice. 792 genes among the entire mouse genome were found to be
polysomal GRTH-linked in WT. Among these 186 were down-regulated and 7 up-regulated genes in GRTH null mice. A
similar analysis was performed using total RNA extracted from purified germ cell populations to address GRTH action in
individual target cells. The down-regulation of known genes concerned with spermatogenesis at polysomal sites in GRTH
KO and their association with GRTH in WT coupled with early findings of minor or unchanged total mRNAs and abolition of
their protein expression in KO underscore the relevance of GRTH in translation. Ingenuity pathway analysis predicted
association of GRTH bound polysome genes with the ubiquitin-proteasome-heat shock protein signaling network pathway
and NFkB/TP53/TGFB1 signaling networks were derived from the differentially expressed gene analysis. This study has
revealed known and unexplored factors in the genome and regulatory pathways underlying GRTH action in male
reproduction.
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Introduction

The testis contains diverse cell populations including somatic

Leydig/ Sertoli cells and germ cells (undifferentiated diploid

spermatogonia, meiotic spermatocyte, haploid spermatid and

spermatozoa). Leydig cells present in the interstitial cells

compartment adjacent to the seminiferous tubules contain the

steroidogenic enzymes and steroid precursors to produce andro-

gens that are essential for germ cells development. Sertoli cells

located at basal sites of seminiferous tubules, act as nurse cells of

the developing sperm cells. Testicular function is controlled

primarily by pituitary gonadotropins (LH/FSH) that bind to

specific gonadal receptors (LH receptor in Leydig cells FSH

receptor in Sertoli cells) to regulate steroid production and

gametogenesis [1,2]. In conjunction with FSH, androgens

stimulate the production of proteins and other factors essential

for germ cells differentiation [3,4]. The process of germ cells

development from spermatogonia into mature spermatozoa

depends on the integrated expression of an array of genes in a

precise temporal sequence [5,6]. Two thirds of the mRNAs in the

adult mammalian testes are associated with specific proteins as

messenger ribonuclear protein (mRNP) complex. mRNAs are

transported from nucleus to the cytoplasm where messages are

translationally repressed presumably in the chromatoid body of

round spermatids and where can also undergo degradation

[7,8,9,10]. Translational activation of stored mRNAs transported

to polyribosomes at specific times is critical for the progression of

spermatogenesis.

Gonadotropin regulated testicular RNA helicase (GRTH/

Ddx25) is a testis specific member of the DEAD box family of

RNA helicase [9,10,11,12,13]. It contains 483 aa and shares the 9

conserved signature motifs found in members of the DEAD box

family of RNA helicases. This helicase displays ATP binding and

hydrolysis, RNA binding and RNA unwinding activities [11]. It is

the sole family member to be hormonally regulated. GRTH is

regulated by gonadotropin/androgen in Leydig cells and germ

cells of the testis [12,13] where its expression is both cell- and

stage-specific. It is highly expressed in pachytene and metaphase

spermatocytes and round spermatids, where it regulates the

expression of crucial proteins in sperm maturation including H4,

HMG2, TP1, TP2, PGK2, ACE and protamines 1 and 2 [13,14].

As a component of messenger ribonucleoprotein particles, GRTH

participates in the transport of specific mRNAs to cytoplasmic sites

(Chromatoid body of round spermatids) for storage of mRNAs and

prior to their translation at specific times during spermatogenesis

[13,14,15]. Also, through its association with polyribosomes
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GRTH may regulate the translation of messages encoding

spermatogenic factors [14]. GRTH null mice are sterile and lack

sperm due to the failure of round spermatids to elongate, resulting

in complete arrest at step 8 of spermiogenesis [13]. There is also a

major decrease in size of the chromatoid body in GRTH KO

mice, consistent with the marked reduction of nuclear-cytoplasmic

transport of messages relevant to spermiogenesis, presumably

stored in these organelles [14,15].

In Leydig cells, GRTH has been recently demonstrated to

regulate the expression of genes involved in cholesterol synthesis

and transfer (SREBP2, HMG-CoA and StAR) [16]. This helicase

regulates cholesterol availability at the mitochondrial level through

its negative role on StAR message stability. This consequently

impacts the cholesterol transport to the inner mitochondrial

membrane which is essential for pregnenolone synthesis and

ultimately androgen production. GRTH is the first helicase

reported to display a novel negative autocrine control of the

androgen production in the male.

Since GRTH is a multifunctional RNA helicase that is an

essential post-transcriptional regulator of spermatid development

and the completion of spermatogenesis and has important role in

the regulation of steroid synthesis, it is important to obtain a

genome-wide analysis of messages associated with GRTH in

different types of testicular cells, and their associations with

polyribosomes, to gain further insights into GRTH action.

Comparison of genes associated with actively translating poly-

somes isolated by sucrose gradient of testis extracts from wild type

and GRTH knockout mice was performed to obtain differential

gene profiles regulated by GRTH. Among them, messages

associated with GRTH were identified from polysomes of WT

mice testes immunoprecipitated by GRTH antibody. Subsequent-

ly differential mRNA expression profile of purified testicular cells

extracts was also examined to determine specific GRTH

regulation in Leydig and germ cells. A bioinformatic approach

utilizing Ingenuity pathway software was further applied to predict

the potential network signaling pathways to obtain a global aspect

of GRTH regulation. The differential set of genes derived from the

present study serve as foundation for the understanding of the

molecular mechanism of spermatogenesis under GRTH control in

the testis.

Materials and Methods

Animals
Adult GRTH wild type and GRTH2/2 male mice were housed

in temperature and light-controlled conditions. All animal studies

were approved by the National Institute of Child Health and

Human Development Animal and Care and Use Committee.

Animals were killed by asphyxiation with CO2 and decapitated.

Testes were removed and decapsulated for total testicular RNA

extraction, polysome preparation or testicular cells preparation.

Leydig cells (interstitium) and germinal cells (seminferous tubule)

were prepared (see below) and further purified for RNA

extraction.

Testicular Cells Preparation
Leydig cells were prepared by collagenase dispersion and

purified by centrifugal elutriation [17]. Testicular germ cells

(round spermatid and spermatocyte) were prepared by collage-

nase/trypsin dispersion and purified by centrifugal elutriation

[12,18]. After collagenase dispersion, seminiferous tubules were

minced and incubated in Medium 199 containing 0.1% bovine

serum albumin, 0.1% trypsin (Sigma), and 17 mg/ml DNase

(Sigma) for 15 min in a rotary water bath (80 rpm, 35uC). After

the addition of soybean 0.04% trypsin inhibitor, the sample was

filtered through a 300-, 90-, 40-mm mesh screen, and glass wool

and cells were pelleted and re-suspended in elutriation buffer

containing 2 mg/ml DNase. Spermatocytes were subsequently

separated and purified by centrifugal elutriation using Beckman

Avanti 21B centrifuge with elutriator rotor model J 5.0 as

described previously. The first 2 fractions (1 and 2) were collected

with flow rates of 31.5 and 41.4 ml/min at 3000 rpm, and 2

additional fractions (3 and 4) were obtained with flow rates of 23.2

and 40 ml/min at 2000 rpm. Cells were identified on air-dried

smears, fixed in Bouin’s fixative, and stained with hematoxylin and

periodic acid-Schiff. Fractions 2 and 4 contain round spermatids

and pachytene spermatocytes at a purity of 84 and 86%,

respectively. The purification of germ cells is assessed based on

the morphology of different germ cells types and in case of Leydig

cells on the functional validation and histochemical staining for

3ß-hydroxysteroid dehydrogenase using nitro- blue tetrazolium

[17].

Polysome preparation
Polysomes were isolated using sucrose-gradient fractionation

essentially as previously described [14]. Briefly, mouse testes were

homogenized in hypotonic buffer A (25 mM Tris, pH 7.5,

100 mM KCL, 5 mM MgCl2, 1 mM dithiothreitol) containing

protease inhibitors and cycloheximide (100 mg/ml) using a

Dounce homogenizer. Lysates were centrifuged at 5006 g for

5 min to separate nuclear from cytoplasmic fraction. Sucrose

gradients (7–47%) in buffer A were prepared using a gradient

mixer (Biocomp, Fredericton, N.B. Canada). The cytoplasmic

fraction (20 A260) was applied onto the linear sucrose gradient (7–

47%) and subsequently centrifuged at 260,0006 g (Beckman

SW41 rotor) for 150 min. Twenty 600-ml fractions were collected

using an Isco density gradient fractionator (Teledyne Isco, Inc,

Lincoln, NE) equipped with a 5-mm path length density gradient

flow cell and a UA-6 UV/vis detector with built-in chart recorder.

GRTH Co-immunoprecipitation
Polysome prepared from WT mice testis extracts were initially

subjected to pre-clearing by incubation with 40 ml of protein A

agarose (50% of slurry) and 2 mg of normal rabbit or mouse

immunoglobulin G (lgG) in the immunoprecipitation assay buffer

with gentle agitation. The recovered supernatant was incubated

with polyclonal GRTH antibody (2 mg) raised in rabbits against

GRTH peptide (aa. 465–477) and further purified by peptide

affinity chromatography utilizing GRTH peptide coupled to

CNBr activated Sepharose 4B [12,14] or rabbit IgG (as control)

for 2 h at 4uC in the presence of 16 protease inhibitor mixture

(Roche Applied Sciences) to co-immunoprecipitate the GRTH–

RNP complex. 50 ml of protein A-agarose in 50% slurry was

added, and the incubation was continued for overnight at 4uC.

Protein A-precipitated GRTH–RNP complex was recovered by

brief centrifugation followed by three-times washes with assay

buffer. The supernatant of IgG group was recovered as the control

containing all the RNA species.

RNA preparation and Microarray analysis
Total RNA was extracted from testicular polysome, GRTH/

IgG immunoprecipitated polysome and purified testicular cells

samples using TRIZOL reagent (Invitrogen, Carlsbad, CA)

followed by micro RNA kit according to the manufacture’s

protocol. Target preparation, labeling, hybridization of RNA to

mouse genome (Affymetrix 430-2.0) and scanning were performed

using the Affymetrix protocol. Three chips were used for each

experimental design. Briefly 1 mg of total RNA was reverse
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transcribed by using either one step (polysome or germ cells) or

two steps (GRTH/IgG immunoprecipitated samples) target

labeling procedure followed by fragmentation of the cRNA and

hybridization to the chips. A confocal scanner was used to collect

the fluorescence signals and the average signal from two sequential

scans was calculated for each microarray. Affymetrix GCOS

software was initially used to analyze and quantify the hybridized

array. GenespringGX 11.5 software was used to quantify

expression levels for targeted genes. Each analysis was based on

triplicate samples. Lists of differentially expressed transcripts were

generated statistically by using unpaired t-test corrected by

Benjamini-Hochberg method with a P value cutoff of #0.05. A

filtering criteria was applied to the analysis, including genes raw

signal value of larger than 100, presence of the signal in all replica

and fold change at least larger than 2. Internal control of RNA

sample hybridization quality was monitored in each array

according to manufacture protocol.

Functional Network Analysis
IPA (version 9.0, www.ingenuity.com) was used to construct

network predictions on all significantly expressed genes with at

least 2-fold change (p,0.05). Gene symbol was used as the

identifier and Ingenuity knowledge gene database was used as a

reference for the pathway analysis. Top score ranked networks

with p,0.01 were chosen to report in the study.

RT-PCR and Real-time PCR quantification of gene
expression

Total RNA prepared from the testicular polysome was treated

with DNase I to remove any possible co-purified genomic DNA.

1 mg of RNA was reverse transcribed using a SuperScript III First

Strand Synthesis System (Invitrogen) containing a mixture of

oligo(dT)20. The first-strand cDNA was used as a template in real-

time PCR with SYBR Green Master Mix and an ABI 7500

sequence detection system (Applied Biosynthesis). The cycling

program was set as follows: denature at 95uC for 10 min, followed

by 45 cycles of 95uC for 15 s and 60uC for 1 min. Specific primers

for gene of interests were designed accordingly. The specificity of

the PCR products was verified by melting curve and agarose gel

analyses. The results presented are from three individual experi-

ments, in which each sample was assayed in triplicate, normalized to

the level of b-actin mRNA, and expressed as fold of wild type.

Figure 1. Differential expression of testicular polysome-associated genes in GRTH2/2 compared to WT mice. (A). A continuous
sucrose-gradient (blue line, 7–47%) fractionation of wild type (WT) and GRTH2/2 (KO) mouse testis. Location of ribosomal subunits (40S and 60S),
monoribosome (80S) and polyribosomes as indicated in the profile. RNA was extracted from the pooled of polysome fractions and used for
microarray analysis. (B). Venn diagram of the overlap (red color) between total GRTH antibody immuno-precipitated (IP) polysomal mRNA messages
(792) in WT mice testes and differentially expressed testicular polysomal genes (307 down and 53 up) in GRTH knockout compared to wild type mice.
Top panel: down regulated genes. Lower panel: up regulated genes.
doi:10.1371/journal.pone.0032470.g001
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Results

Differential expression of testicular polysome associated
genes in the wild type and GRTH knockout mice

To examine the translational regulatory role of GRTH

resulting from its association with RNA messages at polysomal

sites, microarray studies were first conducted by comparing the

differential mRNA expression pattern in the testicular polysomes

of wild type and GRTH knockout (KO) mice. A typical

polysome profile was observed in both WT and GRTH KO

mice (Fig. 1 A). Using the RNA extracted from the pooled

polysomal fractions as the probe for the microarray analysis of

the entire mouse genome (Affymetrix 430.20), 307 genes were

found to be significantly down-regulated (Table S1A) and 53

genes (Table S1B) up-regulated in the testicular polysomes of

GRTH KO mice. To further identify the differentially expressed

messages found in the GRTH null mice that might be associated

with GRTH, initially study total GRTH-associated mRNAs in

the testicular polysomes of wild type adult mice followed by

Venn diagram analysis.

Identification of polysome bound RNA as an integral
component of GRTH-mRNP (messenger ribonuclear
protein particles) complexes

To identify polysome-bound RNAs associated with GRTH,

RNA extracted from immunoprecipitated (IP) testicular polysomes

of WT with GRTH peptide antibody was used as the probe for

microarray analysis. The specificity of the GRTH antibody (Ab)

used in the present study has been previously demonstrated in the

GRTH KO mice with completely absence of the GRTH protein

[13] (negative control), and by an in vitro overexpressed GRTH

protein [12] (positive control). In addition we have use the specific

peptide as competitor inhibitor of the antibody-GRTH associa-

tion. Success of immunoprecipitation (IP) using GRTH Ab is

routinely validated by the presence of CRM1 since GRTH is

known to interact with CRM1 involved in nuclear export pathway

for mRNA transport from nuclear to the cytoplasm sites [14]. 792

genes (Table S2) were immunoprecipitated from total RNA

messages associated with polyribosomes. IgG was used as control.

60.6% of testicular down-regulated (186 /307) and 13.2% (7/53)

up-regulated genes derived from the differential analysis (see

Figure 2. Network pathway analysis of mRNA messages associated with GRTH in testicular polysomes of WT mice. (A–E). Five
different top score of the associated network pathway predicted by the ingenuity pathway analysis (IPA) are presented. The network was constructed
by genes with shape representing functional class of the gene product (www.ingenuity.com). Genes in light pink color are the polysomal mRNA
message immunoprecipitated by GRTH antibody. Uncolored genes are predicted by ingenuity pathway knowledge data base as the biological
relevance to that network. Solid line: direct interaction. Dotted line: indirect interaction. (F). IPA predicts eight different top score (p,0.5) of molecular
and cellular functions in the testicular polysomal mRNA messages associated with GRTH protein in adult mice.
doi:10.1371/journal.pone.0032470.g002
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above, Fig. 1A and Table S1A) were associated in testicular

polysomes as GRTH-RNA complexes in wild type mice. These

were revealed by intersecting the mRNAs from total testis (307

down- and 53 up-genes) with GRTH-IP associated with polysomes

(792 genes) by Venn diagram (Fig. 1B). Gene lists of GRTH

protein associated with either 186 down- or 7 up- regulated genes

in testicular polysomes of GRTH null mice are shown in Table S3

A & B.

To learn the significance of the genes derived from the above

microarray analysis in relation to GRTH regulation in the testis,

we performed comprehensive bioinformatic analysis using Inge-

nuity pathway (IPA) software (www. Ingenuity.com) to assess

integrated function and pathways of these polysomal GRTH

bound mRNAs (792) (Fig. 2) and those GRTH-bound differen-

tially expressed genes revealed in these studies (GRTH WT versus

KO) (Fig. 3). An overview of the 792 GRTH-bound mRNAs

noted in WT pointed to genes involved in protein synthesis,

cellular development, reproductive system development and

function among others (Fig. 2F). IPA further reveals five top score

networks including genes highly relevant to post-translational

modification, protein degradation/synthesis pathway and to

cellular function, DNA replication, recombination, tissue devel-

opment, cellular growth, proliferation and death (Fig. 2A–E). The

first network (Fig. 2A) with centered nuclear factor kappa B

(NFkB) complex connects to the network of ubiquitin/ubiquitin

conjugating enzymes (UBE2:G1, G2, D2, V2, W). This further

links to proteasome and ring finger proteins (RNF: 11, 103, 130,

138). Ubiquitin-like modifier activating enzyme 1 (UBA1) is also

shown to interact with meiotic synaptonemal complex protein 1

(SYCP1) and histone cluster 1 H2AB/H2AE (Hist1H2AB/

HIST1H2AE) (Fig. 2A). The second network (Fig. 2B) includes

the heat shock protein complex (HSP) with members, Hsp90

(Hsap90AA1), Hsp70 and Hsp70 like (Hspa1l, Hspa4l), members

of Hsp40 family (DNAJB7, DNAJC5B, DNAJA4, DNAJC17,

DNAJB4), Hsp27 (HspB1) and Hsp10 (HspE1). Histone cluster 2

H2AC (HIST2H2AC) links to Hsp90 via testis-specific serine

kinase 6 (TSSK6). It also interacts with transcriptional regulator,

DEK oncogene (DEK). Ddx25 (GRTH) and the germ cells

specific messages including outer dense fiber of sperm tails (ODF)

and chromatin remodeling transition protein 1 and 2 (TP1/2) are

also present in this network. Network 3 includes Akt as centered

gene signaling, cAMP dependent protein kinase A (PRKAC)

complex and members of A kinase anchor proteins (AKAP).

Tubulin associated network with biological function in apoptosis,

cell cycle and germ cell-Sertoli cell junction signaling is part of this

network (Fig. 2C). Network 4 includes transcriptional coactivator

Figure 3. Network pathway analysis of differentially expressed testicular polysomal GRTH bound-mRNAs between GRTH2/2 and
WT mice. IPA predicts four different top score of down (d)-regulated (A–D) networks and one up (u)-regulated (E) network in the genes differentially
expressed between GRTH KO versus wild type testicular polysome. tp # (d/u) nt * - testicular polysomal mRNAs (t) immunoprecipitated by GRTH
antibody (p) 186 (d) or 7 (u) network (nt). Genes in color green (down-regulated), red (up-regulated) and uncolored (biological relevance to the
network with no change in expression between WT and GRTH2/2).
doi:10.1371/journal.pone.0032470.g003
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(EP300) and protein kinase C and Prion protein (PRNP) centered

pathway (Fig. 2D). Network 5 includes nuclear factor kappa BIA

(NFkBIA) (a member of I-k B proteins which inactives NFkB

complex formation) and Dynein (Dnyll1, Dynll2, DnynRB1,

DynlT3) centered complexes. DAZ2 restricted to premeiotic

spermatogonia is also associated with Dynein associated pathway.

Regarding to the networks associated with differentially

expressed GRTH bound genes in testicular polysome observed

in the GRTH null mice, four top score networks of down

regulated genes (tp.186d.nt1–4) (Fig. 3A–D) and one network of

up regulated genes (tp.7u.nt1) (Fig. 3E) were predicted by IPA.

The first down-regulated network (tp.186d.nt1) consists of 35

nodes and included 23 down-regulated expressed genes. HSP,

NFkB and DDx25 are the three centered complex pathways

(Fig. 3A). Network 2 (tp.186d.nt2) consists of factors acting on

Huntington’s disease signaling (HTT), HNF4A and cAMP

signaling (Fig. 3B). Network 3 (tp.186d.nt3) consists of 13 down-

regulated genes of total 33 nodes indirectly associated with

estrogen action (ESR1) (Fig. 3C). Network 4 (tp186d.nt4) includes

ubiquitin, (UBE21)/cyclic AMP response element binding protein

(CREB1) and transcriptional factor specific for folliculogenesis

helix loop protein (FIGLA) (Fig. 3D). All 7 of up-regulated GRTH

bound polysomal messages (tp.7u.nt1) participate TP53-, Myc-

and transforming growth factor TGFB1 centered pathway

(Fig. 3E). The predicted network information of those non-GRTH

associated differentially expressed genes (46 up and 121 down,

Fig. 1C) is provided in Fig. S1.

Identification of differentially expressed GRTH associated
mRNAs in the polysome of purified testicular cells

Because the above studies in isolated polysomes were not

feasible to be performed in purified testicular cell populations due

Figure 4. IPA analysis of differentially expressed genes in spermatocytes of GRTH2/2 compared to WT mice. (A). Venn diagram analysis
of the overlap among differentially regulated genes in spermatocytes (left panel,139 down or right panel, 51 up-regulated genes), in testicular
polysomes (left panel, 307 down - or right panel, 53 up-regulated genes) and polysomal GRTH IP genes noted in WT mice (792 genes). Tpoly3fd or
Tpoly3fu: .3 fold (f) down (d) or up (u)- regulated genes found in testicular polysomes (Tpoly); sp2fd or sp2fu: .2 fold down- or up-regulated genes
found in spermatocytes (sp); GRTHIP: mRNA messages were immunoprecipitated (IP) by GRTH antibody in testicular polysomal fraction of wild type
mouse testis. (B). IPA predicts one top score of network (nt) function in 51 down regulated genes (A, in red) associated with GRTH protein in
polysomes of spermatocytes. stp: spermatocytes (s), testicular polysome (t) and GRTH IP (p). Genes in color green (down-regulated) and uncolored
(relevant biological genes to the network with no change in expression between WT and GRTH2/2).
doi:10.1371/journal.pone.0032470.g004
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to the limited sample size to attain their purification, a different

approach was followed for this part of the study. First, RNA

extracts from purified testicular cells of WT and GRTH KO mice

including Leydig and germ cells (spermatocytes and round

spermatids) were subjected to microarray analysis. These studies

revealed that 139 genes down-regulated and 51 genes up-regulated

in spermatocytes (Table S4A & 4B), 216 genes down–regulated

and 326 genes up-regulated in round spermatids (Table S5A & 5B)

and 144 mRNAs down-regulated and 155 up-regulated in Leydig

cells of KO versus WT (Table S6A & 6B). Subsequently Venn-

diagram was used to detect transcripts that were regulated by

GRTH as polysomal GRTH-bound messages (indicated in the

center space of the three circles) by intersecting GRTH regulated

genes of particular testicular cell type with differentially expressed

down- and up- regulated genes in total testicular polysomes

(Fig. 1A, 307 down- or 53 up-regulated genes) and GRTH IP

polysomal samples (792 genes, Table S2) to draw conclusions.

85% ((51/51+9), 83.5% (70/70+14) and 90% (18/18+2) of

GRTH IP transcripts from polysomes (intercept) of spermatocytes

(Fig. 4A, left panel), round spermatids (Fig. 5A, left panel) and

Leydig cells (Fig. 6A, top panel), respectively were found in

testicular polysomes. Less than 7% of down-regulated GRTH IP

genes were not present in the total testicular polysome which

validate this analytic approach [Spermatocytes: 9/135+51+9

(Fig. 4A, left panel), Round spermatids: 14/70+116+14 (Fig. 5A,

left panel), LC: 2/168+18+2 (Fig. 6A, top panel)]. GRTH

regulated genes localized at cytoplasmic sites other than polysomes

were outside the region intersecting the specific cell type with total

polysome of both down regulated - and GRTH IP- transcripts

(Fig. 4A, Spermatocytes: 67 genes, Fig. 5A, Round spermatids,

100 genes; Fig. 6A, Leydig cells: 114 genes). Very few up-regulated

genes were found as GRTH associated in polysomes of Leydig

cells only (3 genes) (Fig. 6B, left panel) but none in either

spermatocytes or round spermatids (Fig. 4A & 5A, right panel).

The complete gene lists of GRTH-associated messages in

polysomes of individual testicular cells are shown in Table S7.

Within 51 down-regulated GRTH IP genes in polysomes of

spermatocytes, IPA predicted a network highly involved in cellular

development, reproductive development and function (stp.51d.nt).

This includes Ddx25 and TP53 centered interactions (Fig. 4B).

Figure 5. IPA analysis of differentially expressed genes in round spermatids of GRTH2/2 compared to WT mice. (A). Venn diagram
analysis of the overlap among differentially regulated genes in round spermatids 2216 down (left panel)- and 326 up (right panel) -regulated
genes , in testicular polysomes (307 down - or 53 up-regulated genes) and polysomal GRTH IP genes noted in WT mice (792 genes). Tpoly3fd or
Tpoly3fu: .3 fold (f) down (d) or up (u)- regulated genes found in testicular polysomes (tpoly); rs3fd or rs3fu: .3 fold down- or up-regulated genes
found in round spermatids (rs); GRTHIP: mRNA messages were immunoprecipitated (IP) by GRTH antibody in testicular polysomal fraction of wild
type mouse testis. (B). IPA predicts two top score of network (nt) function in 70 down- regulated genes (A, in red) associated with GRTH protein in
polysomes of round spermatids. rtp: round spermatids (r), testicular polysome (t) and GRTH IP (p). Genes in color green (down-regulated) and
uncolored (relevant biological genes to the network with no change in expression between GRTH2/2 and WT).
doi:10.1371/journal.pone.0032470.g005

GRTH Regulation of Polysomal mRNAs in Mouse Testis
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Two top score networks are noted in round spermatids: Network 1

includes possible 14-3-3 mediated signaling (YWHAZ) pathway

(rtp70d.nt.1) and network 2 (rtp70d.nt.2) associates with TGFB1

and TP53 signaling. Both link to cellular development/growth/

proliferation and cell cycle (Fig. 5B). In Leydig cells, one potential

network of those 18 down-regulated genes predicted by IPA

(ltp18d.nt) is TP53 centered pathway including Ddx25, EIF4E and

ADC (Fig. 6A, right panel). 3 up-regulated genes, fatty acid

binding protein (FABP5), stearoyl-CoA-desaturase (Scd2) and

sulfotransferase family 1E (Sult1E1) participate in fatty acid

biosynthetic process, lipid metabolism and steroid metabolism

(Fig. 6B, right panel, ltp.3u.nt). The overall networks for the

differentially expressed genes in each cell types predicted by IPA

are shown in supplemental figures: spermatocytes (Fig. S2), round

spermatids (Fig. S3) and Leydig cells (Fig. S4).

Validation of differential gene expression in polysomes of
mouse testis

The validation criteria is based on GRTH known functions as a

male specific gene and essential during spermatogenesis including

Figure 6. IPA analysis of differentially expressed genes in Leydig cells of GRTH2/2 compared to WT mice. (A) and (B). Left panel-
Venn diagram analysis of the overlap among differentially regulated genes in Leydig cells (144 down - and 155 up-regulated genes), in total testicular
polysomes (307 down - or 53 up-regulated genes) and polysomal GRTH IP genes noted in WT mice (792 genes). Tpoly3fd or Tpoly3fu: .3 fold (f)
down (d) or up (u)- regulated genes found in testicular polysomes (tpoly); lc3fd or lc3fu: .3 fold down- or up-regulated genes found in Leydig cells
(lc); GRTHIP: mRNA messages were immunoprecipitated (IP) by GRTH antibody in testicular polysomal fraction of wild type mouse testis. Right
panel. IPA predicts one network (nt) function in (A) 18 down- and (B) 3 up- regulated genes (A, in red) associated with GRTH protein in polysomes of
Leydig cells. ltp: Leydig cells (l), testicular polysomes (t) and GRTH IP (p). Genes in color green (down-regulated), red (up-regulated) and uncolored
(relevant biological genes to the network with no change in expression between WT and GRTH2/2).
doi:10.1371/journal.pone.0032470.g006
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chromatin remodeling process, spermatid elongation, RNA

helicase functions, apoptotic effect, transport, and its role in

steroidogenesis. In the case of up- regulated genes, we randomly

selected 8 out of 53 genes since very little is known about them at

the present time. The expression of selected individual genes

within the polysomal fractions (WT and KO) was determined by

real time RT-PCR. These for the most part were in good

agreement with the array data and only in few cases the fold-

change did not match. Eight categories of genes are presented

based on the biological and molecular functions (Fig. 7).

Background of individual genes is shown in Table 1 [13–15,30–

67]. Decreases in the protein expression level such as ACE, Tp1/2

and protamine 1 and 2 in GRTH knockout mice have been

validated (not shown). The IPA predicted three network functions

from these validated differentially expressed genes in testicular

polysomes (Fig. 8). Each network consists of 35 nodes. Top score

network (Fig. 8A) presents 11 out of 34 down-regulated genes and

6 out of 8 up-regulated genes. NFkB, TGF b and DDX25 are the

three center interacting genes of the signaling network. The 2nd

network (Fig. 8B) consists of 9 down- and 2 up- of the validated

differentially expressed 42 genes. It associates with Tumor necrosis

factor (TNF), Caspase 3 (Casp3) and phospholipase C (PLC) and

link to cellular apoptotic signaling. The 3rd network (Fig. 8C)

consists of 8, down- and one (Eva1) up- out of the validated genes

and directly or indirectly link to HNF4A for TGF-b signaling

pathway.

Discussion

Global analysis of gene expression in GRTH KO compared to

wild-type mouse testis by microarrays revealed cell specific

targeted gene regulation by GRTH. More than 50% mRNAs of

down-regulated genes were associated with GRTH in polysomes.

Unlike the down-regulated genes, the majority of up-regulated

genes (.87%) were free transcripts (non-polysome bound). Most

of up-regulated genes were found in round spermatids.

To expand the repertoire of genes connected with the various

functions of GRTH in the testis, we first applied molecular

network modeling to evaluate the entire set of pathways

modulated by GRTH bound transcripts in testicular polysomes.

The ubiquitylation-proteasome network pathway ranked the

highest score among GRTH-bound gene transcripts in testicular

polysomes (Fig. 2A). Ubiquitin, ubiquitin-like proteins, different

type of E2-like conjugating enzymes, 26 s proteasome and ring

finger proteins, known to interact with ubiquitin/E2D2, are

present in this pathway. Since ubiquitin dependent post-transla-

Figure 7. qRT-PCR validation of representative differentially expressed genes in testicular polysomes of GRTH2/2 versus WT mice.
Expression of a panel of candidate genes in GRTH2/2 (KO) and wild type (WT) was chosen for further validation by RT-PCR. Gene expression level
from three independent experiments were quantified and normalized by b-actin (means 6 se). The KO values are presented as percentages of WT.
The overall trends of expression by real time PCR were in agreement with the array data. Top and middle panels: down-regulated genes. Bottom
panel: up-regulated genes.
doi:10.1371/journal.pone.0032470.g007

GRTH Regulation of Polysomal mRNAs in Mouse Testis

PLoS ONE | www.plosone.org 9 March 2012 | Volume 7 | Issue 3 | e32470



tional modifications are essential in male germ cells development

and quality control [19], a GRTH-linked ubiquitin-proteasomal

process could be envisioned as a critical step to regulate gene

expression during spermatogenesis. IPA also suggests the impor-

tance of a group of functionally related heat shock proteins (HSP)

that could act as chaperons or be involved in the folding/unfolding

of GRTH-targeting proteins relevant for germ cells development

(Fig. 2B). The binding partner of HSP90, testicular specific serine/

threonine kinase (TSSK6) and also TSSK6 phosphorylated

histone (H2A) are present in the HSP network system. TSSK6 is

essential for male fertility for its impact on chromatin remodeling

in elongating spermatid [20]. TSSK6 is decreased in the testicular

polysome of GRTH null mice (Fig. 7) which are sterile with

spermatids that fail to elongate [13]. This indicates the importance

of TSSK6-HSP pathway via GRTH regulation in male repro-

duction. The relevance of GRTH-HSP action is further supported

by the evidence that the majority of these HSP signaling molecules

were down-regulated in the absence of GRTH (Table S1A). These

molecules were also grouped in the highest score IPA predicted

network signaling with HSP at its center in the pathway (Fig. 3A,

tp.186d.nt1). GRTH associated mRNA messages of histone cluster

1, H2AB/H2AE also link to ubiquitin-like modifier activating

enzyme 1 (UBA1) and further extend to the ubiquin network

signaling (Fig. 1A, Nt.1). Because of the essential role of histone

ubiquitination in the chromatin remodeling to permit transition

proteins /protamines replacement leading to final mature germ

cell production [21,22,23], this GRTH-histone-ubiquitin network

offers an additional regulatory route of GRTH action to be

explored during spermatogenesis.

Profiles of differentially regulated genes as GRTH-mRNA

complexes in the polysomes of individual testicular cells (Fig. 9)

were predicted by Venn diagram. Candidate genes were identified

by overlapping the total polysomal GRTH-bound genes with

differentially down-regulated genes present in both testicular

polysomes and total cellular extracts of purified testicular cells

(spermatocytes, round spermatids or Leydig cells). The three way-

rather than two way- overlapping the gene lists of GRTH- IP with

those of total cellular extracts exclude potential analytic error in

the prediction. From the entire mouse genome, 1.8% of GRTH-

bound genes were associated with polysomes. 51 genes in

spermatocytes, 70 genes in round spermatids and 18 genes in

Leydig cells were down-regulated in GRTH KO mice (Fig. 9 and

Figure 8. Network function of validated differentially expressed genes in testicular polysomes of GRTH2/2 versus WT mice. Three
top score of the associated network pathways from validated genes (Fig. 7) were presented by ingenuity pathway analysis (IPA). Genes in color green
(down-regulated), red (up-regulated) and uncolored (relevant biological genes to the network with no change in expression between WT and GRTH
KO).
doi:10.1371/journal.pone.0032470.g008

GRTH Regulation of Polysomal mRNAs in Mouse Testis

PLoS ONE | www.plosone.org 10 March 2012 | Volume 7 | Issue 3 | e32470



Table 1. Background of the validated differentially expressed testicular polysomal genes in GRTH2/2 compared to WT mice.

Gene Microarray data Gene Description Function

DDX family DDX25 polysome, IP, sp,rs,lc Gonadotropin regulated testicular
RNA helicase

Multifunctional RNA helicase: translation, RNA
transport, CB structure integrity, steroid synthesis
[13,14,15].

Down regulated gene in GRTH KO mice verified by RT-PCR

Spermatogenesis tACE polysome Testis-specific angiotensin-
converting enzyme

Transporting of tACE from nucleus (N) to cytoplasm (C) is reduced
in the absence of GRTH [13,14].

TP1 polysome, IP Transition protein 1 Chromatin remodeling [30].

TP2 polysome, IP, sp Transition protein 2 Chromatin remodeling, mRNA translocation efficiency from N to C
is regulated by GRTH [13,14].

Prm1 polysome, IP Protamine 1 Chromatin remodeling [30].

Prm2 polysome, IP, sp protamine 2 Chromatin remodeling [30].

ADC polysome, IP, sp,rs,lc arginine decarboxylase Ornithine metabolic/polyamine biosynthetic process [31].

Smcp polysome, IP Sperm mitochondria-associated
cysteine-rich protein

Binding of spem to zona pellucida, sperm motility [32,33].

HMG2 polysome High mobility group 2 protein DNA binding/bending activity, protein but not mRNA expression is
regulated by GRTH [13,14].

PGK2 polysome Mus musculus phosphoglycerate
kinase 2

Transporting of PGK2 from nucleus to cytoplasm is reduced in the
absence of GRTH [13,14].

Trim36 polysome Tripartite motif protein 36 Acrosome reaction [34].

Txndc2 polysome, IP Mus musculus thioredoxin domain
containing 2

Spermatogenesis (spermatozoa)/ thiol-disulfide exchange
intermediate activity [35].

Histone H1fnt polysome, IP H1 histone family, member N, testis-
specific

Sperm nuclear elongation/H1fnt exclusively in haploid spermatids
[36].

Hils1 polysome, IP Histone H1-like protein in
spermatids 1

Sperm nuclear elongation/localized to the nuclei of round and
elongating spermatids [37].

H4 polysome, IP Histone 4 One of core histone for nucleosome assembly, protein not RNA
expression is regulated by GRTH [13,14].

Heat schok protein Hspa1l polysome, IP, rs Heat shock protein 1-like ATP binding, expressed in elongating and elongated spermatids
[38].

Dnajb4 polysome, IP DnaJ (Hsp40) homolog, subfamily B,
member 4

Protein folding [39].

DNA/RNA regulation Cpeb3 polysome, IP Cytoplasmic polyadenylation
element binding protein 3

CPEB3 is a sequence-specific translational regulatory protein [40].

Rangap1 polysome, IP RAN GTPase activating protein 1 Signal transduction/GTPase activator activity [41,42].

Rbm4b polysome RNA binding motif protein 4B mRNA processing [43].

Eef1d polysome, IP Eukaryotic translation elongation
factor 1 delta

Translational elongation [44].

Tle3 polysome, IP, rs Transducin-like enhancer of split 3,
homolog of Drosophila E(spl)

Spermatogenesis/transcriptional regulation [45].

TSSK family Tssk2 polysome Testis-specific serine kinase 2 Spermatogenesis/phosphorylation serine/threonine kinase activity
[46,47].

Tssk3 polysome, IP, sp,rs,lc Testis-specific serine kinase 3 Spermatogenesis/phosphorylation serine/threonine kinase activity,
expressed in Leydig cell [46,47].

Tssk6 polysome, IP, sp,rs Testis-specific serine kinase 6 Sperm chromatin condensation/localized to heads of elongating
spermatids [46,47].

Death Gene Bag1 polysome Bcl2-associated athanogene 1 Hsp70-binding protein that can collaborate with Bcl-2 in
suppressing apoptosis [48].

Bcl2l14 polysome Bcl2-like 14 (apoptosis facilitator) BCL-G/BCL2L14 gene and that induction of this gene contributes
to p53-mediated apoptosis [49].

Hipk1 polysome,rs Homeodomain interacting protein
kinase 1

DNA damage response/signal transduction by p53 class/nuclear
serine/threonine kinases [50].

Tmem23 polysome Transmembrane protein 23 Sphingomyelin synthase 1 [51,52].

Lipid metabolism Acsl1 polysome, IP Acyl-CoA synthetase long-chain
family member 1

Lipid metabolic process/fatty acid degradation [53].

Acsbg2 polysome, IP Acyl-CoA synthetase bubblegum
family member 2

Lipid metabolic process [54].

Plcz1 polysome Phospholipase C, zeta 1 Lipid metabolic process/phospholipase C activity [55,56].
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Table S7). Within this population, 35 genes are commonly present

in both spermatocytes and round spermatids and 12 out of these

genes are also present in Leydig cells (Table S7). IPA predicted

overall agreement in their network function associated with

cellular development and reproductive system (Fig. 4C, 5C and

6B) which is consistent with the earlier defined critical role of

GRTH function in germ cell development [13,24].

The present IPA analysis also shows the active participation of

NFkB complex network in GRTH mediated action. This network

(Fig. 2A) linked to GRTH associated transcripts either directly to

proteasome or indirectly to the molecules such as Fas apoptotic

inhibitory molecule (FAIM), ring finger protein 11, ubiquitin E2

(UBE2), ubiquitin specific protease (OTUB2), ubiquitin, mito-

chondrial transcriptional factor A (TFAM), antioxidant peroxir-

edoxin 4 (Prdx4), gene encoding ATPase associated with energy

conservation/transport (ATP6AP2) and sex determining region Y

box 5 (SOX5) involved in Wnt-b-catenin signaling. In the absence

of GRTH, the NFkB complex is also presented as the center in the

pathway connected to polysomal down-regulated genes heat shock

protein HSPA1L, OTUB2, cell proliferation regulator 3-phos-

phoinostide dependent protein kinase 1 (PDK1) and protein kinase

A (Fig. 3A, tp186d.nt1). In an early study, we found that GRTH

promotes the NFkB mediated anti-apoptotic pathway through

controlling the transfer of NFkB dimers from cytoplasm to the

nucleus. This consequently stimulates the transcription of anti-

apoptotic genes including Bcl-2 and Bcl-xL [24]. Since NFkB

signaling plays a crucial role in the proliferation, survival and

differentiation of the cells, the predicted NFkB network provides a

potential mechanistic angle to GRTH mediated action through

controlling expression of these genes and further impacting on

NFkB signaling to control apoptosis in testicular germ cells of

adult mice [24].

It is also of interest the finding of the tumor suppressor protein

TP53/transforming growth factor b1 (TGFB1) network as the

major pathway not only in the up-regulated GRTH associated

messages extracted from total testicular polysomes (Fig. 3E,

tp.7u.nt1) but also in down-regulated messages from individual

testicular cells: spermatocytes (Fig. 4B, stp.51d.nt), round sperma-

tids (Fig. 5B, rtp70d.nt) and Leydig cells (Fig. 6A-right panel,

ltp18d.nt). TP53 responds to various cellular stresses to regulate

the cell cycle and genomic stability, whereas TGFB1, a member of

TGFb superfamily of cytokines, positively or negatively regulates

cell fate pending on interacting molecules and particular cellular

context. Expression of TP53 [25,26] and TGFB1 [27,28] is

developmental dependent in the testis. TP53 is known to play a

role in spermatogonial differentiation [26] and meiotic progress of

spermatocytes [25]. On the other hand, TGFB1 is known to

participate in Sertoli/germ cell interaction and the onset of

spermatogenesis [29]. Although GRTH does not apparently alter

the mRNA level of either gene, TP53 protein was found

significantly increased in the spermatocytes of GRTH null mice

[24]. The evidence of several differentially regulated genes

regardless the testicular cell type converging to a common main

network of TP53/TGFB1 pathway (Fig 4, 5, 6) underscores the

important regulatory role of GRTH-TP53-TGFB1 linkage in

male reproduction and fertility control.

To further gain insights into the GRTH regulatory action in

polysomes, the differential profile of a panel of genes with

diversified biological/cellular functions was confirmed by reverse-

transcription and real time PCR analysis (Fig. 7). This study

revealed an undiscovered panel of GRTH regulated genes shown

in Table 1. The differential profile of a panel of genes with

diversified biological/cellular functions was confirmed by reverse-

transcription and real time PCR analysis (Fig. 7). Among these

genes, similar change at both cellular and polysomal level of

GRTH KO mice was observed only in ADC, and TSSK3 which

are commonly down-regulated in all three types of testicular cells

[spermatocytes (SP), round spermatids (RS) and Leydig cells (LC)].

Table 1. Cont.

Down regulated gene in GRTH KO mice verified by RT-PCR

Stard polysome StAR-related lipid transfer (START)
domain containing

Steroid biosynthetic process/cholesterol binding/lipid transport
[57].

Others Pex2 polysome Peroxin 2 Peroxisome organization/biogenesis [58].

Prdx6-rs1 polysome Peroxiredoxin 6, related sequence 1 Lipid catabolic process/antioxidant activity [59].

Up regulated genes in GRTH KO mice verified by RT-PCR

Gene Microarray data Gene Description Function

Ddr1 polysome Discoidin domain receptor family,
member 1

Cell adhesion/protein-tyrosine kinase activity [60].

Eva 1 polysome Epithelial V-like antigen 1 Possible role in placenta morphogenesis [61].

Aplp1 polysome Amyloid beta (A4) precursor-like
protein 1

mRNA plyadenylation/cell adhesion/apoptosis [62].

Igfbp3 polysome Insulin-like growth factor binding
protein 3

Positive regulation of apoptosis [63].

Tnfrsf12a polysome Tumor necrosis factor receptor
superfamily

Poptosis/cell adhesion/angiogenesis [64].

Ccnd2 polysome Cyclin D2 Regulation of cell cycle/ proliferation/ protein kinase activity [65].

Gadd45b Polysome, rs,lc Growth arrest and DNA-damage-
inducible 45 beta

Activation of MAPKKactivity/cell cycle [66].

Atp1b2 polysome ATPase, Na+/K+ transporting, beta 2Cell ladhesion/ion transport/ATPase activity [67].

IP: immunoprecipitation by GRTH antibody., SP: spermatocytes., RS: round spermatids., LC: Leydig cells. IP: Testicular polysomal mRNA immunoprecipitated by GRTH
antibody.
doi:10.1371/journal.pone.0032470.t001
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Figure 9. Cellular distribution profile of differentially regulated GRTH-bound polysomal genes in mouse testicular cells. Number of
differentially regulated genes not associated with polysomes- spermatocytes (SP) in yellow, spermatids (RS) in green and Leydig cells (LC) in purple.
Number of transcripts found in polysome but not associated with GRTH protein (column in pink). Number of transcripts associated with GRTH protein
in polysomes (column in light blue). /#‘: few genes present in GRTH-IP polysomes but absent in the testicular polysomes revealed by Venn diagram
analysis (Fig. 4, 5, 6).
doi:10.1371/journal.pone.0032470.g009

Table 2. Summary of relevant spermatogenic gene expression from microarray analysis and early studies in GRTH knockout mice
compared to the wild type.

Gene WT KO versus WT

IP RNA Protein

Microarry Microarray Northern Western

GRTH-mRNA Polysome Total Cyto. Cyto./Total Total

H4 Yes D NC NC NC Abolish

HMG2 No D D* D* NC Abolish

PGK2 No D NC D D Abolish

Acr No D NC NC NC NC

tACE No D D* D D Abolish

TP1 Yes D NC# NA NA Abolish

TP2 Yes D D D D Abolish

Prm1 Yes D NC# NA NA Abolish

Prm2 Yes D NC# NA NA Abolish

IP: Testicular polysomal mRNA immunoprecipitated by GRTH antibody.
KO: GRTH knockout mice., WT: wild type. D: decrease., D*: minor decrease.
NC: no change., NC#: no change detected by qRT-PCR [13]., NA: not available.
Microarray data are derived from the present study.
Northern and Western data are derived from early study [14].
doi:10.1371/journal.pone.0032470.t002
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In other cases, we observed Tp2/Prm2 down-regulated in SP

only, TLE3/Hspa1l/Hipk1 down-regulated in RS only and

Gadd45b up-regulated in both RS and LC. The significance of

these cell specific GRTH regulated gene expressions in the testis

requires further investigation. In GRTH KO some of these genes

found decreased at testicular polysomal sites were either not

altered (H4/ PGK2) or minimally decreased (HMG2/tACE) at

the total cellular mRNA level with abolished protein expression

[13,14] (Table 2). Because of the finding of marked decrease of

tACE and PGK2 in the cytoplasm by Northern analysis and of

cytoplasm/total ratio in those studies, we concluded that GRTH

through binding mRNAs is required for the export (via the CRM1

pathway) of selected RNA species from nuclear to the cytoplasmic

sites. Thus, it is likely that comparable mRNA expression at the

total cellular level between GRTH KO and wild type with clear

reduction at polysomal level in the absence of GRTH might result

from decreased RNA export efficiency and/or the inability to be

transported to polysomes and their impaired association at these

sites. The general decrease of RNA messages in polysomes without

a change in total cellular level would impact protein translation

where GRTH may act as a translational regulator during germ

cell development.

Binding of GRTH to RNA [13] might be highly selective

during germ cells development. We have earlier demonstrated

GRTH bound to a selective panel of cellular pro- and anti-

apoptotic mRNAs [24] and also genes essential for germ cell

development [13]. GRTH does not appear to be associated

with any message involved in the RNA interference silencing

complex [15]. When we analyzed those 34 down- and 8 up-

regulated genes ( Fig. 7), 21 down-regulated messages out of

these total 42 gene (Ddx25, TP1/2, Prm1/2, ADC, Smcp,

Txndc2, H1fnt, Hils1, H4, Hspa1l, Dnajb4, Cpeb3, Rangap1,

Edf1d, Tle3, Tssk3, Tssk6, Ascl1 and Acsbg2) (Table 1) were

found as GRTH immuno-precipitated polysomal messages. It is

interesting to note that Cpeb3, Rangap1 and Eef1d are

involved in RNA regulation as translational regulator. This

observation further depicts the selectivity of GRTH binding to

specific set of RNA for its regulatory action. The other

interesting aspects of this study is that fewer number of genes

up-regulated (53 genes) compared to those down-regulated (307

genes) associated with polysomal sites were observed in the

absence of GRTH (Fig. 1 and 4, 5, 6). We have validated

expression of eight of those up-regulated genes whose

functional role in their association with GRTH is not evident

(Fig. 7 bottom and Table 1).

Some of the IPA predicted network pathways are consistent

with the loss of chromatin remodeling genes such as transition

protein (Tp1/2) and protamine (1/2) which contribute to the

arrest of spemiogenesis [13]. In the case of NFkB signaling, the

apoptosis observed in germ cells at the metaphase of meiosis of

GRTH KO might result from the down-regulation of NFkB

signaling. In the case of GRTH linked ubiquitine-proteasome-

HSP network, we can envision the absence of GRTH causing

abnormal gene degradation/ transport and ultimately sterility.

Since our present analysis is based on mRNA expression, the

functionality of other predicted pathways clearly requires a major

effort to elucidate the complex biological processes and this will be

the subject of our future investigations. The differential microarray

studies together with detailed bioinformatic analyses provide new

information and overall insights into GRTH mediated gene

regulation using GRTH knockout mouse as the experimental

platform. As GRTH is essential for spermatid development and

completion of spermatogenesis, the present study provides

valuable resources for future projects on the functions of

unexplored factors in the genome linked to GRTH action in

male reproduction.

Supporting Information

Figure S1 IPA predicted network functions from a panel
of differential expressed polysomal genes (mRNA) (121
down, 46 up) that are not associated with GRTH protein
in GRTH2/2 compared to the wild type mouse testis. A–
C, down-regulated genes associated network. D–F. up-regulated

genes associated network. Genes in color green (down-regulated),

red (up-regulated) and uncolored (relevant biological genes to the

network with no change in expression between WT and GRTH2/

2).

(TIF)

Figure S2 IPA predicted top network functions of
overall differentially expressed genes (139 down, 51
up) in spermatocytes of GRTH2/2 compared to wild
type mice. Spermatocytes prepared from four different time of

pooled adult KO or WT mice testis were used for microarray

analysis. A–C. IPA predicted top score network pathway. Genes in

color green (down-regulated), red (up-regulated) and uncolored

(relevant biological genes to the network with no change in

expression between WT and GRTH2/2).

(TIF)

Figure S3 IPA predicted top network functions of
overall differentially expressed genes (216 down, 326
up) in round spermatids of GRTH2/2 compared to wild
type mice. Round spermatids prepared from four different time

of pooled adult KO or WT mice testis were used for microarray

analysis. A–D. IPA predicted top score network pathway. Genes in

color green (down-regulated), red (up-regulated) and uncolored

(relevant biological genes to the network with no change in

expression between WT and GRTH2/2).

(TIF)

Figure S4 IPA predicted top network functions of
overall differentially expressed genes (144 down, 155
up) in Leydig cells of GRTH2/2 compared to wild type
mice. Leydig cells prepared from four different time of pooled

adult KO or WT mice testis were used for microarray analysis. A–
D. IPA predicted top score network pathway. Genes in color green

(down-regulated), red (up-regulated) and uncolored (relevant

biological genes to the network with no change in expression

between WT and GRTH KO).

(TIF)

Table S1 Differentially regulated genes in testicular
polysomes of GRTH KO compared to wild type mice. A.

List of down-regulated genes (307) in testicular polysomes of

GRTH2/2 compared to wild type mice. B. List of up-regulated

genes (53) in testicular polysomes of GRTH2/2 compared to wild

type mice.

(DOCX)

Table S2 List of genes (792) associated with GRTH
protein in testicular polysomes of wild type adult mice.

(DOC)

Table S3 Differentially regulated genes associated with
GRTH in testicular polysomes of wild type adult mice. A.

List of differentially down-regulated genes (186) associated with

GRTH in polysomes. B. List of differentially up-regulated genes

(7) associated with GRTH in polysomes.

(DOCX)
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Table S4 Differentially regulated genes in spermato-
cytes of GRTH KO compared to wild type adult mice. A.

List of down-regulated genes (139) in spermatocytes of GRTH2/2

compared to wild type mice. B. List of up-regulated genes (52) in

spermatocytes of GRTH2/2 compared to wild type mice.

(DOCX)

Table S5 Differentially regulated genes in round sper-
matids of GRTH KO compared to wild type adult mice. A.

List of down-regulated genes (216) in round spermatids of GRTH2/2

compared to wild type mice. B. List of up-regulated genes (326) in

round spermatids of GRTH2/2 compared to wild type mice.

(DOCX)

Table S6 Differentially regulated genes in Leydig cells
of GRTH KO compared to wild type adult mice. A. List of

down-regulated genes (144) in Leydig cells of GRTH2/2

compared to wild type mice. B. List of down-regulated genes

(155) in Leydig cells of GRTH2/2 compared to wild type mice.

(DOCX)

Table S7 List of differentially expressed genes associ-
ated with GRTH in polysome of the individual testicular
cells.

(DOC)
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