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ABSTRACT We address a conceptual flaw in the backward-time approach to population genetics called coalescent theory as it is
applied to diploid biparental organisms. Specifically, the way random models of reproduction are used in coalescent theory is not
justified. Instead, the population pedigree for diploid organisms—that is, the set of all family relationships among members of the
population—although unknown, should be treated as a fixed parameter, not as a random quantity. Gene genealogical models should
describe the outcome of the percolation of genetic lineages through the population pedigree according to Mendelian inheritance.
Using simulated pedigrees, some of which are based on family data from 19th century Sweden, we show that in many cases the
(conceptually wrong) standard coalescent model is difficult to reject statistically and in this sense may provide a surprisingly accurate
description of gene genealogies on a fixed pedigree. We study the differences between the fixed-pedigree coalescent and the standard
coalescent by analysis and simulations. Differences are apparent in recent past, within � ,log2(N) generations, but then disappear as
genetic lineages are traced into the more distant past.

IN the early 1980s, Hudson (1983a,b) and Tajima (1983)
reframed population genetics in terms of gene genealo-

gies, which are the ancestral relationships among samples
of genetic data from a population. Gene genealogies exist,
but they are generally unobservable and random models are
used to describe them. Patterns of genetic variation result
from mutations along the lineages of the gene genealogy.
Today, the theory of gene genealogies is central to both
mathematical and empirical population genetics. This the-
ory has been developed for diploid as well as haploid organ-
isms and further extended to include migration, selection,
recombination, and other important biological phenomena;
see reviews by Hein et al. (2005) and Wakeley (2008).

Kingman (1982a,b,c) gave a mathematical proof of the
basic model, his “n-coalescent,” which holds for a sample of
size n from a large, well-mixed population of constant size in
which all genetic variation is selectively neutral. The gene
genealogy at a single locus without recombination is mod-
eled as the outcome of a continuous-time process in which
binary mergers between ancestral genetic lineages (coales-

cent events) occur with rate equal to one independently for
each pair of lineages. The process stops at the (n 2 1)th
coalescent event, that is, when the most recent common
ancestor of the entire sample is reached. The result is a ran-
dom binary tree with associated coalescence times and is
interpreted as a pseudosample from a prior distribution of
gene genealogies.

Coalescent models are used to describe the distribution of
genetic diversity across the genome. For loci that are far
enough apart to segregate independently, the coalescent is
applied separately at each locus, as in Figure 2 of Garrigan
and Hammer (2006), which compares coalescent predic-
tions to the distribution of inferred times to the most recent
common ancestor for 51 human loci. A more recent example
is Huff et al. (2010), who contrasted the distribution of
genetic diversity in samples of size n = 2 among 2432 ran-
domly selected loci to that among 610 loci that each con-
tained a rare insertion sequence in one of the two samples.
For linked loci, the coalescent with recombination is used, as
in the recent articles by Gronau et al. (2011) and Li and
Durbin (2011).

We are concerned with the application of coalescent
models to data from diploid organisms. A number of
processes conspire to produce such data. Individuals are
born, live for some time, and then die. During their lives,

Copyright © 2012 by the Genetics Society of America
doi: 10.1534/genetics.111.135574
Manuscript received October 7, 2011; accepted for publication December 24, 2011
1Corresponding author: 4100 Biological Laboratories, 16 Divinity Ave., Cambridge, MA
02138. E-mail: wakeley@fas.harvard.edu

Genetics, Vol. 190, 1433–1445 April 2012 1433

mailto:wakeley@fas.harvard.edu


they move around their habitat, find potential mates, and
mate either successfully or not. Population-genetic models
include specific assumptions about these processes. How-
ever, with respect to genetic variation, the crucial product of
all of them is the population pedigree. The population
pedigree is the set of all family relationships among
members of the population for every generation. Genetic
lineages are transmitted through this pedigree, forward in
time, according to Mendel’s laws of independent segrega-
tion and, possibly, independent assortment. The validity of
Mendel’s laws is well accepted, while the processes by which
population pedigrees are laid down, and the role of random-
ness therein, are poorly known.

All of these processes have already occurred by the time
we take a sample of genetic data from the population.
Importantly, there is just one population pedigree. Within
this single pedigree, to the extent that different loci have
assorted independently into gametes, a large number of
gene genealogies may exist across the genome. There is in
fact no randomness either in the pedigree or in the
collection of gene genealogies across the genome. They
surely exist, fixed by past events. The only uncertainty about
them is our own lack of knowledge. The appropriate
statistical analogy for samples of genetic data and their
underlying gene genealogies is the framework of survey
sampling, in which the experimenter samples randomly
from an existing population.

Because the relative frequencies of gene genealogies
across the genome result from Mendelian inheritance within
a single pedigree, our random model for the distribution of
gene genealogies across the genome should include a single
pedigree within which genetic lineages percolate to form
gene genealogies. The coalescent does not do this. When
applied to unlinked multilocus data, the coalescent implic-
itly generates a new random pedigree for every locus. Even
for single-locus or linked genetic data, the predictions of the
coalescent do not reflect the effects of pedigree structure
because they are obtained by averaging over the process of
reproduction within each generation.

The effects of pedigree structure on gene genealogies can
be dramatic because the ancestral lineages of a sample are
restricted to the pedigree ancestors of the sampled individ-
uals. Samples containing sibs or cousins can be detected—
see Huff et al. (2011), for example—and the Kingman co-
alescent statistically rejected on the basis of the distribution
of coalescence times or patterns of haplotype sharing across
the genome. In a large population, most samples will not
contain sibs, first cousins, or even second cousins. However,
the Kingman coalescent is also inappropriate in this case
because coalescent events will be impossible in the first,
second, and third generations in the past.

The random experiment envisioned in the coalescent is
apparent in its mathematical derivation, even for a sample
of size n = 2. Starting, as Kingman did, with the haploid
exchangeable models of Cannings (1974), the standard der-
ivation of the coalescent proceeds by calculating

PðcoalÞ ¼ E

"XN
i¼1

niðni2 1Þ
NðN2 1Þ

#
¼ E½n1ðn12 1Þ�

N2 1
; (1)

in which ni is the number of offspring of (haploid) individual
i, one of N possible parents in the immediately previous
generation. The sum in Equation 1 adds up the probabilities
of coalescence over all of the N possible parents. There is
only one expected value on the right in Equation 1 because
exchangeability means that E[ni(ni 2 1)] = E[nj(nj 2 1)] for
all i and j. Since E[n1] = 1 in a population of constant size,
expected value E[n1(n1 2 1)] is equal to the variance of the
number of offspring of a single (haploid) individual, which
is often denoted s2.

Mathematically, the continuous-time Kingman coalescent
exists for a sample of finite size n in the limit N / N. To
obtain the coalescence rate of one per pair of lineages, time
must be measured in appropriate units. If the natural unit of
time is one generation, then the rescaled unit of time will be
cN generations, where c is a constant that depends on the
details of demography and reproduction in the population
(Sjödin et al. 2005). Following Equation 1, Kingman
obtained c = s22 for a subset of the haploid exchangeable
models of Cannings (1974). Later, Möhle (1998a,b) proved
that the same coalescent process holds under the usual dip-
loid, two-sex, Wright–Fisher model if c = 8r(1 2 r), where r
is the fraction of the population that is female.

The point we wish to emphasize does not lie in the
technical details of taking limits and rescaling time, but
rather in the fact that all derivations of the coalescent begin,
either implicitly or explicitly, by averaging over the random
process of reproduction within each generation. The expect-
ations in Equation 1, which in this case are taken over the
distribution of haploid offspring numbers (n1, n2, . . . , nN),
are precisely such averages. For the diploid monoecious
Wright–Fisher model, this averaging is the source of the
familiar P(coal) = 1/(2N), or c = 2. The coalescent analysis
for a sample from a diploid two-sex population involves
additional formalism (Möhle 1998b), but the concept of
averaging over all possible outcomes of the process of re-
production, in taking expectations as in Equation 1, is iden-
tical. This is true as well for derivations that consider
recombination (Hudson 1983b; Hudson and Kaplan 1985,
1988).

Thus the Kingman coalescent and its extensions do not
describe the process of coalescence within fixed population
pedigrees. We study this process, using simulations to
generate pedigrees and also to construct gene genealogies
within pedigrees. We consider a number of methods of
generating pedigrees, including the canonical diploid two-
sex Wright–Fisher model and a novel method of joining
families into a population pedigree. In the latter case, we
employ family data from 19th century Sweden (Low and
Clarke 1991, 1992) and account for known rates of mar-
riages between cousins (Bittles and Egerbladh 2005). We
also consider a restricted version of the Wright–Fisher
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model, in which there is just a single generation of random
mating. The motivation for including such a range of pedi-
grees is to ask whether our results hold only for highly
idealized models, such as the Wright–Fisher model, or apply
more broadly.

The idea that the population pedigree might constrain
gene genealogies is not new, of course. Some of the results
we present are foreshadowed (see Discussion) in the sim-
ulation studies of Avise and colleagues (Ball et al. 1990;
Wollenberg and Avise 1998; Kuo and Avise 2008). In addi-
tion, Derrida et al. (2000) and Barton and Etheridge (2011)
studied related problems mathematically, providing a basis
for our heuristic analyses of coalescence within a fixed ped-
igree. The foundation of all these works is the fact that,
under biparental reproduction, the number of ancestors of
each individual increases by a factor of 2 each generation. If
N is the population size, then on the order of log2(N) gen-
erations ago the numerous ancestors of the sample overlap
completely (Chang 1999), and this results in a nearly con-
stant probability of coalescence in each generation.

After having gone to some length in this Introduction to
demonstrate that the coalescent is generally misapplied, our
results will show that the Kingman coalescent provides
a surprisingly accurate description of gene genealogies
within fixed pedigrees. More precisely, it can be difficult to
reject the Kingman coalescent even with a great deal of
data. Of course, this is not true for all pedigrees and
samples. Gene genealogies in general depend on the details
of pedigree structure. Even when the Kingman coalescent
cannot easily be rejected, on average, the distribution of
gene genealogies constrained by a population pedigree is
different from that predicted by the coalescent. However, in
well-mixed populations, these differences are restricted to
the most recent log2(N) generations or some small multiple
thereof. We describe these differences using simulations and
derive heuristic mathematical predictions that fit key aspects
of our simulation results.

Methods and Results

We developed several pieces of software. Programs suffi-
cient to reproduce all of the results we present are available
at www.oeb.harvard.edu/faculty/wakeley. In general, these
programs work by constructing and storing a population
pedigree and then following ancestral genetic lineages back-
ward in time within that pedigree. One set of programs
simply recorded pairwise times to common ancestry, while
another generated full gene genealogies for larger samples.
In all programs, individuals are diploid and divided into
males and females, so there is no possibility of selfing. We
do not explore the consequences of uneven sex ratio, al-
though in the pedigrees generated using the Swedish family
data we allowed small variations in male and female pop-
ulation sizes.

Mendel’s law of independent segregation was imple-
mented backward in time by tracing lineages to the mother

or father of any individual uniformly (i.e., with a 50:50
chance). When two lineages trace back to the same individ-
ual, they coalesce with probability 1/2; otherwise they re-
main distinct. When two lineages are in a single individual
and are distinct, one of them traces back to the mother and
the other traces back to the father. Again, which was which
was determined randomly and uniformly. Mendel’s law of
independent assortment was modeled by performing the
above independently for each genetic locus, but on the same
pedigree. Finally, we assume that within a locus there is no
recombination and between loci there is free recombination.

Pedigrees based on Wright–Fisher reproduction

Wright–Fisher pedigrees were constructed by choosing one
female parent and one male parent at random, uniformly
among N/2 females and N/2 males, for each of the N indi-
viduals in the population. This random sampling was per-
formed independently for 30N generations to decrease the
chance that the most recent common genetic ancestor of
the sample would not occur within the pedigree. Under
the Kingman coalescent as it is applied to the Wright–Fisher
model, i.e., with a coalescence rate of one per 2N genera-
tions, this corresponds to a probability of exp(215) � 3 ·
1027 that a single pair of lineages will not coalesce within
the pedigree. However, to ensure that a common ancestor
was reached at every locus, we reused the same pedigree by
letting the individuals in past generation 30N be identical to
the individuals in generation zero (i.e., the present), so that
a tiny fraction of genealogies actually loop back through the
pedigree.

In an effort to isolate the different sources of randomness
in the process of coalescence within a fixed pedigree, we
considered a “cyclical” Wright–Fisher model. In this model,
the parents of the current generation, labeled zero, were
chosen by Wright–Fisher sampling. Then these exact par-
ent–offspring relationships were used to specify the parents
of the individuals in generation one and again in every gen-
eration in the past. To explain, the individuals in each gen-
eration are stored as elements in an array of length N. If the
individual in position i in generation zero had the individu-
als in positions j and k as her parents (in generation one),
then the individuals in position i in every generation had the
individuals in positions j and k in the previous generation as
their parents.

The cyclical Wright–Fisher model has no biological inter-
pretation. Our purpose in studying it is that cyclical pedi-
grees have less randomness of reproduction than standard
Wright–Fisher pedigrees. In particular, because relationships
in every generation are identical, they very clearly do not
conform to the assumptions of the usual derivation of the
coalescent, which requires taking an expectation over the
process of reproduction as in Equation 1. Note that it is
possible in this case for a pedigree to be composed of two
or more disjoint pedigrees. We did observe this, but only
rarely and only for N = 100. We excluded these disjoint
pedigrees from our results.
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Pedigrees based on 19th century Swedish families

In addition to the idealized Wright–Fisher models, we con-
structed pedigrees using the family data from 19th-century
Sweden described in Low and Clarke (1991, 1992). These
data were gathered from the records of seven parishes—
Fleninge, Gullholmen, Locknevi, Nedertorneå, Svinnegarn,
Tuna, and Trosa—and contain all men married between
1824 and 1840 and all of their descendants up to 1896
(1922 in the case of Gullholmen). There are 512 of these
extended families, which vary in size from 3 individuals (i.e.,
two parents and their child) to 865 individuals and from two
generations to five generations in length.

To facilitate the construction of population pedigrees, we
extracted all two-generation families from these data. We
define a two-generation family to be a set of all siblings, half
siblings, and their parents. To illustrate, an extended family
containing a granddaughter, her two parents, and her four
grandparents would yield 3 two-generation families, each
containing two parents and one child. Applying this to the
entire data set resulted in 1884 two-generation families
(hereafter “Swedish families”) containing a total of 3856
daughters, 4033 sons, 2200 mothers, and 2251 fathers.
These data are available at www.oeb.harvard.edu/faculty/
wakeley.

Although we have abstracted the data considerably, note
that these Swedish families exhibit a rather different
structure from families generated by Wright–Fisher repro-
duction. For example, 1549 (82.2%) of the Swedish families
are monogamous: neither the mother nor the father had
children with any other partners. A randomly chosen child
has a 77.6% chance of being born to monogamous parents.
Such high levels of monogamy are unlikely in all but the
smallest Wright–Fisher populations. In addition, the distri-
bution of the number of offspring in the data is very different
from the Poisson distribution expected under the Wright–
Fisher model (see Figure 1). This is likely due to the differ-
ential distribution of wealth, as discussed in Low and Clarke
(1991).

We constructed population pedigrees from the Swedish
family data using three different methods, which we
designate “random, sibs,” “random, no sibs,” and “cousins,
no sibs.” In all cases generations were forced to be nonover-
lapping and the population size was held constant over time.
In random, sibs, mating occurred at random, allowing the
possibility of sib mating. The other two methods reflect
aspects of human reproductive behavior. In random, no sibs,
mating still occurred at random, but mating between sib-
lings was barred. Finally, in cousins, no sibs, mating was also
barred between siblings and the population was structured
to reproduce the rates of marriage (here reproduction) be-
tween first and second cousins in 19th century Northern
Sweden presented in Table 1 of Bittles and Egerbladh
(2005).

Consider the simplest method (random, sibs) applied to
the entire data set of 1884 families containing 3856

daughters, 4033 sons, 2200 mothers, and 2251 fathers. The
population size is fixed at 3856 + 4033 = 7889 and in every
generation 2200 females and 2251 males reproduce suc-
cessfully, precisely according to the structures of the 1884
single-generation families. Thus, this entire set of single-
generation families is reused to represent parent–offspring
relationships in each past generation. Our three methods
differ in the way in which generations are linked together
by mapping the children in these families onto the parents in
the next (descendant) generation. In random, sibs, children
of parents in generation two in the past are equated with
parents in generation one in the past by sampling 2200
daughters and 2251 sons at random without replacement.

The method we call random, no sibs is identical to
random, sibs except that these random assignments of
children to parents are rejected if they would result in
reproduction between siblings and are resampled until
a nonsib pair is found.

In cousins, no sibs, we made an effort to account for
known rates of marriage between cousins. In the period
from 1820 to 1899, the numbers in Table 1 of Bittles and
Egerbladh (2005) show that 2.56% of marriages were be-
tween first cousins and 2.65% were between second cous-
ins. These rates are higher than those obtained under either
model of random mating using the full data of 1884 fami-
lies. We increased the rates of consanguineous matings by
subdividing the population into demes between which there
was limited migration. For computational simplicity we
measured deme size by the number of families in each deme
(Fdeme). Because Fdeme generally would not divide the num-
ber of families evenly, the remainder of families was added
to one of the demes. Once demes were established, a number
of parents (M, divided equally into males and females) were
reassigned to randomly chosen demes. The mapping of chil-
dren to parents in the next (descendant) generation oc-
curred as in random, no sibs but separately within each
deme.

On the basis of simulated cousin rates obtained for the
full data of 1884 families, we chose Fdeme = M = 30. This
gave rates of 2.0% and 2.9% for first-cousin matings and

Figure 1 The observed distribution of the number of children of monog-
amous parents in the Swedish family data compared to a Poisson distri-
bution with the same mean (�3.95) and conditional on there being at
least one child.
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second-cousin matings, respectively. It was not possible to
match both the first-cousin and the second-cousin rates per-
fectly. In addition, rates of third-cousin matings in our sim-
ulated pedigrees (not shown) were generally higher than
those in Bittles and Egerbladh (2005). Our difficulty in fit-
ting these rates using a random model is not surprising,
since prospective couples actively respond to a complex set
of social factors and very likely know their relationship.

In constructing pedigrees of a given size (with ,7889
individuals), we created subsets of the 1884 Swedish fami-
lies by sampling families randomly without replacement.
Because these families are of fixed sizes, we had to allow
some variation in the sizes of populations. For each subset,
we required that the total number of children be within
2.5% of the desired size. To be able to link generations by
mapping children onto parents in each generation, we also
required that the number of female (resp., male) children
was greater than the number of mothers (resp., fathers). If
a subset of families did not meet these criteria, we rejected it
and sampled another subset. As in our Wright–Fisher pedi-
grees, these pedigrees from the Swedish family data were
composed of a fixed number of generations, in this case
2000 for computational reasons, and any lineages that did
not coalesce by then would loop back through the pedigree.

Since the derivation of the Kingman coalescent is invalid
for any given pedigree, we investigated the power of two
tests of the coalescent model, using data simulated on fixed
Wright–Fisher and Swedish family pedigrees.

A chi-square test of the coalescent

We considered the power to reject the simplest prediction of
the Kingman coalescent—that coalescence times for a sam-
ple of size n= 2 should follow an exponential distribution—
using pairwise coalescence times at independent loci simu-
lated on fixed pedigrees. For each of six different population
sizes, from 250 to 8000 on a log2 scale, we generated 2000
pedigrees. For each pedigree, we sampled 2 distinct indi-
viduals randomly from the current generation. We then
simulated 1000 independent pairwise coalescence times
(corresponding to the gene genealogies of 1000 indepen-
dently segregating loci), each time starting from one gene
copy in each of these 2 individuals. The maximum popula-
tion size of N = 8000 was chosen to be close to the total
number of children in our Swedish family data, which again
was 7889.

From these 1000 coalescence times, which we assumed
were known without error, we first computed the arithmetic
mean coalescence time. We then compared the observed
distribution of the 1000 coalescence times to an exponential
distribution with the same mean. We used a simple chi-
square goodness-of-fit test, in which we divided the sample
space of the exponential distribution into 50 bins of equal
probability (1/50 = 0.02) and counted the number of the
1000 loci that had coalescence times in each bin. For an
exponential distribution with mean 1/l, the first bin will
include times between zero and 2log(0.98)/l and the

50th bin will include all times . 2log(0.02)/l. We thus
expect to observe 20 loci in each bin. We performed a chi-
square test with d.f. = 48 to assess the goodness of fit of the
exponential.

As noted in the Introduction, when applied to multiple
loci, the Kingman coalescent in effect assumes that each locus
comes from an independent population, with its own inde-
pendent pedigree. It is not feasible to perform this pseudoex-
periment using our simulations for any but the smallest
population sizes. Therefore, in addition to standard Wright–
Fisher and one-generation cyclical Wright–Fisher pedigrees
(in both cases with all 1000 single-locus coalescent simula-
tions starting from the same two individuals sampled at ran-
dom without replacement), we considered a third model that
we expected would conform well to the Kingman coalescent.
In this model, the 1000 coalescence times were generated on
the same Wright–Fisher pedigree, but starting at a newly
sampled pair of individuals for each locus.

The results of these chi-square tests are displayed in Fig-
ure 2. As anticipated, the Kingman coalescent is not rejected
for data from Wright–Fisher pedigrees with independently
sampled individuals for each locus (Figure 2A, boxes). This
shows that our minimum population size of N = 250 is large
enough that the coalescent will not necessarily be rejected
simply because it is a continuous-time model while time in
our pedigrees is discrete. Figure 2A further shows that the
Kingman coalescent is not rejected at above the nominal
significance level for multilocus data from the same pair of
individuals as long as the size of a Wright–Fisher population
is a few thousand or larger.

Although our simple chi-square test may not be the most
powerful test, the fact that coalescence within pedigrees
under the standard Wright–Fisher model leads only to nom-
inal rejection probabilities when the population size is not
too small illustrates what Ball et al. (1990, p. 365) noted in
their simulations: “Results suggest that gene lineages trans-
mitted through a single organismal pedigree show nearly as
much independence as do gene lineages traced through sep-
arate organismal pedigrees generated under a common set
of demographic conditions.” Probably the most surprising
result in Figure 2A is that rejection probabilities for one-
generation cyclical Wright–Fisher pedigrees are indistin-
guishable from those for standard Wright–Fisher pedigrees.
Repeated independent realizations of the process of repro-
duction in every generation are not required for pairwise
coalescence times to appear exponential, at least by our
approximate measure of the distribution.

Figure 2B shows the chi-square results for the three dif-
ferent methods of constructing pedigrees from the Swedish
family data. Rejection probabilities for all three types of
Swedish pedigrees are very similar. As with the Wright–
Fisher pedigrees, they approach the nominal significance
level when the population size is a few thousand or more.
However, as a result of differences in the distribution of
family sizes and propensity toward monogamy, for small
populations the rejection probabilities for pedigrees from
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the Swedish family data are greater than those for cyclical
and standard Wright–Fisher pedigrees.

These differences in family structure can be seen in the
distribution of the chi-square statistic among samples within
a single pedigree. Figure 3 depicts two such distributions,
among 20,000 data sets for each of two pedigrees: one with
N = 250 individuals (specifically, 129 females and 123
males) constructed from the Swedish family data and one
with N = 96 individuals (chosen to yield approximately the
same chi-square rejection probability) constructed by
Wright–Fisher reproduction. While the bulk of the distribu-
tions in Figure 3, A and B, is similar, the right-hand tails are
different due to differences in the occurrence of full sibs, half
sibs, and cousins in the two pedigrees.

Tajima’s D at 10 independent loci

Our application of the chi-square results presented in Fig-
ures 2 and 3 is unrealistic. On the one hand, we assumed
that coalescence times could be known exactly. In truth,
coalescence times can be inferred only with some error from
genetic variation that has resulted from the stochastic pro-
cess of mutation. On the other hand, we restricted ourselves
to samples of size 2, while there will necessarily be more
information in larger samples. To provide a more realistic

picture of the power to reject the Kingman coalescent using
data from a single population pedigree, we generated se-
quence data for samples of n = 20 and n = 100 under the
infinite-sites mutation model (Kimura and Crow 1964;
Watterson 1975). We modeled 10 independent loci, with
mutation rates such that the expected number of pairwise
sequence differences was equal to one at each locus.

We computed Tajima’s D from the pseudodata at each
locus. Specifically,

D ¼
�k2 S=c1;nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2;nSþ c3;nS2

p ;

where S is the observed number of polymorphic sites in the
sample, k

�

is the average number of pairwise differences, and
c1,n, c2,n, and c3,n are constants defined in Tajima (1989). We
implemented a two-tailed test, with upper and lower critical
values obtained from simulations of the Kingman coalescent
with mutation parameter u= 1. For n= 20, the cutoffs were
21.886 and 2.316, and for n = 100, they were 21.779 and
2.719. These cutoffs yielded approximately symmetrical
tests at approximately the 1% significance level when ap-
plied to a single locus under the null model.

Figure 2 Probabilities of reject-
ing the Kingman coalescent us-
ing coalescence times on a fixed
pedigree and the chi-square test
described in the text. (A and B)
The mean and estimated 95%
confidence intervals for the prob-
ability of rejecting the coalescent
using 1000 independent coales-
cence times, for a series of pop-
ulation sizes, under (A) three
different Wright–Fisher pedigree
models and (B) three different
methods of building pedigrees
from the Swedish family data.
Dashed lines show the nominal
significance level of the tests,
which was 5%.

Figure 3 (A and B) Distributions
of chi-square values (X2 on
a log10 scale) among 20,000 ran-
domly sampled pairs of individu-
als on (A) one pedigree from the
Swedish family data containing
129 females and 123 males in
each generation and (B) one
Wright–Fisher pedigree contain-
ing 48 females and 48 males in
each generation. The overall re-
jection probabilities were approx-
imately the same for the two
pedigrees: 0.535 vs. 0.529. Peaks

in the right-hand tails are labeled by the relationship of the two sampled individuals, and the frequencies of each relationship among the 20,000
samples are given in parentheses. Minor differences in these frequencies occur among pedigrees (results not shown) but the overall patterns are robust.
Triangles mark the chi-square cutoff for 5% significance.
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As in our chi-square test, we constructed 2000 population
pedigrees. We then sampled n individuals from the current
generation without replacement. For each of 10 loci, inde-
pendently, we traced the ancestry of a sample of size n gene
copies, one from each individual, backward in time. This
resulted in 10 gene genealogies, each typically with its
own branching structure and times to common ancestry.
Although each population pedigree and sample has its
own characteristic times to common ancestry, for Wright–
Fisher pedigrees we found that these were generally close
to the usual Wright–Fisher expectation of 2N generations.
Therefore, if TðiÞ

tot was the total length of the gene genealogy
at locus i, then for pedigrees based on Wright–Fisher repro-
duction, we placed a Poisson-distributed number of muta-
tions, with mean TðiÞ

tot=2 uniformly on the genealogy. For
pedigrees from the Swedish family data, preliminary simu-
lations were run for each population size so the mutation
rate could be set to give an average number of pairwise
differences equal to one.

For each pedigree, we asked whether the data from$1 of
the 10 loci rejected the null model at the 1% significance
level. This corresponds to a 10-locus test at the 10% signif-
icance level, with a Bonferroni correction. On the basis of
our expectation that this test would be less powerful than
the chi-square test, we considered a series of 10 different
population sizes from N = 100 to N = 1000. The results are
displayed in Figure 4A for the cyclical Wright–Fisher model
and in Figure 4B for the cousins, no sibs model with Swedish
families. The results show zero power to reject the Kingman
coalescent, even for a sample size equal to population size
(n = 100, N = 100). The same was true for our other
pedigree models (results not shown).

This lack of power may be due to several factors. The size
and shape of gene genealogies are difficult to discern with
random mutations and expected number of pairwise differ-
ences equal to one. However, the power to reject the null
model remained insensitive to population size in subsequent
simulations with mutation rates 10 or 100 times higher
(results also not shown). Given the results in Figure 3, A and
B, it seems likely that deviations in the size or shape of our

simulated gene genealogies differ from those under the
Kingman coalescent only very close to the tips, that is, only
in the very recent ancestry of the sample. These times are
characteristically very short, so regardless of the mutation
rate only a small fraction of mutations will fall on this part of
the gene genealogy. This basic intuition is borne out by our
detailed examination of the distribution of pairwise coales-
cence times in the following section.

The shapes of coalescence-probability distributions

For each of three different population sizes (N = 102, N =
103, and N = 105), Figure 5 shows a series of histograms of
the pairwise coalescence probability, one histogram for each
of the past 20 generations. These coalescent-probability dis-
tributions are different from the usual distributions from the
Kingman coalescent, which give the distribution of the time
to the coalescent event between a pair of lineages, averaged
over all possible pedigrees. Here, instead, we consider the
pedigree to be fixed. Conditional on the pedigree and the
sampled individuals, there is a fixed probability that two
ancestral lineages from those individuals will coalesce in
each generation. Figure 5 shows the distributions of these
probabilities among pedigrees for each past generation.

The data for Figure 5 were generated by randomly con-
structing 10,000 standard Wright–Fisher pedigrees for each
population size. The results for the cyclical Wright–Fisher
model (not shown) are indistinguishable from those in Fig-
ure 5. Likewise, the results for the Swedish family data dis-
play the same overall patterns, with differences only in the
recent generations (recall Figure 3). For each pedigree, two
individuals were sampled randomly without replacement.
Starting with this pair of sampled individuals, in the cases
N = 102 and N = 103 (also N = 104, not shown), 107

ancestries of two gene copies, one from each individual,
were simulated back to their most recent common genetic
ancestor. In the case N= 105, 108 ancestries were simulated.
The probability of coalescence in generation g for a given
pedigree was estimated by the fraction of times (of 107 or
108) that the most recent common ancestor of the pair oc-
curred in generation g.

Figure 4 Probabilities of reject-
ing the Kingman coalescent us-
ing 10-locus data from a fixed
pedigree and Tajimas’s D. (A
and B) The mean and estimated
95% confidence intervals for
the probability of rejecting the
coalescent using Tajima’s D at
10 independent loci, for different
sample sizes and population
sizes, when the expected number
of pairwise differences is equal to
one, for (A) one-generation cycli-
cal Wright–Fisher pedigrees and
(B) pedigrees from the Swedish
family data. Dashed lines show
the nominal significance level of
the test, which was 10%.
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The histograms for each generation give the relative
frequency of these estimated probabilities of coalescence
among the 10,000 pedigrees. These were constructed as
follows. Estimated probabilities between zero and 5/(2N)
were put into one of 100 possible bins, each of equal width
0.05/(2N). Thus the usual Wright–Fisher P(coal) = 1/(2N)
is the cutoff between the 20th and the 21st bin. Estimated
coalescence probabilities .5/(2N) were placed in an addi-
tional 101st bin. For example, two genetic lineages have
a chance to coalesce in the immediately previous generation
(g= 1 in Figure 5) only if the two sampled individuals share
at least one parent. The probability of sharing a parent is

inversely related to the population size, so most pedigree-
sample cases have a coalescence probability equal to zero for
the immediately previous generation. At the same time, if
we were to average P(coal at g = 1) over pedigrees, we
would obtain 1/(2N).

In considering the pattern of histograms in Figure 5, A–C,
it is helpful to imagine how these would appear if coales-
cence times were drawn directly from a geometric distribu-
tion with mean equal to 2N, which is the standard Wright–
Fisher prediction (averaged over pedigrees) that produces
the Kingman coalescent. Figure 5D shows one such distribu-
tion, for N = 105. The distribution traces a sharp ridge along

Figure 5 Three-dimensional histograms of the probability that a sample of size two coalesces in each of the past 20 generations (g) on fixed Wright–
Fisher pedigrees, for three different population sizes: (A) N = 102, (B) N = 103, and (C) N = 105. Within each generation, histograms show the relative
frequency of the coalescence probability among 10,000 pedigrees. (D) These distributions for the case of independent samples from a geometric
distribution with parameter 1/(2N), with N = 105 as in C.
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P(coal at g) = p(1 2 p)g21, with P = 1/(2N). This ridge has
some width only due to the fact that P(coal at g) has been
estimated from a finite number of simulated coalescence
times. Note that for later generations the shape of the ridge
in Figure 5C becomes indistinguishable from the one in
Figure 5D. However, it emerges in Figure 5C only after
�log2(N) generations in the past, while more recent gener-
ations show complicated patterns of coalescence-probability
distributions. For reference, log2(102) � 6.6, log2(103) �
10.0, and log2(105) � 16.6.

Consistent with the results in Figure 2A, we also observe
a simple ridge like the one in Figure 5D if we obtain the
distribution of coalescence times for each pedigree by
resampling pairs of individuals, although we do not show
these results.

Heuristic analysis of the coalescence-probability
distribution within a generation

These complicated distributions and the transition to a sim-
ple ridge depend on the overlap in the family trees of the
two sampled individuals. Tracing backward in time, com-
mon pedigree ancestors accumulate rapidly because the
expected number of ancestors of an individual increases
twofold each generation. Chang (1999) showed that a com-
mon pedigree ancestor of everyone in the current generation
would occur at �log2(N) generations in past and that all
family trees would overlap completely after �1.77 log2(N)
generations. Derrida et al. (2000) showed that the family
trees of a pair of individuals overlap completely over this
same time frame. Matsen and Evans (2008) showed that the
first occurrence of overlap may involve multiple common
pedigree ancestors.

We can gain some intuition about the features of the
complicated distributions in Figure 5 from the following
approximate calculation, which applies to Wright–Fisher
pedigrees with equal numbers of males and females. A sin-
gle individual has 2g ancestors in generation g in the past. If
the first occurrence of shared pedigree ancestry in the family
trees of a pair of individuals is a single common ancestor
between the two in generation g, then the probability of
coalescence is given by

1
22gþ1: (2)

Equation 2 is the product of three probabilities: the
probability that the genetic lineage from the first individual
traces back to the common pedigree ancestor (1/2g), the
probability that the genetic lineage from the second individ-
ual also traces back to this individual (1/2g), and the prob-
ability the two lineages coalesce when they reach that
ancestor (1/2).

We can apply Equation 2 to Figure 5C. In particular, the
first nonzero mode in generation 8 of the coalescence-prob-
ability distribution in Figure 5C has its tallest bar at histo-
gram bin 31. This bin includes probabilities between 7.50 ·
1026 and 7.75 · 1026. If we put g = 8 in Equation 2, we

obtain a coalescence probability of 7.63 · 1026. Thus, this
first nonzero mode corresponds to the occurrence of a single
common pedigree ancestor in the families of the two
sampled individuals in generation g = 8. A similar calcu-
lation shows that the second nonzero mode in Figure 5C
at g = 8 corresponds to there being two common pedigree
ancestors.

Numerical calculation of coalescence probabilities on
fixed pedigrees

If N is not too large—up to a few thousand—simulations can
be replaced by exact numerical calculations. In particular, it
is possible to compute the full joint distribution of the loca-
tions of a pair of lineages among the individuals in the pop-
ulation in each past generation. The following can be
considered a special case of the very general method of
Cannings et al. (1978) or an extension (to account for co-
alescence) of the method of Derrida et al. (2000). Further,
the matrix approach of Barton and Etheridge (2011) could
in principle be extended to the problem of two lineages and
would provide an avenue to rigorous asymptotic analysis of
their joint distribution. In the Supporting Information of
Barton and Etheridge (2011), an efficient way to compute
probabilities of identity by descent on a pedigree is de-
scribed. Here, we use the full joint distribution of the loca-
tions of a pair of lineages among individuals to compute
probabilities of coalescence in each generation. Note that
computing the entire joint distribution is required for com-
puting probabilities of coalescence exactly.

Let wij(g) be the probability that sampled lineage 1 is in
individual i 2 (1, . . . ,N) and sampled lineage 2 is in indi-
vidual j 2 (1, . . . ,N) in past generation g, given that the two
lineages did not coalesce in any of the intervening genera-
tions: 1, 2, . . . , g 2 1. As in our simulations, we imagine the
individuals in any generation lined up in an array of length
N. Thus, these wij(g) compose an N · Nmatrix whose entries
sum to one for every g. Initially, in the current generation g
= 0, a single entry in the matrix is equal to one, with i and j
corresponding to the locations of the two sampled individ-
uals, and all other entries are equal to zero. For a given fixed
pedigree, we compute the entries wij(g) backward in time
from the entries wij(g 2 1), using two intermediate proba-
bilities: w*

ijðgÞ is the probability the two lineages trace back
to individuals i and j, and w**

ij ðgÞ is the probability the two
lineages trace back to individuals i and j and do not coalesce.

We begin by setting all elements w*
ijðgÞ equal to zero. For

individuals i and j in generation g 2 1, let iM and iF be the
mother and father of individual i and let jM and jF be the
mother and father of individual j. Considering every i and j,
(1) if i = j, then one-half of wij(g 2 1) is added to w*

iMiF ðgÞ
and one-half to w*

iF iM ðgÞ, and (2) if i 6¼ j, then one-fourth of
wij(g 2 1) is added to each of w*

iM jM ðgÞ, w*
iM jF ðgÞ, w*

iF jM ðgÞ, and
w*

iF jF ðgÞ. These rules result from the fact that each lineage is
equally likely to trace back to either parent. Now, if two
lineages trace back to the same parent, they coalesce with
probability 1/2. Therefore, for each i and j, (1) if i = j,
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w**
ij ðgÞ ¼ w*

ijðgÞ=2, and (2) if i 6¼ j, w**
ij ðgÞ ¼ w*

ijðgÞ. The over-
all probability of coalescence is given by

1
2

XN
i¼1

w*
iiðgÞ ¼

XN
i¼1

w**
ii ðgÞ: (3)

To condition on the absence of a coalescent event in
generation g, we let

wijðgÞ ¼
w**
ij ðgÞ

12
PN
i¼1

w**
ii ðgÞ

;

and this completes the calculation for past generation g.
Figure 6 shows the probability of coalescence in each of

the past 29 generations for five different pedigrees of N =
1000 individuals (500 males and 500 females). These were
computed exactly for each pedigree using Equation 3, be-
ginning with two lineages in a pair of individuals sampled
randomly without replacement. The five trajectories in Fig-
ure 6, A and B, are for five pedigrees simulated under the
standard Wright–Fisher model and under the cyclical
Wright–Fisher model, respectively. In contrast to Figure 5,
here it is possible to see the particular values for each ped-
igree in each generation. Another, minor difference is that
Figure 6 shows coalescence probabilities conditional on not
having coalesced in any intervening generation (1, . . . , g 2 1),
while Figure 5 simply depicts the probabilities of coales-
cence in each generation.

Figure 6A demonstrates that for a given Wright–Fisher
pedigree and pair of sampled individuals, the probability of
coalescence varies greatly in the recent generations. For ex-
ample, in generation one this probability will be 1/4 for full
sibs, 1/8 for half sibs, and zero for all other relationships.

After some small multiple of log2(N) generations, it settles
near 1/2N, but with some variation even in the distant past
due to stochasticity in the parent–offspring relationships in
each generation. Figure 6B shows that a very similar phe-
nomenon holds for cyclical Wright–Fisher pedigrees. How-
ever, because now the offspring distribution does not vary
from one generation to the next, each cyclical pedigree has
its own characteristic probability of coalescence. The trajec-
tories in Figure 6B become completely flat after �log2(N)
generations.

Recall that the Kingman coalescent assumes a constant
probability of coalescence in every generation. The flat lines
in Figure 6B explain the result suggested by Figures 2A and
4A. Namely, the Kingman coalescent is a reasonable approx-
imation to the ancestral process on fixed, cyclical Wright–
Fisher pedigrees (albeit with an “effective population size”
that differs slightly from 2N). For standard Wright–Fisher
pedigrees, the Kingman coalescent is also a reasonable ap-
proximation, because the fluctuations in the probability of
coalescence around 1/2N are small.

Similarly to Equation 2, we can interpret the results in
Figure 6, A and B, simply from the initial geometric increase
of the number of ancestors of the sampled individuals. As-
sume that N is large and g small, so that the numbers of
ancestors of each individual make up a small fraction of the
population (2g � N). In this case, the recent ancestries of
two lineages will include either one shared pedigree ances-
tor or none. Ignoring events in generations 1 through g 2 1,
we have

Pðone shared ancestor at gÞ � 22g

N

Pðno shared ancestors at gÞ � 12
22g

N
:

Figure 6 Numerical analysis and simulations of
pairwise coalescence probabilities in past gen-
erations. (A and B) The probabilities of coales-
cence for a sample of size n = 2 from
a population of size 1000 at each generation
in the past given no coalescence up to that
generation, computed analytically using Equa-
tion 3 for five Wright–Fisher and five cyclical
Wright–Fisher pedigrees, respectively. (C and
D) Comparison of analytical and simulation
results for the variance of the probability of co-
alescence in each generation in the past for
a population of size N = 500. C shows both
the expectated variances (exp.) given by Equa-
tion 4 and the observed variances (obs.) among
100,000 simulated Wright–Fisher pedigrees. D
shows the relative error, (obs. – exp.)/exp., in
each generation for the same data as in C.
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The probability of one shared pedigree ancestor results from
the fact that each of the first individual’s 2g pedigree ances-
tors could be among the second individual’s pedigree ances-
tors, which compose a fraction 2g/N of the population. Also,
following Equation 2, we have

Pðcoaljone shared ancestor at gÞ ¼ 1
22gþ1

Pðcoaljno shared ancestors at gÞ ¼ 0:

Then, the first two moments of P(coal) at generation g are

E½PðcoalÞat g� � 22g

N
1

22gþ1 ¼ 1
2N

E½PðcoalÞ2at g� � 22g

N

�
1

22gþ1

�2

¼ 1
2N

1
22gþ1: (4)

Under the initial assumption that 2g � N, we have Var[P
(coal) at g] � E[P(coal)2 at g].

This approximate derivation shows that, for a randomly
sampled Wright–Fisher pedigree, the expected probability
of coalescence in each generation is the same and equal to
the usual value 1/2N. It further shows that variance of the
probability of coalescence in each generation among ran-
domly sampled Wright–Fisher pedigrees should begin at
a relatively large value in generation g = 1 and then
decrease by a factor of 4 in subsequent generations. We
do not expect this level of decrease to continue for very
many generations, however, because it depends on the
assumption that 2g � N. Figure 6C compares Equation 4
to the observed variances among 100,000 Wright–Fisher
pedigrees for a population of size 500. Although the ap-
proximation captures the initial behavior well, Equation 4
tends to zero as g grows, and this contradicts the pattern
in Figure 6A, which depicts a nonzero, but small, level
of variation in P(coal) among pedigrees in later genera-
tions. The relative error of Equation 4 is shown in Figure
6D. Results for the cyclical Wright–Fisher model (not
shown) are indistinguishable from those in Figure 6, C
and D.

Numerical calculations of coalescence probabilities can
also be performed on pedigrees constructed from the Swedish
family data. The results (not shown) are broadly the same as
those in Figure 6, but with differences due to the detailed
structure of the Swedish families that are rather unlike the
families that result from Wright–Fisher reproduction, as noted
previously.

Discussion

We have studied the process of coalescence within single
fixed pedigrees. We have mimicked the sampling of gene
genealogies underlying multilocus genetic data close to how
it actually occurs, rather than as it is conceptualized in the
derivation of the Kingman coalescent, which averages over

pedigrees. We considered standard Wright–Fisher pedi-
grees, cyclical Wright–Fisher pedigrees, and pedigrees con-
structed from a large data set of families from 19th century
Sweden. The results reveal that, for these types of pedigrees
and for most samples, the Kingman coalescent generally
does provide an accurate description of the distribution of
gene genealogies among independently segregating loci on
a single fixed pedigree, in the sense that the coalescent is not
rejected with much power using simple statistical tests.

Considerably greater power could likely be achieved by
looking at patterns of haplotypes in recombining sequen-
ces. Although we have not considered restricted nonzero
recombination, it is important to recognize that the
treatment of recombination in coalescent theory involves
the same averaging over all possible outcomes of repro-
duction that occurs in the derivation of the single-locus
coalescent process (Hudson 1983b; Hudson and Kaplan
1985, 1988).

The Kingman coalescent has been shown to be a robust
model for many sorts of perturbations from the canonical
assumptions (Möhle 1998a,b). However, our results do not
follow immediately from previous analyses because these
begin with finite-state homogeneous Markov chains ob-
tained by averaging over the process of reproduction (i.e.,
the pedigree) within each generation. Even so, the basic
idea behind previous robustness proofs, namely a separation
of timescales, is also relevant here. Figures 5 and 6 suggest
that the Kingman coalescent is a poor approximation over
the short time frame of the recent past, but becomes an
accurate approximation after some small multiple of log2(N)
generations. Because log2(N) is small relative to the typical
coalescent timescale of N generations, excepting loci that
coalesce within this very recent past, the distribution of gene
genealogies is quite similar to that predicted by the Kingman
coalescent.

The heterogeneity of coalescence probabilities shown in
Figures 5 and 6 is due to the particular patterns of shared
ancestry of the sampled individuals in each pedigree. For
example, the solid line in Figure 6A begins at zero in gen-
eration 1, then jumps up to 1/32 (which is outside the range
of the vertical axis in Figure 6A) in generation 2, and then
jumps back down to zero in generation 3. It happened in this
simulation that the two sampled individuals had no parents
in common, exactly one shared grandparent, and only the
two parents of their shared grandparent in common among
their great-grandparents. Even this amount of recent shared
ancestry is unlikely in all but very small populations, as in-
dicated by the fact that the other nine trajectories in Figure
6, A and B, remain stuck at zero until at least generation 5.

While all sample-pedigree combinations deviate greatly
from the coalescent prediction of a constant rate of co-
alescence in recent generations, if we consider only those
genetic ancestries in which two lineages did not coalesce
within some small multiple of log2(N) generations, then
Figure 6, A and B, demonstrates that the more distant past
for any pedigree will conform well to the predictions of the
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Kingman coalescent. Loosely speaking, an averaging over
reproduction reminiscent of that in the derivation of the
coalescent occurs on fixed pedigrees because there are so
many possible ancestors of each individual: 2g at generation
g in the past. Two lineages that do not coalesce in the recent
past will traverse the pedigree for many generations before
they meet, effectively sampling a large number of different
reproduction events.

This remarkable result certainly must depend on the
population or pedigree being well mixed in some sense, and
we have not explored the stringency of this requirement.
There has been one study of pedigrees in a spatially
structured population: Kuo and Avise (2008) studied the
effects of pedigrees on the branching structure of gene ge-
nealogies for samples of size n = 4 from a population
arrayed along a circle and found results that pertain to mod-
els of isolation by distance. However, they were not con-
cerned with the simple Kingman coalescent.

Our results extend those of previous simulation studies.
In particular, Ball et al. (1990) simulated diploid pedigrees
for populations of size 100 and then followed a single ge-
netic lineage from each individual through the pedigree
backward in time, creating a single-locus gene genealogy
with n = N = 100 tips. They then sampled pairs of individ-
uals from the tips of this gene genealogy and compiled the
distribution of coalescence times among these pairs. They
did not incorporate mutations, but dealt directly with co-
alescence times. Their study design was to generate 50 sin-
gle-locus gene genealogies for each of 50 independent
population pedigrees. For each of these 50 · 50 = 2500
gene genealogies, they randomly partitioned the N = 100
tips into 50 nonoverlapping pairs and studied the distribu-
tion of coalescence times among these pairs.

Ball et al. (1990) found that the distribution of coales-
cence times among pairs within single pedigrees (at a single
locus) seldom fitted coalescent predictions for pairwise
times to common ancestry. This stems from the fact that
pairwise coalescence times are highly correlated within a
single gene genealogy (Slatkin and Hudson 1991). Not sur-
prisingly, Ball et al. (1990) also found that when these sin-
gle-locus distributions were averaged over independent
pedigrees, they conformed well to coalescent predictions.
The surprising result of Ball et al. (1990) was that when
these single-locus distributions were averaged among inde-
pendent loci within a single pedigree, they also conformed
well to coalescent predictions. We have confirmed this result
with extensive simulations and described both the details of
deviations from it in the recent past and the subsequent
approach to a coalescent-like behavior, even for pedigrees
that are not generated by Wright–Fisher reproduction.
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