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Abstract

Background: Recent studies suggest reduction of radical-propagating fatty acid hydroperoxides to inert hydroxides by
interaction with apolipoprotein-D (apoD) Met93 may represent an antioxidant function for apoD. The nature and structural
consequences of this selective interaction are unknown.

Methodology/Principal Findings: Herein we used molecular dynamics (MD) analysis to address these issues. Long-
timescale simulations of apoD suggest lipid molecules are bound flexibly, with the molecules free to explore multiple
conformations in a binding site at the entrance to the classical lipocalin ligand-binding pocket. Models of 5s- 12s- and 15s-
hydroperoxyeicosatetraenoic acids were created and the lipids found to wrap around Met93 thus providing a plausible
mechanism by which eicosatetraenoic acids bearing hydroperoxides on different carbon atoms can interact with Met93 to
yield Met93 sulfoxide (Met93SO). Simulations of glycosylated apoD indicated that a second solvent exposed Met at position
49 was shielded by a triantennerary N-glycan attached to Asn45 thereby precluding lipid interactions. MD simulations of
apoD showed B-factors of the loop containing Met93SO were higher in the oxidized protein, indicating increased flexibility
that is predicted to destabilize the protein and promote self-association.

Conclusions/Significance: These studies provide novel insights into the mechanisms that may contribute to the antioxidant
function of apoD and the structural consequences that result if Met93SO is not redox-cycled back to its native state.
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Introduction

Apolipoprotein-D (apoD) is a 29 kDa glycoprotein member of the

lipocalin family that comprises an eight-stranded antiparallel b-barrel

flanked by an a-helix [1]. The b-barrel encloses a hydrophobic ligand

pocket that binds arachidonic acid and progesterone with high

affinity [1,2]. The eicosanoids 12-hydroxyeicosatetraenoic acid (12-

HETE) and 5,15- dihydroxyeicosatetraenoic acid have also been

shown to bind to apoD albeit with lower affinity [3–5]. In addition to

the classical lipocalin pocket [6], apoD may also interact with lipids

via a cluster of exposed hydrophobic residues residing in three of its

extended loops [1]. These exposed residues generate a hydrophobic

surface region close to the open end of the binding pocket that

facilitates apoD association with high-density lipoprotein (HDL)

particles and is also thought to permit insertion of apoD into cellular

lipid membranes [1].

Although apoD is well known to bind lipids and thereby thought

to play a role in lipid transport in the brain and in plasma [7], it

has also more recently been associated with lipid antioxidant

protection. This has been clearly demonstrated using apoD null

and apoD over-expressing mice [8] and in an ageing Drosophila

model [9]. In these studies apoD overexpression protected against

insults that promote cerebral lipid peroxidation whereas deletion

of the APOD gene increased susceptibility to oxidative stress. This

antioxidant function might also explain why apoD levels are

increased in the human brain in association with ageing and

Alzheimer’s disease [10–12] as it could serve as a protective

response to combat the increased levels of lipid peroxidation that

are know to occur under these conditions [13,14].

We have recently shown that apoD catalyzes the reduction of

potential free-radical generating lipid hydroperoxides (L-OOHs) to

relatively inert lipid hydroxides (L-OHs) via a selective interaction with

apoD Met93 [15]. As a consequence of this reaction Met93 is selectively

converted to MetSO [15]. We have proposed that this reduction of L-

OOH to L-OH competes with transition metal-catalyzed Fenton-type

reactions that could otherwise generate chain-propagating radicals

from L-OOHs [15]. Although this pathway may contribute to the

apoD antioxidant mechanism, it is presently unclear how different lipid

hydroperoxides may interact selectively with apoD Met93 when high

affinity lipid binding within the apoD ligand pocket is known to be

selective [2]. In addition, details of the structural changes that may

occur in apoD as a result of Met93SO generation remain to be defined.
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Figure 1. ApoD Clustal alignment. ApoD sequences were aligned using the UniProt Consortium Clustal alignment tool for the listed mammalian
species. The positions of the three human Met residues are annotated (using the human residue numbering without the 20 amino acid signal
peptide). Conserved Met residues are highlighted in yellow with substituted amino acids highlighted in red.
doi:10.1371/journal.pone.0034057.g001
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The aim of the present study was therefore to use MD

simulations and molecular modeling approaches to investigate the

interactions of arachidonic acid and its lipoxygenase-derived

HpETE products with apoD and to assess the potential structural

consequences of apoD Met93 oxidation.

Materials and Methods

ApoD molecular dynamics simulations and modelling
In order to understand the structural basis for the behavior of

apoD, modeling and MD simulations were performed. All MD

trajectories were calculated using NAMD 2.8 [16]. For all

simulations of apoD, models were embedded in a water box with

overlapping water molecules removed and sodium ions added to

ensure that the systems had no net charge. Temperature control at

310 K was maintained with Langevin dynamics (damping

constant: 5 ps21) applied to non-hydrogen atoms. Periodic

boundary conditions were used with the Nosé-Hoover Langevin

piston method (piston period 100 fs, decay rate 50 fs) to maintain

a constant pressure of 1.013 Bar. The Particle-mesh Ewald

algorithm was used to account for long-range electrostatic effects

(grid resolution,1 Å). All other non-bonded interactions were

calculated using a switching function to smooth interactions to

zero between 10 and 12 Å. The integration timesteps were 1, 2,

and 4 fs for bonded, nonbonded, and long-range electrostatic

interactions respectively. Every system was initially equilibrated for

100 ps, after which the MD run was extended as described below.

Coordinates were saved every 1 ps for analysis.

To determine the effects of Met93 oxidation on stability of

apoD, 50 ns simulations of apoD and ApoD-Met93SO without

bound ligands were calculated. The starting configuration for

these calculations was the published structure of ligand-free apoD

(PDB: 2HZR), with missing residues modeled, selenoMet residues

changed to Met and any mutated residues reverted to wild-type.

To assess the ability of the simulations to reproduce native protein-

ligand conformations, a 100 ns simulation of the complex of apoD

with progesterone was performed using the crystal structure of this

complex (PDB: 2HZQ) for the starting configuration. To

understand the behavior of lipid molecules bound to apoD, four

200 ns runs were produced with arachidonic acid modeled in the

binding site in different extended conformations. Low energy

conformations were used to model arachidonate metabolites 5s-,

12s- and 15s-HpETE bound to apoD. Finally, a 50 ns simulation

of the apoD-progesterone complex with experimentally deter-

mined glycosylation was performed. In all cases the CHARMM

protein force field [17] with backbone 2D dihedral energy

correction (CMAP) [18] was used. Parameters for MetSO were

adapted from parameters for DMSO [19]. The CHARMM

general force-field [20] and carbohydrate derivative forcefield [21]

was used for progesterone and glycosylations respectively.

Trajectory data were analyzed using VMD [22]. Protein-ligand

interaction energies were estimated using the generalized Born

implicit solvent model [23]. Energies of isolated protein and ligand

entities were calculated and subtracted from the energy of the

combined system. For modeling HpETE compounds, parameters

Figure 2. ApoD structure. (A) Orthogonal views of apoD in cartoon form with progesterone bound. The ligand and methionine residues are
represented as van der Waals spheres. (B) Same as (A) but with protein represented as a solvent-accessible surface. Methionine residues (red patches)
and glycosylated asparagine residues (green patches) are indicated.
doi:10.1371/journal.pone.0034057.g002
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were taken from the CHARMM General Force Field (CGenFF)

[20] or were derived from ab inito calculations on the model

compound 2-hydroperoxypropane using Gaussian09 [24], per-

formed at the MP2/6-31G* level of theory.

ApoD analysis by circular dichroism (CD)
Recombinant forms of human apoD (NM_001647.3) containing

a C-terminal linker, FLAG-tag and poly His tail (SGGG

GSDYKDDDDKHHHHHH) were synthesized in HEK293 cells

(American Type Culture Collection (ATCC), Catalogue No. CRL-

1573, Manassas, VA, USA) and purified using a Ni-HiTrap column

as described previously [15]. To generate apoD containing

Met93SO, wild type apoD (0.5 mg/ml) was incubated in PBS

containing 15s-HpETE (0.05 mg/ml) for 4 h. The protein fraction

was precipitated with 9 volumes of ice-cold ethanol for 1 h at 220u
and the pellet re-suspended in 20 ml of PBS in preparation for CD

analysis. Far UV CD spectra for apoD and its mutants (apoD, M49-

A, M93-A, M157-A) were acquired using Jasco J-810 CD

spectropolarimeter at 22uC. Protein samples were prepared to final

concentration of 0.1 mg/ml in PBS and spectra recorded using

0.1 cm quartz cuvette. Measurements were taken from 195–

260 nm using a scan speed of 100 nm/min, 1 nm bandwidth, 1 s

response time and data pitch of 0.1 nm. Each spectrum is an

average of 6 scans and corrected by subtraction of the PBS spectrum

acquired under similar conditions.

Results

ApoD structure and position of Met residues
We first examined apoD amino acid sequence across a variety of

mammalian species. ApoD contains three Met residues that are

highly conserved (Figure 1). In humans, apoD Met residues are

Met49, Met93 and Met157. Met93 is located in a hydrophobic region

at the opening of the ligand-binding pocket and is clearly exposed to

the surface (Figure 2). Met49 is also exposed to the surface, residing

within a b-strand stretch four amino acids C-terminal to one of the

two N-linked glycosylation sites (Asn45). Met157 appears to be largely

buried beneath a surface-accessible a-helix (Figure 2).

MD simulation of apoD interactions with progesterone
and arachidonic acid

In a recent study we reported that apoD exhibits a lipid

antioxidant activity that we propose is due to the direct interaction

of the apoD Met93 side chain with lipid hydroperoxides such as 5s-,

12s- and 15s-HpETEs [15]. Previous work indicated the high

affinity binding of lipids within the apoD ligand binding pocket is

selective and it was therefore unclear how different lipid

hydroperoxides may interact with Met93.

We first assessed the interaction of progesterone with apoD as

crystallography studies indicate this lipid forms a stable complex

within the ligand-binding pocket [1]. In a 100 ns simulation of

progesterone bound to apoD, the ligand remained close to the

crystallographic conformation, with binding energies fluctuating

between 21 and 223 kcal/mol (Figure 3). The RMSD of ligand

atoms with respect to the crystallographically observed conforma-

tion was between 2 and 3.5 Å. A small degree of lateral sliding of

the ligand in the pocket was observed in our MD simulation. All

crystallographically observed contacts between progesterone and

apoD were maintained over 100 ns.

We next examined the interaction of arachidonic acid with

apoD. Four simulations of apoD with bound arachidonic acid,

Figure 3. MD simulation of apoD with progesterone. (A) Orthogonal views of apoD in ribbon form with ligand-binding residues shown (cyan
carbon atoms). The conformation of progesterone, sampled at 1 ns intervals, is shown (black carbon atoms). Methionine residues are represented as
van der Waals spheres. (B) Interaction energy is plotted as a function of time.
doi:10.1371/journal.pone.0034057.g003
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totaling 800 ns, indicated that the principal binding site is at the

opening of the ligand binding pocket and that this hydrophobic

surface appears to behave as a ‘‘greasy slide’’. In none of the four

simulations, did arachidonate converge on a particular bound

conformation (Figure 4). Instead, arachidonate continuously

explores conformational space. In the majority of conformations

sampled, arachidonate is extended length-ways across the binding

site or is partly curled up in the binding site. In simulation 3,

arachidonate became partly unbound but re-entered the binding

site. In simulation 4, the tail of arachidonic acid became

transiently buried in the binding site in a manner reminiscent of

progesterone. Also in simulation 4, arachidonate adopted a

conformation with low energy of interaction lasting approximately

30 ns (Figure 5), in which the carboxylic acid group of the fatty

acid engaged in a salt bridge interaction with Arg62, with the

remainder of the molecule lying in the binding site in a crescent-

shaped conformation wrapped around Met93. This population of

low-energy arachidonate conformations was used to model

binding of 5s-, 12s- and 15s-HpETE to apoD.

Modeling of HpETE interaction with apoD
The absence of appropriate parameters for lipid hydroperoxides

in the CHARMM force-field currently precludes simulation of this

class of molecule with apoD. Nevertheless, in order to understand

how L-OOHs might bind to apoD, the peroxidized arachidonate

products 5s-, 12s-, and 15s-HpETE were modeled based on the

most stable low-energy conformation observed for arachidonate.

The models are shown overlaid in Figure 6. These models suggest

that the L-OOH molecules wrap around Met93 thus providing a

plausible mechanism by which eicosatetraenoic acids bearing

peroxides on different carbon atoms can interact with Met93 and

give rise to Met93SO.

MD simulations of glycosylated apoD – Met49 is shielded
Data derived from our previous studies [15] and the simulations

above clearly indicate that HpETEs can interact with Met93. The

side-chain of Met157 is buried and a lack of interaction between

this residue and L-OOHs is therefore expected. However, Met49 is

relatively exposed in the crystal structure (Figure 2A) and was

observed to interact with solvent in the simulations described

above. It was therefore unclear why the interaction of HpETEs

with apoD do not generate Met49SO. Given the location of N-

glycan structures at Asn45 and Asn78 [25], we hypothesized that

the N-glycan moiety at Asn45 might shield Met49 and prevent L-

OOH mediated Met oxidation. We therefore ran an extended

Figure 4. MD simulation of apoD with arachidonate. Orthogonal
views of apoD in ribbon form with ligand-binding residues shown (cyan
carbon atoms). The conformation of arachidonate, sampled at 1 ns
intervals, is shown for simulations 1 to 4 (black carbon atoms).
Methionine residues are represented as van der Waals spheres.
doi:10.1371/journal.pone.0034057.g004

Figure 5. Interaction energy for MD simulation of apoD with
arachidonate. Interaction energy of the four runs shown in Figure 4
are plotted as a function of time. The conformations in Figure 4
simulation 4 used for modeling of HpETE are indicated by a bar.
doi:10.1371/journal.pone.0034057.g005
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MD simulation of glycosylated apoD. The N-glycan structures

present at Asn45 and Asn78 have been previously characterized

and found to be mostly represented by trisialo triantennary and

fucosylated disialo biantennary oligosaccharides, respectively [25],

as graphically represented in Figure 7A. The conformations of the

N-glycan chains are represented in Figure 7B. Clearly, access to

Met49 is partially blocked by the trisialo triantennary N-glycan at

Asn45 whereas neither of the N-glycans obstruct access to the

apoD ligand binding pocket (Figure 7B). This provides a plausible

explanation for the previously reported lack of reactivity between

the apoD Met49 side chain and various HpETEs [15].

CD analysis indicates MetSO formation does not induce
major structural changes

The above simulations give a plausible explanation for the

selective oxidation of Met93 by L-OOHs. Based on this

information and on our previous observations that the formation

of Met93SO promotes apoD self-association and aggregation [15],

we went on to investigate the possible structural changes that may

be induced by apoD Met93SO formation. The CD spectrum of

recombinant wild type apoD and all three Met to Ala mutants

shows a negative minima in ellipticity at 208 nm (Figure 8) and

overall is in very close agreement with previous studies [26].

Furthermore, the CD spectrum of HpETE-treated apoD (previ-

ously shown to convert apoD Met93 to Met93SO, [15]) was very

similar to both the wild type apoD and the Met to Ala mutants

(Figure 8). This indicates that neither mutation of apoD Met

residues to Ala nor conversion of Met93 to Met93SO induce major

changes to apoD secondary structure and, in particular, that the b-

barrel structure remains in tact.

MD simulaltion of apoD and apoD-Met93SO shows
increased mobility in response to Met93 oxidation

Because no major changes in apoD secondary structure were

detected by CD spectroscopy, we next used MD simulations to

probe for structural changes that may be induced by apoD

Met93SO formation. ApoD and apoD-Met93SO were simulated

for 50 ns. The proteins were stable over that timeframe. In both

simulations the RMSD of Ca atoms initially increased and

stabilized at around 2–2.5 Å (data not shown). Calculated B-

factors from the simulations matched the pattern of B-factors in

the X-ray structure (PDB: 2HZQ) (Figure 9A). The B-factors of

the loop containing Met93SO were higher in the simulation of the

oxidized protein, indicating increased flexibility. In the apoD

simulation, Met93 remained associated with the side-chains of

Phe89 and Phe92 via hydrophobic interactions. In the apoD-

Met93SO simulation, the side-chain displayed more flexibility.

Initially, the side-chain sulfoxide oxygen atom accepted hydrogen

Figure 6. Models of apoD interaction with 5-, 12- and 15-HpETE. ApoD with 5- (cyan carbon atoms) 12- (magenta carbon atoms) and 15-
HpETE (yellow carbon atoms) modeled in the binding site. Met93 is shown. The expanded view illustrates the close proximity of the Met93 side chain
to the HpETE peroxide moiety. The salt bridges between Arg62 and the fatty acid are also indicted in the expanded view as dashed lines.
doi:10.1371/journal.pone.0034057.g006
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bonds from the main-chain amino groups of Phe89 and Ser90.

After 7 ns, the Met93SO side-chain flipped out of the pocket and

transiently associated with the side-chains of Phe89 and Phe92 in a

similar fashion to native Met93. For the last 30 ns of the

simulation, the side-chain of the oxidized residue was observed to

be surrounded by water molecules and not directly interacting

with other residues. A representative snapshot of this flipped-out

conformation is shown in Figure 9B. The increase in the mobility

of the Met93SO side chain that we have identified increases the

thermal motion of the loop in which it is incorporated and this is

predicted to destabilize apoD structure.

Discussion

The results of the simulation of apoD with progesterone give us

confidence that the CHARMM force-field is sufficiently accurate

to investigate the interactions of this protein with representative

ligands. The simulations of apoD with arachidonate indicate that

this ligand has considerable flexibility. This is consistent with the

structural plasticity of the fatty acid and the broad, open nature of

the apoD binding site, which is ,15 Å deep and 10 Å615 Å wide

at the entrance. It is noteworthy that the low-energy conforma-

tions of arachidonate used for the modeling of L-OOHs is similar

to the mode of binding proposed by Eichinger and co-workers [1].

Although the simulations of apoD with arachidonate totaled

800 ns, it may be argued that this timeframe is insufficient for the

system to converge on a global minimum, and that the optimum

binding pose found in nature was not sampled in our simulations.

However, even if such a state exists, fatty acids would be expected

to explore a large number of conformations (such as those

presented here) prior to converging on a hypothetical low-energy

state. Consistent with our experimental results [15], our modeling

indicate that the oxygenated fatty acid products of 5-, 12- and 15-

lipoxygenase bind at the entrance of the ligand binding pocket of

apoD in configurations that would permit direct interaction

between the lipid hydroperoxide moiety and the crucial Met93 side

chain. This interaction occurs as these highly flexible compounds

can slide within the binding-site with many conformations of

similar energy available.

Our data suggest that the solvent-exposed Met93, located in the

hydrophobic region at the opening of the apoD ligand-binding

Figure 7. MD simulation of glycosylated apoD. (A) Schematic
representation of glycosylation patten found at Asn45 and Asn78.
Symbols are: sialic acid (diamonds), mannose (filled circles), galactose
(open circles), N-acetylglucosamine (squares) and fucose (triangle). (B)
Orthogonal views of apoD in ribbon form with progesterone and
methionine residues are represented as van der Waals spheres. The
conformation of the glycosylations, sampled at 1 ns intervals, are
shown (black carbon atoms).
doi:10.1371/journal.pone.0034057.g007

Figure 8. CD spectra of recombinant apoD. Far-UV CD spectra of
apoD and apoD-Met93SO and the Met to Ala mutants indicated. Spectra
were obtained in PBS, pH 7.4 at 22uC.
doi:10.1371/journal.pone.0034057.g008
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pocket may also interact with lipid membrane surfaces from which

phospholipid-bound fatty acid hydroperoxides protrude due to the

addition of the polar peroxide group [27]. The side-chain of

Met157 is buried and therefore not expected to be solvent exposed

to lipid hydroperoxides. However, Met49 is solvent exposed and

therefore has potential to interact with L-OOHs. The simulation

of apoD with physiologically relevant glycosylation suggests that

the ,5 kDa N-linked oligosaccharide at Asn45 could have a

shielding effect on Met49. From our simulation data, this

oligosaccharide is also expected to sterically preclude apoD from

approaching a membrane in an orientation favouring interaction

with Met49. Glycosylation may therefore be one of the

mechanisms by which aberrant oxidation of apoD Met49 is

prevented.

It is noteworthy that apoD Met93 is highly conserved in

mammals (Figure 1) and we speculate that this may afford an

evolutionary advantage in terms of providing a lipid antioxidant

function in the brain and possibly a protective function for the

apoD ligand-binding pocket itself. Relevant to this latter point, the

high propensity for redox-active Met residues to be located in close

proximity to protein ligand binding sites/functional domains has

previously been suggested to confer localized ‘‘guardian’’ antiox-

idant protection [28].

The mechanism underlying the increase in apoD aggregation

that is associated with Met-SO formation [15] is not entirely clear.

Previous research indicates that even though the introduction of

an oxygen atom in the Met side chain would be expected to

decrease the hydrophobicity of the protein (consistent with the

decrease in reversed phase HPLC RT we have reported previously

[15]), this modification can induce structural changes in the

protein that increase the exposure of hydrophobic residues

[29,30]. This prediction is consistent with our simulation of

apoD-Met93SO that suggested the sulfoxide oxygen could initially

accept hydrogen bonds from the amide-nitrogen groups of Phe89

and Ser90 and then flip out of the entrance to the binding pocket to

transiently associate with the side-chains of Phe89 and Phe92 and

then adopt a conformation surrounded by water molecules

without interacting with other residues. Based on previous studies

[31], this may promote local unfolding of the protein structure and

increase the propensity for apoD to self-associate and aggregate.

Previous studies have reported that the destabilization of protein

structure as a consequence of MetSO formation can have

profound functional consequences. The oxidation of p53 Met340

residue located within the hydrophobic core of the p53 tetramer

significantly reduces p53 stability and is thought to represent one

inactivation mechanism for p53 transcriptional function [32].

Interestingly, MD simulations assessing the oxidation of Met213

within Helix-3 of the cellular prion protein (PrPC) indicated a

destabilization of the PrPC-like fold that favors more flexible states

that are prone to conformation transition into the pathogenic

infectious prion (PrPSc) form [33]. Furthermore, mutations of the

PrPC that are associated with familial prion disorders increase the

solvent exposure of Met213 and thus increase the probability for

MetSO formation [34]. More directly related to the current study,

previous research has shown that plasma apolipoprotein A-I

(apoA-I) also has the capacity to promote the conversion of L-

OOHs to L-OHs via a 2-electron redox reaction that concom-

itantly converts apoA-I Met residues to their respective MetSO

moieties [35,36]. Recent studies have shown that oxidation of

apoA-I Met residues caused a partial unfolding of the protein,

decreased its thermal stability and promoted its fibrillization [37].

It therefore appears that protein destabilization induced by

selective Met oxidation may be common to several pathogenic

processes.

In summary, our MD simulations provide a plausible

mechanism that helps to explain how different forms of HpETEs

can selectively interact with apoD Met93 and also reveal a

potential basis for the destabilization of and self-association of

apoD structure that results from Met93SO formation.

Figure 9. MD simulation of apoD and apoD-Met93SO. (A) B-
factors calculated from the MD simulations of apoD, apoD-Met93SO and
crystallographic B-factors are shown. (B) Snapshots from the apoD-
Met93SO simulation. Initially the sulfoxide oxygen of Met93SO remains in
the initially modelled conformation, similar to Met93 in the ligand-free
crystal structure. Simulation of apoD-Met93SO suggested that the
sulfoxide oxygen of Met93SO could accept hydrogen bonds from the
amide-nitrogen groups of Phe89 and Ser90. (upper structure). After 7 ns,
the side-chain flips out of the pocket and is surrounded by water
molecules. A representative snapshot of the populations of side-chain
conformations is shown (lower structure).
doi:10.1371/journal.pone.0034057.g009

Molecular Dynamics Analysis of Apolipoprotein-D

PLoS ONE | www.plosone.org 8 March 2012 | Volume 7 | Issue 3 | e34057



Author Contributions

Conceived and designed the experiments: AJO SB HE BG. Performed the

experiments: AJO SB HE. Analyzed the data: AJO SB HE BG.

Contributed reagents/materials/analysis tools: AJO HE BG. Wrote the

paper: AJO SB HE BG.

References

1. Eichinger A, Nasreen A, Kim HJ, Skerra A (2007) Structural insight into the

dual ligand specificity and mode of high density lipoprotein association of
apolipoprotein D. J Biol Chem 282: 31068–31075.

2. Vogt M, Skerra A (2001) Bacterially produced apolipoprotein D binds
progesterone and arachidonic acid, but not bilirubin or E-3M2H. J Mol

Recognit 14: 79–86.

3. Lea OA (1988) Binding properties of progesterone-binding Cyst protein, PBCP.
Steroids 52: 337–338.

4. Dilley WG, Haagensen DE, Cox CE, Wells SA, Jr. (1990) Immunologic and
steroid binding properties of the GCDFP-24 protein isolated from human breast

gross cystic disease fluid. Breast Cancer Res Treat 16: 253–260.

5. Morais Cabral JH, Atkins GL, Sanchez LM, Lopez-Boado YS, Lopez-Otin C,
et al. (1995) Arachidonic acid binds to apolipoprotein D: implications for the

protein’s function. FEBS Lett 366: 53–56.
6. Flower DR (1996) The lipocalin protein family: structure and function.

Biochem J 318: 1–14.
7. Rassart E, Bedirian A, Do Carmo S, Guinard O, Sirois J, et al. (2000)

Apolipoprotein D. Biochim Biophys Acta 1482: 185–198.

8. Ganfornina MD, Do Carmo S, Lora JM, Torres-Schumann S, Vogel M, et al.
(2008) Apolipoprotein D is involved in the mechanisms regulating protection

from oxidative stress. Aging Cell 7: 506–515.
9. Muffat J, Walker DW, Benzer S (2008) Human ApoD, an apolipoprotein up-

regulated in neurodegenerative diseases, extends lifespan and increases stress

resistance in Drosophila. Proc Natl Acad Sci U S A 105: 7088–7093.
10. Lu T, Pan Y, Kao SY, Li C, Kohane I, et al. (2004) Gene regulation and DNA

damage in the ageing human brain. Nature 429: 883–891.
11. Kim WS, Wong J, Weickert CS, Webster MJ, Bahn S, et al. (2009)

Apolipoprotein-D expression is increased during development and maturation

of the human prefrontal cortex. J Neurochem 109: 1053–1066.
12. Terrisse L, Poirier J, Bertrand P, Merched A, Visvikis S, et al. (1998) Increased

levels of apolipoprotein D in cerebrospinal fluid and hippocampus of
Alzheimer’s patients. J Neurochem 71: 1643–1650.

13. Butterfield DA, Bader Lange ML, Sultana R (2010) Involvements of the lipid
peroxidation product, HNE, in the pathogenesis and progression of Alzheimer’s

disease. Biochim Biophys Acta 1801: 924–929.

14. Pratico D (2010) The neurobiology of isoprostanes and Alzheimer’s disease.
Biochim Biophys Acta 1801: 930–933.

15. Bhatia S, Knoch B, Wong J, Kim WS, Else PL, et al. (2012) Selective reduction
of hydroperoxyeicosatetraenoic acids to their hydroxy derivatives by apolipo-

protein-D: Implications for lipid antioxidant activity and Alzheimer’s disease.

Biochem J 442: 713–721.
16. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, et al. (2005) Scalable

molecular dynamics with NAMD. Journal of Computational Chemistry 26:
1781–1802.

17. MacKerell AD, Bashford D, Bellott M, Dunbrack RL, Evanseck JD, et al. (1998)
All-atom empirical potential for molecular modeling and dynamics studies of

proteins. Journal of Physical Chemistry B 102: 3586–3616.

18. Mackerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone
energetics in protein force fields: Limitations of gas-phase quantum mechanics in

reproducing protein conformational distributions in molecular dynamics
simulations. Journal of Computational Chemistry 25: 1400–1415.

19. Strader ML, Feller SE (2002) A flexible all-atom model of dimethyl sulfoxide for

molecular dynamics simulations. Journal of Physical Chemistry A 106:
1074–1080.

20. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, et al. (2010)
CHARMM general force field: A force field for drug-like molecules compatible

with the CHARMM all-atom additive biological force fields. J Comput Chem

31: 671–690.

21. Guvench O, Mallajosyula SS, Raman EP, Hatcher E, Vanommeslaeghe K,

et al. (2011) CHARMM Additive All-Atom Force Field for Carbohydrate

Derivatives and Its Utility in Polysaccharide and Carbohydrate-Protein

Modeling. Journal of Chemical Theory and Computation 7: 3162–3180.

22. Humphrey W, Dalke A, Schulten K (1996) VMD: Visual molecular dynamics.

Journal of Molecular Graphics 14: 33–38.

23. Onufriev A, Bashford D, Case DA (2004) Exploring protein native states and

large-scale conformational changes with a modified generalized born model.

Proteins 55: 383–394.

24. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, et al. (2009)

Gaussian 09. Wallingford, CT: Gaussian, Inc.

25. Schindler PA, Settineri CA, Collet X, Fielding CJ, Burlingame AL (1995) Site-

specific detection and structural characterization of the glycosylation of human

plasma proteins lecithin:cholesterol acyltransferase and apolipoprotein D using

HPLC/electrospray mass spectrometry and sequential glycosidase digestion.

Protein Sci 4: 791–803.

26. Nasreen A, Vogt M, Kim HJ, Eichinger A, Skerra A (2006) Solubility

engineering and crystallization of human apolipoprotein D. Protein Sci 15:

190–199.

27. Greenberg ME, Li XM, Gugiu BG, Gu X, Qin J, et al. (2008) The lipid whisker

model of the structure of oxidized cell membranes. J Biol Chem 283:

2385–2396.

28. Levine RL, Mosoni L, Berlett BS, Stadtman ER (1996) Methionine residues as

endogenous antioxidants in proteins. Proc Natl Acad Sci U S A 93:

15036–15040.

29. Vogt W (1995) Oxidation of methionyl residues in proteins: tools, targets, and

reversal. Free Radic Biol Med 18: 93–105.

30. Chao CC, Ma YS, Stadtman ER (1997) Modification of protein surface

hydrophobicity and methionine oxidation by oxidative systems. Proc Natl Acad

Sci U S A 94: 2969–2974.

31. Dobson CM (2004) Principles of protein folding, misfolding and aggregation.

Semin Cell Dev Biol 15: 3–16.

32. Nomura T, Kamada R, Ito I, Chuman Y, Shimohigashi Y, et al. (2009)

Oxidation of methionine residue at hydrophobic core destabilizes p53 tetrameric

structure. Biopolymers 91: 78–84.

33. Colombo G, Meli M, Morra G, Gabizon R, Gasset M (2009) Methionine

sulfoxides on prion protein Helix-3 switch on the alpha-fold destabilization

required for conversion. PLoS One 4: e4296.

34. Meli M, Gasset M, Colombo G (2011) Dynamic diagnosis of familial prion

diseases supports the beta2-alpha2 loop as a universal interference target. PLoS

One 6: e19093.

35. Garner B, Waldeck AR, Witting PK, Rye KA, Stocker R (1998) Oxidation of

high density lipoproteins II. Evidence for direct reduction of lipid hydroperox-

ides by methionine residues of apolipoproteins AI and AII. J Biol Chem 273:

6088–6095.

36. Garner B, Witting PK, Waldeck AR, Christison JK, Raftery M, et al. (1998)

Oxidation of high density lipoproteins I. Formation of methionine sulfoxide in

apolipoproteins AI and AII is an early event that accompanies lipid peroxidation

and can be enhanced by alpha-tocopherol. J Biol Chem 273: 6080–6087.

37. Wong YQ, Binger KJ, Howlett GJ, Griffin MD (2010) Methionine oxidation

induces amyloid fibril formation by full-length apolipoprotein A-I. Proc Natl

Acad Sci U S A 107: 1977–1982.

Molecular Dynamics Analysis of Apolipoprotein-D

PLoS ONE | www.plosone.org 9 March 2012 | Volume 7 | Issue 3 | e34057


