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Abstract

Objective: Aldosterone, one of the main peptides in renin angiotensin aldosterone system (RAAS), has been suggested to
mediate liver fibrosis and portal hypertension. Spironolactone, an aldosterone antagonist, has beneficial effect on
hyperdynamic circulation in clinical practice. However, the mechanisms remain unclear. The present study aimed to
investigate the role of spionolactone on liver cirrhosis and portal hypertension.

Methods: Liver cirrhosis was induced by bile duct ligation (BDL). Spironolactone was administered orally (20 mg/kg/d) after
bile duct ligation was performed. Liver fibrosis was assessed by histology, Masson’s trichrome staining, and the
measurement of hydroxyproline and type I collagen content. The activation of HSC was determined by analysis of alpha
smooth muscle actin (a-SMA) expression. Protein expressions and protein phosphorylation were determined by
immunohistochemical staining and Western blot analysis, Messenger RNA levels by quantitative real time polymerase
chain reaction (Q-PCR). Portal pressure and intrahepatic resistance were examined in vivo.

Results: Treatment with spironolactone significantly lowered portal pressure. This was associated with attenuation of liver
fibrosis, intrahepatic resistance and inhibition of HSC activation. In BDL rat liver, spironolactone suppressed up-regulation of
proinflammatory cytokines (TNFa and IL-6). Additionally, spironolactone significantly decreased ROCK-2 activity without
affecting expression of RhoA and Ras. Moreover, spironolactone markedly increased the levels of endothelial nitric oxide
synthase (eNOS), phosphorylated eNOS and the activity of NO effector- protein kinase G (PKG) in the liver.

Conclusion: Spironolactone lowers portal hypertension by improvement of liver fibrosis and inhibition of intrahepatic
vasoconstriction via down-regulating ROCK-2 activity and activating NO/PKG pathway. Thus, early spironolactone therapy
might be the optional therapy in cirrhosis and portal hypertension.
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Introduction

In cirrhosis, increased intrahepatic resistance is the primary

event causing portal hypertension [1–3]. Both intrahepatic fibrosis

and imbalance between vasoconstrictor and vasodilator mediators

contribute to increased resistance [4–5]. In these circumstances,

activated hepatic stellate cells (HSCs) play a key role via

transdifferentiation to myofibroblasts-like to acquire contractility

and result in extracellular matrix (ECM) deposition [4–5].

Aldosterone, one of the main peptides in the RAAS, has been

suggested to mediate inflammation, oxidative stress, endothelial

dysfunction and fibrosis [6–7]. Existing studies of aldosterone

inhibitors have showed that the mineralocorticoid receptor (MR)

antagonist reduces fibrogenesis and lowers portal hypertension [8–

9]. However, the molecular mechanisms by which spironolactone

induces these effects remain unclear.

It is well known that in cirrhosis activated RhoA/ROCK-2

signaling and inhibited nitric oxide (NO) availability contribute to

increased intrahepatic resistance and portal hypertension [5].

Increased RhoA/ROCK-2 reduces the NO synthase activity via

down-regulating the levels of endothelial nitric oxide synthase

(eNOS). NO, in turn, induces vasorelaxation through the

activation of cyclic guanosine 39, 59-monophosphate (cGMP)/

protein kinase G (PKG) [10].
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Furthermore, our recent in vitro finding showed that aldoste-

rone induced contraction of activated HSCs by activation of the

RhoA/ROCK-2 signaling pathway, while spironolacton and the

ROCK-2 inhibitor Y27632 could suppress this effect [11].

Therefore, the aim of the present study was to investigate the

effect of chronic spironolactone treatment on intrahepatic RhoA/

ROCK-2 signaling and NO/PKG pathway as well as on lilver

fibrosis and portal hypertension.

Materials and Methods

Animal
Male Wistar rats weighing 200–300 g were purchased from the

Laboratory Animal Center (Southern Medical University, China).

All experimental procedures on rats were approved by the

Committee on the Ethics of Animal Experiments of Southern

Medical University (Permission No.: 2009-015). Animals were

housed under a controlled environment (12 hours light/12 hours

dark; temperature, 22–24uC), and received water ad libitum in the

Animal Care Facility Service (Southern Medical University,

China). All surgery was performed under Phenobarbital sodium

anesthesia, and all efforts were made to minimize suffering. This

study was carried out in strict accordance with the recommenda-

tions in the Guide for the Care and Use of Laboratory Animals of

the National Institutes of Health.

Treatment regimens
Billary hepatic fibrosis was induced by double ligation and

transection of the common bile duct, as previously described

[12,13]. Spironolactone or vehicle (saline) was administered orally

by gavage. Eighteen rats underwent BDL and sacrificed at two

weeks (n = 8) and 4 weeks (n = 10). The rats in BDL+spirono-

lactone treatment group were administered with sprionolactone

(20 mg/kg body weight per day) once a day after bile duct ligation

and sacrificed at 2 weeks (n = 8) and 4 weeks (n = 10). This dosage

was chosen according to the literature [14]. Sham-operated rats

(n = 10) served as controls. In these rats, the common bile duct was

exposed by only median laparotomy, neither ligation nor resection

was performed.

Tissue collection and biochemical analyses
After the indicated periods, blood was obtained for the

measurement of biochemical parameters (AST, ALT, and

bilirubin) using standard methods. The liver was cut into

fragments. Liver samples were either stored in formaldehyde or

snap-frozen in liquid nitrogen and stored at 280uC as previously

described [15,16].

Histological and immunochemical assessment
Sections of liver (4 mm) mounted on silane-coated glass slides

were stained with haematoxylin and eosin (H&E), immunohisto-

chemical and Masson’s trichrome collagen staining. Liver sections

were assessed in random order by an experienced liver pathologist,

who was blinded to the animal groups. Sections were assessed for

METAVIR fibrosis score and the ductal proliferation score, as

adapted from Miyoshi et al. [17]. The number of biliary infarcts

was also documented for each field examined.

For immunohistochemistry, the sections were incubated with

primary antibody (Cell Signaling Technology, Danvers, MA) in

concentrations of 1:200 (phosphor-Thr558-moesin), 1:200 (phos-

pho-Ser239-VASP) and (Abcam plc, Cambridge, UK) 1:100 (a-

SMA), followed by incubation with streptavidin–peroxidase

complex. Peroxidase conjugates were subsequently visualized by

utilizing diaminobenzidine (DAB) solution. The sections were then

counterstained with hematoxylin and mounted on a cover slip.

Masson’s trichrome collagen staining was quantified for

collagen by analyzing Masson-stained area as a percentage of

total area. We averaged the values of the sections from three rats

in each group.

Hepatic hydroxyproline determination
Collagen content of the liver was quantified using hydroxypro-

line detection kit (Jiancheng Institute of Biotechnology, Nanjing,

China) according to the manufacturer’ s instructions. All

experiments were performed in triplicates. Results are expressed

as ug/g of wet liver tissue.

Western Blotting
Western blotting was performed as described previously [11].

The primary antibodies were a-SMA (Abcam plc, Cambridge,

UK), type I collagen (Sigma–Aldrich Corporation, Saint Louis,

MO, USA), Ras, Rhoa, moesin, p-moesin, vasodilator-stimulated

phosphoprotein [VASP], p-moesin (Cell Signaling Technology,

Danvers, MA) or GAPDH (Beijing, Zhongshan Biotech Co,

China). For protein quantification, bands were scanned and

quantified with GAPDH as an internal control. Western blot

analyses from all groups were calibrated to sham-operated rats set

to 100 densitometric units (d.u.).

Quantitative PCR
RNA was isolated from 30 mg of liver tissue following the

manufacturer’s protocols of Trizol isolation (TaKaRa Bio, Japan).

RNA (2 mg) was reverse-transcribed using PrimeScriptTM RT

reagent kit (00057250, Fermentas, EU), and the single- stranded

cDNA was amplified by quantitative real-time RT-PCR using

SYBR green Master Mix kit (04913914001, Roche, USA) on an

ABI PRISM 7500 TNFa, (Forward) 59-CGT CGT AGC AAA

CCA CCA AG-39 and (Reverse) 59- CAC AGA GCA ATG ACT

CCA AAG-39; IL-6, (Forward) 59-CCA CTG CCT TCC CTA

CTT-39 and (Reverse) 59- TTG GTC CTT AGC CAC TCC-39;

CYP11B2 (aldosterone synthase gene), (Forward) 59- TGG CTG

AAG ATG ATA CAG ATC CT-39 and (Reverse) 59- CAC TGT

GCC TGA AAA TGG GC-39; RhoA GTP, (Forward) 59-CAG

CAA GGA CCA GTT CCC AGA-39 and (Reverse) 59-AGC

TGT GTC CCA TAA AGC CAA CTC-39; Rho GEFs, (Forward)

59-TGC CCA ACC AGG AGC AAT C-39 and (Reverse) 59-TGC

AAT CTC AAG CAC CTG GAA-39; ROCK-2, (Forward) 59-

CTA ACA GTC CGT GGG TGG TTC A-39 and (Reverse) 59-

TCC ACC TGG CAT GTA CTC CAT C-39; eNOS, (Forward)

59-CTA CCG GGA CGA GGT ACT GG-39 and (Reverse) 59-

GGA AAA GGC GGT GAG GAC TT-39 and GAPDH,

(Forward) 59-GGC ACA GTC AAG GCT GAG AAT G-39 and

(Reverse) 59-ATG GTG GTG AAG ACG CCA GTA-39. The

cycles for PCR were as follows: one cycle of 95uC for 10 minutes,

40 cycles of 15 seconds at 95uC, 1 minute at 60uC and a final

1 minute at 60uC. The mRNA expression of the target gene was

normalized to GAPDH.

Assessment of PKG and ROCK-2 activity
PKG activity was assessed as phosphorylation of the endoge-

nous PKG substrate, VASP, at Ser-239. The phosphorylation state

of VASP served as a marker for PKG activity [18]. ROCK-2

activity was assessed as phosphorylation of the endogenous Rho-

kinase substrate, moesin, at Thr- 558 [19,20]. This was done by

Western blot analysis using site- and phospho-specific antibodies.

Spironolactone Lowers Portal Hypertension
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Measurement of portal pressure
Rats in all groups were fasted for 12 hours and anesthetized

with an intraperitoneal injection of Phenobarbital sodium (50 mg/

kg bodyweight). Portal flow (F) was calculated by color Doppler

flow imaging (CDFI, Acuson Seguoia 512, Simens) according to

the measured the inner diameter (D) and maximized blood flow

velocity (V): (F = 0. 57pD2 V/4660). Subsequently, median

laparotomy was performed, and a PE-50 catheter was inserted

into the ileocolic vein and advanced to the portal vein. The

cannula was used for the measurement of portal pressure (PP) via

connecting to a pressure transducer (Power laboratory, AD

Instruments, Australia).

In situ liver perfusion
In situ liver perfusion was performed as previously described

[21]. Briefly, after anesthesia with Phenobarbital sodium (50 mg/

kg bodyweight. i.p), the abdomen of rat was opened, and the bile

duct was cannulated with a polyethylene tube to monitor bile flow.

Loose ligatures were placed around the inferior vena cava (IVC)

above the right renal vein. The portal vein was cannulated with a

14-gauge Teflon catheter, and the liver was perfused with Krebs-

Henseleit solution (pH 7.4, 37uC) at a constant flow rate. The

perfusion buffer contained heparin (2 IU/ml) and was oxygenated

with carbogen (95%O2, 5%CO2). Subsequently, the abdominal

aorta and IVC were cut caudally to the loose ligature, allowing the

perfusate to escape. Then the IVC was cannulated via the right

atrium and ligated immediately. Portal perfusion pressure (PPP)

was monitored continuously. Through pressure transducers the

results were transmitted to a Powerlab/4sp-linked computer using

Chart version 4.0 for Windows (AD Instruments).

The viability of each liver was assessed by gross appearance,

stable perfusion and bile production. If any of the criteria were not

satisfied, the sample was discarded.

Statistics analysis
Data were summarized as mean 6 standard error of the mean

(S.E.M.) based on experiments repeated in triplicate. Multiple

comparisons were analyzed using one-way analysis of variance

Figure 1. Therapeutic effects of Spironolactone (Sp) on hepatic fibrosis in BDL rats. Histological images of rat livers stained with H&E (A) or
Masson (B) (magnification 2006). Liver fibrosis scores (C) and Semiquantitative measurement of Masson staining (D) in spironolactone or vehicle-
treated BDL rats. *p,0.05 compared to the Sham group. #p,0.05 compared to the BDL groups.
doi:10.1371/journal.pone.0034230.g001
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(ANOVA) with Statistical Package for the Social Sciences (SPSS)

13.0 software (Chicago, IL). A probability (p)-values less than 0.05

were considered statistically significant.

Results

Effect of spironlactone on liver fibrosis
BDL caused significant histological changes, including a

distortion of the normal architecture, expansion of portal tracts

with extensive bile-duct proliferation and deposition of collagen

(Figure 1A). Spironlactone attenuated liver fibrosis and decreased

the collagen deposition significantly compared with the BDL

group during two and four weeks. Hepatic hydroxyproline content

was increased in BDL-treated rats, while treatment with

spironlactone significantly inhibited the secretion of hydroxypro-

line by 11.2% (two weeks) and 31.3% (four weeks) respectively

(Figure 2C). This could be confirmed histologically using Masson’s

staining (Figure 1B) and the expression of type I collagen by

Western blot analysis (Figure 2B). In addition, there was a

significant increase in the analyzed biochemical parameters

(bilirubin, ALT, and AST) in BDL rats as compared to sham-

operated animals (Table 1).

Spironlactone reduced HSCs accumulation
To evaluate the effect of spironolacton treatment on activity of

HSCs, immunohistochmical staining for a-SMA was performed

(Figure 3A). Increased a-SMA staining was observed in livers of

BDL rats during weeks 2 and 4 of the experiment. To compare with

the BDL group, there was a reduction in the number of a-SMA

positive cells in the spironolacton treatment group. These findings were

substantiated by Western blot analysis which showed that spironlactone

treatment significantly reduced hepatic a-SMA expression (Figure 3B).

Figure 2. Spironolactone (Sp) downregulates type I collagen expression and reduces hydroxyproline content in BDL rats. (A)
Spironolactone downregulates type I collagen protein expression in the livers of BDL rats, as shown by Western blot analysis (B). Sprionolactone
reduces hydroxyproline content in rat livers (C). *p,0.05 compared to the Sham group. #p,0.05 compared to the BDL groups.
doi:10.1371/journal.pone.0034230.g002

Table 1. Biochemical parameters of different groups (mean
6 SD).

Group ALT (U/L) AST (U/L) BIL (Ul/dL)

Sham 4.0866.54 24.0965.24 15.3463.26

BDL 2w 53.2762.56* 60.7562.54* 31.9863.65*

BDL+Spironolactone 2w 58.7862.65* 57.3367.43* 28.5464.32*

BDL 4w 73.4268.25* 68.3466.37* 38.3664.25*

BDL+Spironolactone 4w 67.0966.76* 73.3465.29* 34.0463.32*

*p,0.05 compared to the Sham group.
doi:10.1371/journal.pone.0034230.t001
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Effect of spironolactone on the inflammatory genes and
aldosterone synthase gene expressions

Since spironolactone is suggested to be an inflammatory inhibitor,

it is worthwhile to investigate whether the protective effect is mediated

through its anti-inflammatory function. Our present study showed

that intrahepatic mRNA expression of TNFa and IL-6 was

significantly elevated in BDL rats at four weeks (Fig. 4A, 4B).

Notably, spironolactone markedly decreased the expressions of

TNFa and IL-6 respectively compared with BDL rats. Whereas at

two weeks, neither TNFa nor IL-6 incresed significantly in BDL rats

compared to sham rats. In addition, aldosterone is a downstream

mediator of RAAS and CYP11B2 is the key synthase of aldosterone.

Our results found that CYP11B2 notably up-regulated in BDL

groups compared to sham-operated group (Fig. 4C).

Spironolactone inhibited ROCK-2 activity
Western blot analysis showed that intrahepatic protein levels of

RhoA and Ras were increased in BDL rats compared with sham-

operated rats. Treatment with spironlactone did not affect the

expression of RhoA and Ras proteins (Figure 5B). Similarly, as

revealed by Q-PCR with mRNA isolated from whole liver

homogenates, RhoA, RhoGEF, ROCK-2 mRNA levels were

significantly increased in the BDL rats compared to that in sham-

operated rats. In the spironlactone-treated rats, mRNA levels

Figure 3. Effects of therapeutic treatment with Sprionolactone (Sp) on hepatic HSCs accumulation, assessed by (A)
immunohistochemistry for hepatic a-smooth muscle actin (a-SMA) (magnification 2006) and (B) Western blot analysis of a-SMA expression.
Semiquantitative measurement of immunohistochemistry (C) and Western blot analysis (D) for a-SMA. *p,0.05 compared to the Sham group.
#p,0.05 compared to the BDL groups.
doi:10.1371/journal.pone.0034230.g003
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remained unchanged when compared with those of untreated

BDL rats (Figure 5C).

As a marker of ROCK-2 activity, phosphorylation of moesin

was investigated by immunohistochemical staining and Western

blot. Analysis of these stainings showed a reduction in the number

of phosphor-moesin positive cells in the spironolactone treatment

group compared to BDL group. In addition, Western blot

showed that phosphor-moesin greatly increased in the livers of

BDL rats. Spironolactone treatment significantly decreased the

intrahepatic phosphorylation of moesin. This difference was not

associated with changes in total moesin, which was similar in all

groups (Figure 5A). Since moesin is phosphorylated at Thr-558

by ROCK-2, these findings probably reflected chronic spirono-

lactone treatment inhibits ROCK-2 activity in the liver of BDL

rats.

Spironolactone increased NO/PKG pathway
Western blot analysis revealed that sprionolactne had no effect

on eNOS protein levels of the livers, but a decrease in

phosphorylation of eNOS was found in BDL rats compared with

sham-operated rats. Treatment with spironolactone increased the

intrahepatic phospho-eNOS content (Figure 6A). In parallel,

mRNA levels of eNOS were greatly increased when compared

with that of BDL rats (Figure 6B).

Figure 4. Effects of spironolactone on the inflammatory genes and aldosterone synthase gene expressions in BDL-treated rats. (A)
Real-time PCR analysis for TNFamRNA expression. (B) Real-time PCR analysis for IL-6 mRNA expression. (C) Real-time PCR analysis for CYP11B2 mRNA
expression. *p,0.05 compared to the Sham group. #p,0.05 compared to the BDL groups.
doi:10.1371/journal.pone.0034230.g004
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Phosphorylation of VASP, which is phosphorylated at Ser-239

by PKG, was determined as a marker of PKG activity. Western

blot analysis showed that phospho-VASP was elevated in the livers

of BDL rats compared to sham-operated rats. Spironolactone

treatment significantly increased the levels of phosphorylation of

VASP. These differences were unrelated to total VASP, which

remained unchanged in all three groups. Thus, spironolactone

enhances intrahepatic PKG activity in BDL rats (Figure 6A).

Figure 5. Sprionolactone (Sp) inhibits the phosphorylation of moesin in BDL- treated rats. (A) immunohistochemistry for hepatic
phosphor-moesin of paraffin-embedded liver sections (magnification 2006) and Western blot analysis of p-moe expression. (B) Expression of Ras and
RhoA proteins in liver homogenates as determined by immunoblot. (C) Real-time PCR analysis for RhoGEF, RhoA and ROCK-2 mRNA expression.
*p,0.05 compared to the Sham group. #p,0.05 compared to the BDL groups.
doi:10.1371/journal.pone.0034230.g005
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Effect of spironolactone on portal hypertension and
intrahepatic resistance

As expected, the portal vein flow was significantly elevated in

BDL rats compared with that in sham- operated rats. Spirono-

lactone did not affect the portal vein flow in BDL rats.

Furthermore, the portal pressure in BDL rats was markedly

higher than that of in sham-operated rats. However, spironolac-

tone treatment significantly attenuated increased portal pressure

induced by BDL. Similarly, hepatic vascular resistance was

increased in cirrhotic rats compared to sham-operated rats and

spironolactone administration significantly decreased hepatic

resistance (Figure 7). These results suggested that chronic

spionolactone treatment ameliorated intrahepatic resistance and

portal hypertension.

Discussion

Spironlacton, an aldosterone antagonist, has been extensively

used as a minor diuretic in achieving volume homeostasis.

Although sprionolactone treatment maybe effective in patients

with cirrhotic ascites and portal hypertension [22,23], little is

known about its potential mechanism. In this study, we found that

spironolacton limited the development of liver cirrhosis and

lowered portal hypertension. This was associated with inhibition of

activated HSCs and reduction intrahepatic resistance in BDL-

treated rats. Furthermore, sprionolactone inhibited hepatic

RhoA/ROCK-2 and activated hepatic NO/PKG signaling.

In vitro studies demonstrated that aldosterone induced the

synthesis of procollagen I and IV in rat HSCs [24]; canrenone, an

anti-aldosterone drug, reduced cells proliferation, migration and

synthesis of procollagen I and IV in human HSCs [25]. Our

present study showed that spironolactone treatment substantially

ameliorated the extent of fibrosis in the BDL rat, as assessed by

METAVIR and ISHAK fibrosis scoring systems and computer-

ized morphometric quantification of Masson’s staining. In

addition, we observed that spironolactone markedly decreased

the hydroxyproline content, a good marker of ECM accumulation

[26], and the expression of type I collagen in the liver of cirrhotic

Figure 6. Sprionolactone (Sp) increased the phosphorylation of vasp in BDL- treated rats. (A) Western blot analysis of the total- or
phospho-vasp and eNOS in BDL rats. The expression levels of phospho-vasp and eNOS are measured relative to the total-vasp and eNOS respectively.
(B) Real-time PCR analysis for eNOS mRNA expression. *p,0.05 compared to the Sham group. #p,0.05 compared to the BDL groups.
doi:10.1371/journal.pone.0034230.g006
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rat. These results suggested that by inhibiting the accumulation of

ECM components, spironolactone treatment ameliorated the

structural derangements that increased intrahepatic resistance

and portal hypertension [27].

To further investigate the involvement of HSCs in this process,

we performed immunohistochemical staining for a-SMA, a

marker of activated HSCs which play central roles in liver

fibrogenesis [28,29]. The reduction areas of staining for a-SMA

indicated a decreased number of activated HSCs after spirono-

lactone treatment. Western blot analyses also confirmed that there

was a downregulation of a-SMA expression in spironolactone

treated rats. The differences between BDL and BDL+Sp groups

were minor though they were statistically significant. Thus the

reduced a-SMA content in the experiment suggests that

spironolactone decrease the activity status of HSCs with

contractile property. This hypothesis was supported by our

previous study [11]. As HSCs activation is closely responsible for

ECM production, intrahepatic angiogenesis and vascular remod-

eling in cirrhotic liver [29,30], this indicates that spironolactone

reduces intrahepatic resistance and consequently results in a

reduction of portal hypertension via an HSC-dependent manner.

Our previous in vivo study confirmed that aldosterone synthase

key gene CYP11B2 was upregulated in CCl4-induced cirrhotic rat

liver [31]. Tsutomu Wada et al also showed that CYP11B2

elevated in high fat and high fructose diet (HFFD) mice and

HFFD+spironolactone mice [32]. Similarly, in our present study,

we found that the mRNA expression of CYP11B2 gradually

increased with the aggravation of fibrosis in BDL rat liver. These

results suggested that mineralocorticoid receptor (MR) antagonist

had no impact on the expression of aldosterone synthase.

Increasing evidences demonstrated that aldosterone per se

promotes inflammation and reactive oxygen species (ROS)

production in vessels [33,34], kidney [35,36], heart [37] and liver

[32]. However, mineralocorticoid receptor (MR) antagonist could

Figure 7. Spironolactone (Sp) improves portal pressure and lower portal vein resistance in BDL- treated rats. (A) Quantification of
portal flow in the sham, BDL and BDL+Sp groups. (B) Portal pressure, (C) intrahepatic resistance in situ liver perfusion (20 ml/min) in sham-opreated
rats, untreated cirrhotic BDL rats, and cirrhotic BDL rats treated with Sp. *p,0.05 compared to the Sham group. #p,0.05 compared to the BDL
groups.
doi:10.1371/journal.pone.0034230.g007

Spironolactone Lowers Portal Hypertension
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suppress inflammation and ROS production. In addition, our

previous in vitro study also found that aldosterone increased HSCs

NF-k B activity and NF-k B target gene-TNFa expression by

inhibiting IkBa expression in a redox-sensitive manner [7]. The

present study showed that increased expressions of TNFa and IL-6

in the liver of BDL rat are significantly suppressed in spironolac-

tone treatment group at four weeks (Fig. 4A, 4B). It is possible that

spironolactone plays the protective role through its anti-inflam-

matory function.

According to our previous study, in vitro aldosterone markedly

upregulated the active RhoA (RhoA GTP) protein expression in

HSCs. The effect was suppressed by both the MR inhibitor

spironolactone and the ROCK-2 inhibitor Y27632. Moreover,

spironolactone can inhibit activated HSCs contraction induced by

aldosterone via RhoA/ROCK-2 signaling pathway [11]. Current

studies have demonstrated that RhoA/ROCK-2 pathway is

essentially involved in vasoconstriction and the regulation of

vascular tone [5,20]. In our present experiment, there was a strong

upregulation of RhoA and Ras protein expression as well as

RhoA, Rho GEFs and ROCK-2 mRNA expression in livers of

BDL rats. Besides, the hepatic upregulation of RhoA and ROCK-

2 resulted in an increased moesin phosphorylation, reflecting an

increased activity of ROCK-2. While sprionolactone significantly

decreased the levels of phosphor-moesin in immunohistochemical

staining and western blot analyses without altering hepatic

expression of RhoA and total moesin. This indicates that

spironolatcone decreased hepatic ROCK-2 activity. As revealed

by our haemodynamic measurements, spironolactone lowered

portal pressure and reduced intrahepatic resistance in the in situ

perfused liver model. Therefore, combined with our previous in

vitro study we speculated that spironolactone might directly

reduce activation of cells contraction mediated by ROCK-2 and

thus decrease intrahepatic resistance.

As RhoA/ROCK-2 negatively regulate eNOS mRNA stability

[38,39], inhibition of RhoA/ROCK-2 with spironolactone might

increase eNOS expression and NO production. In the present

study, we first showed that spironolactone upregulatd the

expression of eNOS mRNA and protein in the liver of BDL rat,

which was accompanied with an increase of phospho-eNOS

content (Ser-1177). Meanwhile, spironolactone increased the levels

of phospho-VASP, a substrate of PKG, and subsequently

mediated NO-induced vasorelaxation. In addition, there is

evidence supporting PKG- dependent inactivation of RhoA [40].

Taken together, we assumed that sprionolactone could increase

intrahepatic NO production and resulte in vasodilation.

Current innovative treatment methods attempt to attenuate

hepatic fibrosis or lower portal hypertension by inhibition HSC

survival and growth or by increasing the production and

bioavailability of NO [41,42–43,44]. However, none of these

treatment methods is applicable in clinical setting. On the

contrary, patients may be easily treated with spironolactone since

it is available for pennies a day. In our experimental study, we

demonstrated chronic treatment with spironolactone lowered

portal pressure by antifibrogenic effect and inhibition of

intrahepatic vasoconstriction. These findings warrant further

investigation in other cirrhosis models such as CCl4 and long-

term studies in humans.

In summary, spironolactone was effective in lowering portal

hypertension in cirrhotic BDL rats. This is attributed to its

antifibrotic activity and decreasing intrahepatic resistance via

inhibition of RhoA/ROCK-2 pathway and activation of NO/

PKG signaling. This suggests that spironolactone may benefit

patients with liver cirrhosis and portal hypertension besides of

diuretic effect when perform appropriate monitoring of renal and

electrolyte status.
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