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ABSTRACT In both pedigree linkage studies and in population-based association studies there has been much interest in the use of
modern dense genetic marker data to infer segments of gene identity by descent (ibd) among individuals not known to be related, to
increase power and resolution in localizing genes affecting complex traits. In this article, we present a hidden Markov model (HMM) for
ibd among a set of chromosomes and describe methods and software for inference of ibd among the four chromosomes of pairs of
individuals, using either phased (haplotypic) or unphased (genotypic) data. The model allows for missing data and typing error, but
does not model linkage disequilibrium (LD), because fitting an accurate LD model requires large samples from well-studied populations.
However, LD remains a major confounding factor, since LD is itself a reflection of coancestry at the population level. To study the
impact of LD, we have developed a novel simulation approach to generate realistic dense marker data for the same set of markers but
at varying levels of LD. Using this approach, we present results of a study of the impact of LD on the sensitivity and specificity of our
HMM model in estimating segments of ibd among sets of four chromosomes and between genotype pairs. We show that, despite not
incorporating LD, our model has been quite successful in detecting segments as small as 106 bp (1 Mpb); we present also comparisons
with fastIBD which uses an LD model in estimating ibd.

EVEN in large populations, sampled individuals may share
genome inherited from a common ancestor on the order

of tens of generations ago, at a time depth of up to 2000
years, and the probabilities are increased in samples from
small populations, structured populations, or in individuals
ascertained for particular traits. Generally, such segments of
genome that are shared identically by descent (ibd) in re-
mote relatives are rare but not short (Donnelly 1983). For
example, the probability that a pair of human individuals
separated by 20 meioses share any of their autosomal ge-
nome is �0.001, but, if it exists, an ibd segment is of order
5 · 106 bp (5 Mbp). For closer relatives, separated by 12
meioses, the chance of sharing some segment of autosomal
genome is 0.148, while the expected length of the segment
is of the same order of magnitude (8 Mbp).

Modern dense SNP marker data provide information to
detect such ibd segments in unknown relatives and thus
increase information for genetic linkage mapping (Leutenegger

et al. 2003; Albrechtsen et al. 2009). Indeed, the first such
method developed by Leutenegger et al. (2003) to detect seg-
ments of homozygosity by descent in individuals affected by
Taybi–Linder syndrome has recently led to gene discovery
(Edery et al. 2011). In population samples also, detection of
unknown remote segments of ibd enables association tests
either to use (Browning and Browning 2010) or to adjust for
(Choi et al. 2009) this coancestry in association methods of
gene mapping. Combining inheritance information within
the pedigrees of a genetic epidemiological study with
inferred ibd among members of different pedigrees has
the potential to increase both the power and resolution
of linkage mapping (Glazner and Thompson 2011).

In pedigrees ibd is well defined relative to the specified
founders of the pedigree, but the appropriate definition is
less clear where relationships are unspecified. There is no
absolute measure of ibd ; it is always relative to some time
point. This time depth, t, is related to two key parameters
of the ibd process: the pointwise pairwise probability of ibd,
b, and the expected length of an ibd segment between
a pair of chromosomes. This length depends on b but also
on the overall rate of change of ibd state along a chromo-
some, a. In a population of constant effective population
size Ne
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b ¼ 12
�
12ð2NeÞ21

�t
;

but in natural populations Ne is neither constant nor accu-
rately known. A segment of ibd in two current chromosomes
resulting from a common ancestor t generations ago will be
broken at rate 2t per Morgan (or 100 Mbp) along the chro-
mosome, by recombination events in the chain of 2t ances-
tral meioses. In practice, it is more convenient to measure
rates of ibd change on a scale of centimorgans or megabase
pair, so a = 2t/100 per Mbp. However, in a population,
segments of ibd result from common ancestors at different
time depths, and there is no simple relationship between the
segment lengths of ibd and the defining time depth t of ibd.
In effect, the choice of b and of a rate parameter a defines
ibd. While Browning and Browning (2010) adopt the ap-
proach of choosing values of b and a appropriate to the
levels and lengths of ibd they aim to detect, in this article
we regard them as parametrizing a prior distribution on
these levels and lengths, and we examine sensitivity to this
prior.

A major issue in the inference of ibd is the presence of
linkage disequilibrium (LD). Among chromosomes or indi-
viduals, the signature of ibd is haplotypic similarity, but, at
the population level, LD also results in haplotypic similarity.
LD is maintained by linkage, but arises from the history of
a population. At small chromosomal scales, LD may reflect
the genetic background of an original mutant variant and
thus coancestry of chromosomes relative to that mutant origin.
At larger scales, LD may result from population admixture or
substructure and is also a reflection of the relationship struc-
ture within a population. Clearly, only segments of ibd signif-
icantly longer than the extent of LD can be distinguished from
the LD background. However, segments of genome resulting
from common ancestors up to 25 generations ago are of the
order 2 Mbp. Such segments are typically at least an order of
magnitude longer than the extent of LD, and these are the
segments we seek.

In this article, our major focus is the impact of LD on the
detection of segments of ibd from population data, using
a model that does not incorporate LD. This is important
because LD is complex to model and dependent on popula-
tion history. Whereas adequate samples for the estimation of
allele frequencies may be available, from the same or from
a comparable population, accurate estimation of haplotype
frequencies requires far more data. In smaller populations,
or nonhuman populations, such data may be unavailable. To
undertake this study of the impact of LD on ibd inference,
we have developed two innovations, First, to make maximal
use of data on the genotypes and haplotypes of individuals,
we have developed a general and flexible model for the
patterns of ibd among a set of n chromosomes and for the
changes in ibd along the genome. By using an improved ibd
model, our goal is to compensate for not modeling LD. Sec-
ond, to undertake the study, we required a method to gen-
erate realistic haplotypes to populate the founder population

relative to which we measure ibd. Since our goal is the study
of the impact of LD, these sets of haplotypes should include
the same SNP markers and be generated according to the
same allele frequencies and should differ only in the level of
LD they exhibit. Our new beaglesim achieves this. The
method uses the chromosomes of a real population to pro-
vide a base LD structure across the genome. A single param-
eter, g, then controls the LD level relative to this base.

In Methods we first provide a description of other recent
hidden Markov model (HMM) models used in ibd inference,
and then introduce our new model for latent ibd among a set
of n chromosomes. We describe a model for the observable
data conditional on latent ibd, and an implementation of the
ibd inference procedure for the case n = 4. We also describe
our new simulation approach, beaglesim, for generating the
realistic sets of haplotypes differing only in LD level that are
required for our study. Finally, we discuss the choice of
model parameters for our analyses. In the RESULTS section
we first show the performance of our beaglesim simulation
method, and then describe our results on the effect of LD in
inference of ibd segments, given either haplotypic or geno-
typic data on pairs of individuals. We summarize the ability
to detect ibd segments as a function of the length of the
segment. Finally, we compare results with those of fastIBD
(Browning and Browning 2011) run on the same data sets.
We conclude with a Discussion.

Methods

Previous models for detecting ibd segments
in populations

There have been several recent HMM approaches to the
detection of ibd segments in individuals not known a priori
to be related. To place our model and approach in context,
we first summarize these. Using genotypic data on affected
individuals, Leutenegger et al. (2003) used a two-state
HMM to model the ibd /non-ibd between the two homolo-
gous chromosomes of these offspring individuals to detect
unspecified additional relationships between their parents
to increase the power for gene mapping. Browning (2008)
used the same two-state ibd model for pairs of phased hap-
lotypes sampled from a population, while another approach
that relies on the availability of haplotypic data is that of
Gusev et al. (2009). The first model for ibd between pairs of
diploid individuals was that of Purcell et al. (2007), but this
approach modeled the ibd as that of two independent pairs
of haplotypes each following a model equivalent to that of
Leutenegger et al. (2003). The ibd state is summarized as 0,
1, or 2 shared ibd between the two individuals. However, the
inbreeding coefficient of offspring is the kinship coefficient
of parents, and in most populations ibd within individuals is
at least as great as ibd between. The approach of Browning
and Browning (2010, 2011) also seeks only ibd between
individuals and uses a two-state model of any ibd /no ibd
between two diploids to analyze genotypic data. Thompson
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(2008) provided a Markov model for the 15 states of ibd
among the four chromosomes of two individuals, and
Thompson (2009) extended this model to any number n
of chromosomes. However, the state transitions permitted
under this model become increasingly restrictive for larger
n, and the model of this article provides a less restrictive
generalization. Moltke et al. (2011) have recently also pro-
vided a model for n chromosomes, but, to facilitate MCMC
sampling of ibd, their latent ibd model is simplified, both
in its pointwise state probabilities and in its permitted
transitions.

All the above methods use similar data models. Basically,
ibd DNA is of the same allelic type, while non-ibd DNA is of
independent allelic types, and allele frequencies are as-
sumed known or estimated from large population samples.
The data model of Purcell et al. (2007) is different in that it
treats the alleles of the population sample as a finite pool
and assigns them without replacement to non-ibd DNA,
resulting in negative correlations in these allelic types. In
these earlier models LD is not accommodated; the data at
each locus depend only on the latent ibd state at that locus.
Albrechtsen et al. (2009) extended the basic data model to
allow for pairwise LD among loci, but only the approach of
Browning (2008) and Browning and Browning (2010) uses
a full LD model. In this case, allele frequencies are not used
directly, but only through the haplotype clusters of the BEA-
GLE model fitted empirically to a large population sample
(Browning and Browning 2007). While most of the methods
consider the data input as genotypic, the methods of Thompson
(2008, 2009) and the current article allow for either haplotypic
or genotypic data. As indicated by Leutenegger et al. (2003),
allowance for genotyping error is important, and this is also
accommodated in Thompson (2009), Browning and Browning
(2010), and Moltke et al. (2011), as well as in the model pre-
sented here.

A model for ibd among n chromosomes

At any point in the genome, a set of n chromosomes partitions
into k subsets, those within a subset being ibd. A useful one-
parameter model for such a partition of n labeled exchange-
able objects is that given by Ewens’ sampling formula (Ewens
1972; Balding and Nichols 1994), which may be expressed in
terms of b, the pointwise probability of ibd between a pair of
chromosomes (Thompson 2008, Equation 2).

To construct a HMM for the ibd process along the genome
that has the correct equilibrium state distribution, we con-
sider transitions that follow a modification of the “Chinese
restaurant process” or CRP (Tavaré and Ewens 1997). As in
Thompson (2008), the matrix-transition rates are expressed
in terms of the relative rates b: (1 2 b) of gain and loss of
ibd between any pair of chromosomes. A new “potential chro-
mosome” is added to an ibd group size j at rate jb and forms
a new subset not ibd to any existing group at rate (1 2 b).
Instantaneously with an addition, a random one of the (n + 1)
chromosomes is removed, and (if not removed) the new chro-
mosome assumes the identity of the removed chromosome.

This defines a Markov rate matrix Q and hence the jump chain
of the process and relative rates of leaving each state.

Further details of the n-chromosome model, including
proof of the equilibrium distribution, is given in Appendix
A. The transition matrix for the case n = 4 is given in Ap-
pendix B. Note that the matrix as stated has no chromosomal
scale: b and h = (1 2 b) are probabilities. The scale of
changes in ibd state in terms of either genetic (centimor-
gans) or physical (megabase pairs) distance is provided by
the rate parameter a (see Introduction). The matrix Q is
multiplied by an overall rate parameter a per megabase
pairs. This model is a generalized version of earlier models
of Leutenegger et al. (2003) and Thompson (2008, 2009).
As in those models, there are just two parameters: the point-
wise pairwise probability of ibd (b) and a single overall rate
parameter (a) controlling the scale of lengths of ibd
segments.

To provide an understanding of the appropriate order of
magnitude of the parameter a, consider the following. Note
that the total rate of occurrence of potential transitions aris-
ing from the CRP is a(nb + (1 2 b))/Mbp (see Appendix A)
or �a if b is small and n = 4. The distance to the next
potential transition is exponentially distributed, with mean
approximately a21 Mbp. For a pair of chromosomes, the rate
of loss of ibd is 2a(1 2 b), or the length of an ibd segment is
approximately (2a)21 Mbp. Thus, for example, for segments
on average 1 Mbp, a � 0.5. However, as discussed below, in
this article we do not try to tune a to specific segment
lengths.

The new model permits some transitions among ibd
states that were not permitted under earlier models and is
designed to reflect more closely changes that occur in reality
in the ancestry of a set of extant chromosomes. At any
change event, any one chromosome can move from one
ibd group to any other or become non-ibd with all other
chromosomes. However, where chromosomes share ances-
tral recombination breakpoints, other transitions may occur
Thompson (2009). Thus the model is further modified as in
Thompson (2009). Before multiplying by a, the rate matrix
Q is modified to Q*, where for ibd states w and z,

Q*
wz ¼ ð12 dÞQwz þ dpz for z 6¼ w and Q*

ww ¼ 2
X
z6¼w

Q*
wz;

(1)

where pz is the equilibrium probability of ibd state z. That is,
with probability (1 2 d), transitions follow the rate matrix
Q, but with probability d the transition is to a state randomly
chosen from the equilibrium distribution. This modification
does not have any population–genetic interpretation, but
maintains the correct distribution while allowing, with small
probability, any state change.

Table 1 shows the proportion of genome and of segments
in each of the 15 ibd states among four chromosomes at four
different values of b. For b = 0.01, 94% of the genome is
expected to be in the no-ibd state, with each of the 6 states
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with a single-pair ibd making up almost all the remainder.
There are long stretches of no ibd, and almost 50% of seg-
ments are in that state, as the process enters and leaves one
of the other states. When b = 0.1, only 55% of the genome
is in the no-ibd state, and segments of no ibd are 10 times
shorter and their proportion is 50% lower, as transitions
among other ibd states start to have nonnegligible probabil-
ity. In our analyses, we focus on the two intermediate values
of b; b = 0.02 is approximately the value in our simulated
population, while b = 0.05 is the value we typically use in
our analysis model. In Table 1, proportions of genome and
relative segment lengths are computed for d = 0.1 since that
is the value that is used in our analyses, but the values in
Table 1 would be almost the same for d = 0.

An HMM for ibd estimation

The latent state of our HMM is the ibd state among the
chromosomes, specified as the unordered labeled partition
of the chromosomes into the ibd subsets. The Markov model
for the change of ibd state along the chromosome is then
that described above.

We use a data model that is a direct extension of that of
Leutenegger et al. (2003). Allele frequencies ql,j of allele
j at marker locus l are assumed known; in practice they can
be well estimated from population samples. The chromo-
somes in a given ibd group at locus l all have allelic type
j with probability ql,j, while the allelic types of chromo-
somes in different ibd groups are independent. Just as
we use the model of Equation 1 to avoid overconstraining
zero transition probabilities in the HMM, we make a small
allowance for genotyping error to eliminate zero emission
probabilities. A simple error model is that, for each ibd
state w,

Prðdata  j  w; eÞ ¼ ð12 eÞPrðdata  j w; e ¼ 0Þ þ e  Prðdata  j  w0Þ;
(2)

where w0 is the no-ibd state. That is, with probability (12 e)
there is no error, while with probability e each of the four
chromosomes is independently observed of allelic type in
accordance with the locus-specific allele frequencies. While
this simple all-or-none error model works well for n = 4
chromosomes, for larger numbers of chromosomes it may
be too extreme. An alternative would be a model of inde-
pendent errors over loci and over chromosomes, possibly
with a restriction on the number of errors at a locus (for
example, the model of Sieberts et al. 2002). Note that our
HMM does not attempt to accommodate LD in the analysis
of data. LD is complex to model, and large samples are
needed for accurate estimation of haplotype frequencies
(Browning and Browning 2007). One of our main objectives
is to study the impact of LD in the data on estimation under
our model.

With the Markov model for locus-to-locus transitions in
the ibd partitions along the chromosome, and data probabil-
ities defined locus-by-locus independently given the latent

ibd state, we have an HMM framework. Standard HMM
computations (Baum et al. 1970) provide the probability
of ibd states at each marker locus conditional on the data
jointly at all marker loci. For n = 4 chromosomes, we have
implemented these HMM computations in our IBD_Haplo
software (main program ibd_haplo). If the data on the four
chromosomes are phased (haplotypic data) there are 15
latent ibd states (including the no-ibd state), while for
unphased genotypic data on a pair of diploid individuals
there are 9. At any locus, if there are missing data, the
remaining data are not considered, but the locus is still in-
cluded in the computation of ibd state probabilities. The
result of Kemeny and Snell (1976, p.124) shows that, as
for the earlier model of Thompson (2009), the transition
model described above remains Markov when a reduction
is made from the 15 haplotypic states to the 9 genotypic
states. Our program also allows for partially phased data;
in some regions data may be haplotypic but in others
genotypic.

The ibd_haplo program is fast; for example, running
500 pairs of individuals over 7000 markers takes less than
90 sec on a desktop computer. The output produced is
large; for each set of 4 chromosomes or pair of genotypes,
for each marker locus, probabilities of each of the 15 (or
9) ibd states are tabulated. To process these large output
files we have written an R-package, IBDhaploRtools,
which reads this output and produces a variety of sum-
mary statistics. The output state probabilities are reduced
to a call (or no-call) using a calling threshold. For the
results of this article we used a calling threshold of 0.9,
the probability a single 1 of the 15 (or 9) ibd states must
reach this threshold for the state to be called. Lower val-
ues (e.g., 0.8) provide too many incorrect calls, while
higher values (e.g., 0.95) result in a high proportion of
no-calls.

Table 1 Proportions of genome and of segments for the different
ibd state types

ibd state All ibd Three ibd Two pairs One pair No ibd

(a1,a2,a3,a4) (0,0,0,1) (1,0,1,0) (0,2,0,0) (2,1,0,0) (4,0,0,0)
Number 1 4 3 6 1

Percentage of genome: (each state); any d

b = 0.01 0.0006 0.0192 0.0096 0.951 94.18
b = 0.02 0.0045 0.0739 0.0369 1.811 88.72
b = 0.05 0.0649 0.4113 0.2056 3.907 74.23
b = 0.1 0.4545 1.3636 0.6818 6.136 55.23

Segment length (units a21 Mbp); d = 0.1
b = 0.01 0.273 0.354 0.268 0.507 8.786
b = 0.02 0.276 0.350 0.265 0.490 4.400
b = 0.05 0.284 0.341 0.258 0.443 1.768
b = 0.1 0.299 0.326 0.246 0.382 0.889

Percentage of segments: (each state); d = 0.1
b = 0.01 0.01 0.24 0.16 8.41 48.08
b = 0.02 0.04 0.48 0.32 8.47 46.22
b = 0.05 0.22 1.18 0.78 8.61 41.04
b = 0.1 0.82 2.26 1.50 8.67 33.59

Results are given under the population prior model, as a function of b (d = 0.1).
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Data simulation

To obtain realistic simulated data with which to test our
approach, we first simulate descent of genome. Each founder
chromosome is given a unique founder genome label (FGL)
and descendant chromosomes are specified as a list of seg-
ments consisting of the FGL from which that segment descends
and its base pair boundaries. In each meiosis, distances to the
next recombination crossover are generated along the chromo-
some as exponential random variables with mean 108 bp, and
the offspring chromosome is thereby constructed from the two
in the parent. This process provides the set of chromosomes in
the current population. Among a set of current chromosomes,
the true simulated ibd is then obtained by comparison of the
FGL segment lists: where the FGL is the same, the chromo-
somes are ibd.

For the current study, we simulated descent in a constant
population of 3500 males and 3500 females over 200
generations. At each generation, repeated 3500 times,
a random male and a random female are chosen to generate
a son and a daughter. In effect, this population is very close
to a random mating population of 14,000 chromosomes, but
has the advantage that there are pedigrees (siblings, half-
siblings, and cousins) embedded within it. For this study, we
selected 500 pairs of individuals from the final generation of
the population.

We then create realistic haplotypes to assign to the FGL,
and thence to the sampled individuals via their FGL-segment
lists. To do this we use a novel simulation approach, beaglesim,
based on the BEAGLE software of Browning and Browning
(2007). Unlike other simulation approaches that evolve pop-
ulation chromosomes (Peng and Amos 2010; Yuan et al.
2011), our approach uses directly an initial set of real haplo-
types from a population with significant structure and/or LD.
For this purpose we used data on 1917 male X chromosomes
from the Framingham Heart Study (FHS) data (Cupples et al.
2009), chosen so that there were no reported relationships
among them. Availability of this good-sized naturally phased
chromosome eliminated the need for statistical phasing.
Markers with minor allele frequency ,5% were eliminated,
as were �100 markers over about 3 Mbp around the centro-
mere. There remained 6913 markers over �140 Mbp. The
level of missing data was low; the overall level over the
6913 markers in 1917 chromosomes was 0.15%.

For beaglesim, first a BEAGLE model is estimated, on the
basis of the set of real haplotypes. This model is expressed in
terms of marker-to-marker transitions among haplotype
clusters along the chromosome (Browning and Browning
2007). Variation in the LD structure along the chromosome,
resulting from variation in recombination rates across the
chromosome or from chance events of history, is reflected
in the fitted BEAGLE model. Next, haplotypes are indepen-
dently simulated from the fitted model. This process has the
advantage that any number of chromosomes may be gener-
ated, so we are not limited by the size of the original real
data set, and also that the resultant simulated chromosomes

can be made public, since they are not the real data of any
individual.

More importantly, the beaglesim approach permits gener-
ation of data sets with the same markers, same allele fre-
quencies, and same general LD structure, but at different
levels of LD. Since the BEAGLE model is specified in terms
of marker-to-marker transitions, rather than, for example,
genetic or physical distance, we adopt the same framework
in attenuating the LD. In generating each simulated haplo-
type, at each marker with probability g the current haplo-
type cluster is randomly switched in accordance with the
haplotype cluster frequencies, thus breaking the LD. For
example, if g = 0.05, LD is broken on average every 20
markers. For the results in this article we use four such
generated data sets: g = 0 (original BEAGLE model), g =
0.05, g = 0.1, and g = 1 (no LD).

Choice of parameter values

Since ibd is relative, there are no “true” values of the param-
eters a and b of the latent ibd process; choice of these
parameters defines the time depth of the ibd that is sought.
In fact, in our simulated population, relative to the founders,
the level of pointwise kinship at the 200th generation is
approximately b = 0.02, and the mean length of segments
in some state of ibd is about 0.5 Mbp. Since pairwise ibd is
broken at a rate 2a(12 b) this indicates an a value of about
1. However, in any real study, the characteristics of the
founding population and the subsequent demographic his-
tory would be unknown, and we therefore do not choose our
parameter values on this basis.

For the results shown in this article, we adopt b = 0.05 and
d= 0.1. We have found that a smaller value of the rate-change
parameter a gives better performance and adopt a = 0.05
also. A high value of a makes frequent changes in inferred
ibd state more probable, while the lower value provides
a “flat prior,” allowing the genetic marker data to dictate state
changes (see Discussion). We have systematically examined
performance of our inferences under values of b, a, and d over
the range 0.005 to 0.2, and additionally with d = 0 and d = 1.
Results (not shown) are quite robust to the value of b, and of d
provided neither 0 nor 1. Results were more sensitive to the
value of a, resulting in additional studies for a values from
0.01 to 2.0 at the values b = 0.05 and d = 0.1 (see Results).

We used the marker allele frequencies of our original
1917 FHS chromosomes, rather than the frequencies in our
small current sample or in the current 200th generation of
the population. Thus we mimic the situation when we might
have information from a substantial sample from a compa-
rable population, such as in published HapMap (Interna-
tional Hapmap Consortium 2005) data or in a large case-
control study (Wellcome Trust Case Control Consortium
2007). Recall that we had eliminated SNPs with minor allele
frequencies ,5%. Shared alleles that are assumed rare are
strong evidence of ibd and can distort results if this assump-
tion is incorrect. Although in our simulated data we did not
include genotyping errors, in all our analyses we adopt e =
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0.01. This level is higher than expected as an overall rate in
real SNP data, but error rates vary among SNPs, and it is
important to make sufficient allowance for error (Leutenegger
et al. 2003). Failure to allow for error when in fact it is present
has greater impact than assuming too large an error rate.

Software availability

The following software referred to in this article is avail-
able at http://www.stat.washington.edu/thompson/Genepi/
pangaea.shtml:

i. The IBD_Haplo software (which consists primarily of the
ibd_haplo program) runs as a part of our MORGAN-3 pack-
age. The analyses of this article were run with the version
of ibd_haplo in MORGAN 3.0.3 (November 2011 release).

ii. A small collection of programs has been released (Octo-
ber 2011) under the name Create_IBD. This includes the
beaglesim procedure (both as R-code and as a C-program)
and programs for the population ibd simulation, and for
the assignment of haplotypes to descendant chromosome
segments.

iii. The R-package, IBDhaploRtools, is used in analysis of
ibd_haplo output. Version 1.2 (November 2011 release)
performs the result summaries included in this article.
The R-package also contains a tutorial, generated from
an Sweave document, enabling the user to replicate the
steps of analysis used to produced the tables and figures
of this article from ibd_haplo output files.

iv. Data files from this study are provided as supporting in-
formation in the form of two compressed file archives;
see Supporting Information, File S1 for details. The first
archive (see File S2) includes the simulation truth of the
ibd among the 500 pairs of individuals used in this study
and the marker information and data haplotypes of the
relevant individuals generated at four different LD levels
(g= 0.0, 0.05, 0.1, 1.0). The second archive (see File S3)
contains interim output of our analyses in the form of
Rdata files of inferred ibd states, together with an Sweave
wrapper document that uses these files in conjunction
with the IBDhaploRtools R-package to recreate the tables
and figures of this article. In principle, the results of File
S3 and of this article can be recreated from only the data
in File S2, using the ibd_haplo program, but this involves
many huge intervening input and output files.

Results

The data set and the haplotypes

For our analysis of detection of ibd we used the first 100
female individuals of the final (200th) generation of the
population simulation described in Data simulation. Choice
of females avoids the presence of full sibs in our sample. In
the 200 chromosomes of these 100 individuals there were
48,800 total FGL segments. Although at a single locus typ-
ically only 1% of the original 14,000 FGL survive in the

population, over the chromosome, 2228 different FGL are
represented among these 200 chromosomes.

For our analysis of detection of ibd we used 500 pairs of
individuals sampled with replacement from these 100 female
individuals. The distribution of lengths of segments in each of
the 14 ibd states (excluding the no-ibd state) among the four
chromosomes of each of the 500 pairs of individuals is shown
in Figure 1. This same ibd structure underlies each of the
haplotypic or genotypic data sets analyzed. Note that over
50% of the ibd segments are ,0.5 Mbp in length. Typically,
we seek more recent coancestry, and hence longer ibd seg-
ments. We use the greater time depth in this article since we
wish to explore the lower limits of ibd detection.

To investigate the performance and appropriate parameter
choice for beaglesim we investigated the pattern of LD in our
original data set of 1917 chromosomes, and in sets of 1917
chromosomes generated by beaglesim at varying levels of the
attenuation parameter g. Figure 2 shows the pattern of pair-
wise allelic correlations r2 over 200 markers in a 5.16-Mbp
region of the chromosome, for the original data, and for
three g values. The value g= 0, which represents simulation
from the original BEAGLE model, shows a pattern remark-
ably similar to the original data, although long-range LD
(.0.5 Mbp) is reduced. This is to be expected since, even
with as many as 1917 haplotypes, the fitting process of the
BEAGLE model will have insufficient data to maintain sig-
nificance of separate haplotype clusters over large genetic
distances. A value g = 0.05 shows reduced but still signifi-
cant LD in a similar pattern, while g = 0.1 retains only the
strongest LD and over short ranges. As an additional assess-
ment, curves of 2log10(r2) were fitted to r2-values between
each marker and its 50 neighbors to each side of it. These
curves are shown in Figure 3 and confirm that the long-
range LD (0.5–2 Mbp) is substantially larger for the original
chromosomes than for g = 0. Also apparent is that, at dis-
tances .0.5 Mbp, the r2-values resulting from g = 0.05 and
g = 0.1 are effectively the same as those for the case of no
LD (g = 1).

Figure 1 Histogram of the true lengths of the 10,603 segments in any
state of ibd (excluding the no-ibd state) among the 500 pairs of individuals.
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The results of ibd segment inference

At each of the chosen LD levels, haplotypes were generated
and assigned to the 100 sampled generation-200 individuals
as described in Data simulation. The ibd_haplo program was
run on the data set of 500 pairs from among these 100
individuals. The data on each pair were considered both
as four haplotypes and as a pair of genotypes. Except where
otherwise specified, results were run at a = 0.05, b = 0.05,

d = 0.1, and results are typically shown for the LD level g =
0.1.

One example of the calls made for a set of four
chromosomes in a pair of individuals is shown in Figure 4.
The results for haplotypic data (above) and for genotypic
data (below) may be compared with the true latent ibd for
this pair of individuals (center). This example contains
about seven larger segments of ibd, including three in a clus-
ter at 40–47 Mbp, as well as about 12 smaller segments. The
larger segments are well detected, although the genotypic
analysis misses the central one of the cluster, with a large
area of no-calls. Smaller segments may be missed, and there
are some false positives. For this pair, the haplotypic and
genotypic analysis results are similar, although the haplo-
typic data seem to produce more short areas of no-calls.
We return to the detection of ibd as a function of segment
length below, but first summarize results in terms of overall
proportions of ibd calls.

Table 2 shows the simulation truth and inferred results
for the percentage of genome in each class of ibd state, the
mean segment lengths, and mean percentages of segments,
analogous to Table 1, which showed the model-based
expectations. For the inferred results, the no-call regions
were excised before computation of percentages and
lengths. For the proportions, the prior results at b = 0.02
are given for comparison; for the lengths, the prior is not
shown, since the model-based length contains the arbitrary
scaling parameter a (see Discussion). Notable in the results
is the excellent agreement of our prior model for ibd states
at b = 0.02 and the values simulated in our population
descent. The agreement between the simulation truth and
the inferences is also excellent, except for the rarest high-ibd
states. Particularly for the all-ibd state there are few realized
segments of this type. Haplotypic and genotypic data per-
form broadly similarly, although the genotypic analyses have
higher failure to detect ibd segments and hence more

Figure 2 Linkage disequilibrium in a 5.16-Mbp segment of the chromo-
some, in the original set of 1917 chromosomes, and in sets of 1917
chromosomes generated by beaglesim, at attenuation levels g = 0,
0.05, and 0.1.

Figure 3 Curves of 2log10(r2) by distance be-
tween markers, fitted for each marker with
each of the 50 markers to each side of it, for
the original set of 1917 chromosomes, and in
sets of 1917 chromosomes generated by bea-
glesim, at attenuation levels g = 0, 0.05, 0.1,
and in the absence of LD (g = 1).
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genome and longer length of no ibd. Also importantly, anal-
ysis results are similar at b = 0.02 and at b = 0.05. Use of
the higher prior probability of ibd in the analysis model does
not adversely affect the results.

Table 3 presents the key results on the impact of LD on
ibd inference, with the results tabulated as percentages over
the 6913 markers over all the 500 pairs of individuals. Since
our analysis model does not include LD, one might expect
best performance for the no-LD case (g = 1). However, it
can be seen that the haplotypic similarities resulting from LD
actually decrease the percentage of false-negative calls. Ta-
ble 3A shows the results for the 12% of markers at which the
simulation truth is some state of ibd. We see that, except at
very high LD (g = 0), incorrect ibd states are rarely called,
but that the rate of no-calls increases with increasing LD and
is substantially higher for genotypic data than for haplotypic
data. Table 3B shows the results for the 88% of genome that
is in the no-ibd state. Here, in the absence of LD results are
excellent but increasing LD leads to increased no-calls and
false-positive calls of ibd. Generally haplotypic data perform
better than genotypic data, because there is more informa-
tion used, but at high LD levels haplotypic similarity leads
the haplotypic data uniquely to perform more poorly than
the genotypic, with higher false-positive and no-call rates.

Figure 5 shows the results for all true segments of some
state of ibd (that is, excluding the no-ibd state), by segment
length and for the same four levels of LD. For both haplo-
typic (dashed lines) and genotypic (solid lines) analyses,
shown are the proportion of markers within each segment
that provide a call for the correct state of ibd. Again we see
improved performance with decreasing LD (increasing g)
and the better performance of haplotypic analysis as com-
pared to genotypic. With haplotypic data, for segments over
1 Mbp, .80, 90, and 95% of markers within a segment
provide a correct call at g = 0.05, 0.1, and 1, respectively.

In Figure 5 points on the lower axis represent segments
that fail to be called. Defining failure-to-detect as corre-
sponding to ,20% of markers in a segment providing a cor-

rect ibd call, 23, 7, and 2.5% of segments .1, 2, and 3 Mbp
in length fail to be detected using genotypic data. For these
large segments, the exact cut-off (20%) and the LD level (g)
have little impact on these results. The two extremes, g =
0 and g = 1, provide an interesting contrast with regard to
small segments. At very high LD (g = 0), haplotypic data
apparently perform adequately even for the shortest seg-
ments. However, this is simply the result of LD being inter-
preted as ibd regardless of the true ibd state. In the case of
no-LD (g = 1) small segments with few SNP markers cannot
provide evidence of ibd. As soon as there are sufficient

Figure 4 Example of the true ibd and the calls across the 140-Mbp
chromosome, based on ibd_haplo output using haplotypic and genotypic
data, for 1 of the 500 pairs of individuals. Middle: the true ibd state with
dark shading shows any state of ibd and white the no-ibd state. Top: the
inferred state using haplotypic data. Bottom: for the same data analyzed
as a pair of genotypes. In the inferred results, the lighter shading repre-
sents a no-call.

Table 2 Proportions of genome and of segments for the different
ibd state types

ibd state All ibd
Three
ibd

Two
pairs

One
pair No ibd

Percentage of genome
Simulated 0.0042 0.20 0.12 11.58 88.10
Prior, b = 0.02 0.0045 0.30 0.11 10.87 88.72
Inferred: b = 0.02 Hap. 0.0217 0.41 0.15 12.65 86.76
Gen. 0.0189 0.27 0.14 10.30 89.27
Inferred: b = 0.05 Hap. 0.0303 0.51 0.19 13.71 85.55
Gen. 0.0304 0.32 0.17 11.17 88.31

Segment length (Mbp)
Simulated 0.71 0.44 0.40 0.78 6.44
Inferred: b = 0.02 Hap. 0.25 0.40 0.42 0.88 6.72
Gen. 0.26 0.46 0.57 1.21 11.49
Inferred: b = 0.05 Hap. 0.27 0.36 0.38 0.78 5.57
Gen. 0.29 0.42 0.49 1.09 9.57

Percentage of segments
Simulated 0.02 1.55 1.02 50.69 46.73
Prior, b = 0.02 0.04 1.92 0.96 50.82 46.22
Inferred: b = 0.02 Hap. 0.30 3.62 1.27 50.01 44.81
Gen. 0.42 3.34 1.45 49.59 45.20
Inferred: b = 0.05. Hap. 0.33 4.08 1.45 50.24 43.90
Gen 0.51 3.70 1.70 49.50 44.58

Results are given both as for the simulated data, under the prior model for b = 0.02,
and as inferred using ibd haplo using either haplotypic (Hap.) or genotypic (Gen.)
data with g = 0.1 and for b = 0.02 and b = 0.05 in the analysis (d = 0.1). For clearer
comparison with the simulation truth and model prior, the no-call sites have been
excised from the ibd haplo output, and proportions and lengths computed using
only the marker locations at which a call was made.

Table 3 The ibd segment inference results at decreasing LD levels

g: 0.0 0.05 0.1 1.0

% by mrk: Hap. Gen. Hap. Gen. Hap. Gen. Hap. Gen.

A. Given ibd (12%)
Correct 57.8 43.7 69.6 53.2 74.7 57.8 80.5 61.3
Other ibd 11.5 9.7 4.9 4.4 2.3 2.0 0.4 0.4
False neg. 3.5 10.6 4.5 12.1 5.6 13.3 8.0 17.5
No call 27.3 36.0 21.0 30.3 17.4 26.9 11.1 20.8

B. Given no ibd (88%)
Correct 47.5 57.4 66.1 70.9 80.4 81.0 99.2 97.9
False pos. 17.2 12.1 8.5 6.5 3.8 3.4 0.1 0.1
No call 35.2 30.5 25.4 22.6 15.7 15.6 0.7 1.9

Results are shown at decreasing LD levels, that is, increasing g, and are tabulated as
percentages over the 6913 markers over all 500 pairs of individuals. They are given
for analyzing the data on the 500 pairs both as four haplotypes (Hap.) and as pairs
of genotypes (Gen.). Results are separated into (A) the 12% of genome in which the
latent ibd-state involved some ibd and (B) the 88% of genome in the no-ibd state.
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markers for ibd to be recognized, performance improved
rapidly, but this is not until about 0.3 Mbp for haplotypic
data, and 0.65 Mbp for genotypic. Recall the average density
of our SNP markers is 50/Mbp, so this corresponds to about
15 and 33 markers, respectively.

Table 4 shows the effect of varying the scaling parameter a,
with other parameters at their standard values b = 0.05, g =
0.1, and d = 0.1. Small values of a correspond to small change
rates in ibd states. “True” values of a for our simulated data are
in the range 0.5–2.0; that is, such values would give prior
expected segment lengths corresponding to those observed in
our simulated data for the ibd states, including those for the
no-ibd state. However, such values provide low performance,
with high percentages of no-calls. Performance is much better
at the a= 0.05 level which we use in our analyses, and it starts
to degrade rapidly for a . 0.1. On the other hand, too small
a choice of a (0.01) leads to many smaller ibd segments being
missed, and hence a higher proportion of false negatives, par-
ticularly for the genotypic analysis.

Comparison of ibd_haplo and fastIBD

In Browning and Browning (2010, 2011) the performance
of fastIBD was compared to that of PLINK (Purcell et al.

2007) and GERMLINE (Gusev et al. 2009). Here we com-
pare ibd_haplo to fastIBD. We made two series of runs for
fastIBD, the first using as the base population the same set of
100 final individuals from the simulation population and the
second using an additional 900 individuals. In both cases,
the initial ibd inference was run at a threshold of 1026 as
recommended by the fastIBD documentation, and results
were then extracted at this threshold, and at a stricter
10210 threshold. The recommended fastIBD parameter val-
ues and workflow was followed, with 10 runs from different
seeds, and the provided script was used to consolidate
results. Although fastIBD analyzes all pairs in a data set,
for comparison purposes we extracted the results for the
same 500 pairs of individuals used in our ibd_haplo study.

Exact comparisons of performance are complicated by the
different protocols and objectives of the two programs. With
regard to fastIBD runtime, each single run with the 100-
individual base data set, including the BEAGLE imputation
and phasing steps, is very comparable to the time for a single
run of ibd_haplo on the 500 pairs of individuals sampled
from this data set (60–90 sec). With a base population of
1000 individuals used for phasing and imputation, fastIBD
times are at least an order of magnitude longer; 10 runs
at each of five different LD levels and the subsequent

Figure 5 Among the 10,603 segments in any state of ibd (see Figure 1), the proportion of markers that provided a call of the correct ibd state at a calling
threshold of 0.9, by length of the segment. The four subfigures are for the values of g shown; g = 0 (high LD), g = 0.05, g = 0.1, and g = 1.0 (no LD). The
points and the solid fitted lines are for the genotypic data, while the dashed lines show the improvement obtainable using phased haplotypic data.
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consolidation of results can take up to 16 hr. A second key
difference is that fastIBD does not seek within-individual ibd.
We therefore considered the three ibd states that have only
ibd within but not between the individuals as non-ibd when
evaluating fastIBD results.

Results are shown in Table 5. In presenting the ibd_haplo
results from Table 3, inference of the correct ibd state is
combined with calls of other ibd states, since fastIBD does
not distinguish among ibd states. Also, since fastIBD does not
infer within-individual ibd, results for ibd_haplo are given
both including (as ibd) and excluding states of only within-
individual ibd (states 2, 5, and 8 in Appendix B). For haplo-
typic data, this makes almost no difference, but for genotypic
data true-positive rates are reduced by excluding the within-
individual ibd states. This is as expected, since genotypic
data provides clearer evidence of within- than between-
individual ibd.

Very broadly, the two programs give comparable results,
but there are some important differences. Using the strict ibd
level and only 100 base individuals, fastIBD misses much
ibd. The 1000-base individual set provides better perfor-
mance, but still misses much ibd, especially at high LD lev-

els. Through modeling this high LD, fastIBD cannot then detect
ibd segments that result in comparable levels of haplotypic
similarity. The looser ibd criterion has higher true-positive de-
tection rates, but at the expense of higher false-positive rates.
For the true positives, the fastIBD-100-loose results are com-
parable to ibd_haplo with haplotypic data at low LD and ge-
notypic data at high LD.

By adjusting for LD, fastIBD controls false-positive rates at
high LD. However, the longer segments of haplotypic similar-
ity generated in independent chromosomes at high LD are
false positives only in the context of the simulated descent
from these founder chromosomes. In a real population, these
similar haplotype segments could be the result of ibd at a time
depth comparable to the 200 generations of our simulation. In
the absence of LD, fastIBD shows relatively high false-positive
rates, whereas ibd_haplo has a very low rate.

Discussion

We have shown that our HMM model can be used to detect
segments of ibd, of the order of 1 Mbp among the four
chromosomes of two individuals. Our model allows for

Table 4 The ibd segment inference at decreasing levels of smoothing

a: 0.01 0.05 0.1 0.5 2.0

% by mrk: Hap. Gen. Hap. Gen. Hap. Gen. Hap. Gen. Hap. Gen.

A. Given ibd (12%)
Correct 75.6 56.8 74.7 57.8 73.5 56.9 64.9 45.6 48.3 24.9
Other ibd 1.7 1.5 2.3 2.0 2.7 2.5 4.3 3.8 6.1 4.5
False neg. 9.4 20.9 5.6 13.3 4.0 10.3 1.5 4.7 0.5 2.6
No call 13.3 20.8 17.4 26.9 19.8 30.3 29.3 45.9 45.2 68.0

B. Given no ibd (88%)
Correct 90.0 89.7 80.4 81.0 74.1 75.2 52.6 55.9 29.3 34.3
False pos. 2.2 2.3 3.8 3.4 4.7 3.9 6.6 4.4 6.4 3.2
No call 7.8 8.0 15.7 15.6 21.2 20.9 40.7 39.7 64.3 62.5

Results are shown at decreasing levels of smoothing, that is, increasing prior change-rate parameter a, and are tabulated as percentages over the 6913
markers over all 500 pairs of individuals. They are given for analyzing the data on the 500 pairs both as four haplotypes (Hap.) and as pairs of genotypes
(Gen.). Results are separated into (A) the 12% of genome in which the latent ibd-state involves some ibd and (B) the 88% of genome in the no-ibd state.

Table 5 Comparisons of ibd inference using using ibd_haplo and using fastIBD

Program:
True-positive ibd inference False-positive ibd inference

Input Scoring
LD level g LD level g

0.0 0.05 0.1 1.0 0.0 0.05 0.1 1.0

ibd_haplo: All ibd 69.3 74.5 77.0 80.9 17.2 8.5 3.8 0.1
Hap data Btw ibd 69.8 74.5 77.5 81.3

ibd_haplo: All ibd 53.4 57.6 59.8 61.7 12.1 6.5 3.4 0.1
Gen data Btw ibd 46.1 49.7 52.3 53.3

fastIBD: Strict 31.4 41.2 46.4 56.9 0.6 0.7 0.8 1.0
100 base Loose 56.3 64.6 68.9 82.9 2.2 2.3 2.3 4.0

fastIBD: Strict 41.5 51.4 56.9 71.7 0.7 0.9 0.9 1.5
1000 base Loose 66.5 73.3 77.6 90.4 3.4 3.1 3.1 8.9

Results are shown at decreasing levels of LD (that is, increasing g), and are tabulated as percentages over the 6913 markers over all 500 pairs of
individuals. The ibd haplo program was run for both haplotypic (Hap.) and genotypic data (Gen.). For scoring ibd all states involving any ibd were
scored (All ibd), as in Table 3, and then also only between-individual ibd was scored (Btw ibd), since fastIBD does not seek within-individual ibd. The
fastIBD program was run using only the same 100 individuals for the BEAGLE imputation and phasing step as used in ibd haplo, and then also using
an additional 900 individuals for a base sample of 1000. The ibd was scored using a strict (10210) threshold and a looser threshold (1026).
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any state of ibd between and within the individuals and
accommodates missing data and possible typing error. If
haplotypic information is available, performance is im-
proved, but even with more readily available genotypic data,
segments of this length are typically well detected. Such
a length results, in expectation, from a 100-meiosis separa-
tion between the chromosomes, far beyond the likely avail-
able knowledge of coancestry.

Our analysis model does not include LD, and to examine
the impact of LD we simulated founder chromosomes at
various levels of LD, using our beaglesim approach. While
this approach is dependent on the availability of a large
sample of real high-LD chromosomes to fit the initial BEA-
GLE model (Browning and Browning 2007), it can then
generate arbitrary numbers of independent chromosomes
with quite realistic LD patterns at varying levels via the
parameter g, which controls the range of the LD. Even the
original BEAGLE model (g = 0) will tend to remove long-
range LD that likely results from cryptic relatedness or
admixture, but the block patterns typical of the real data
persist even at higher levels of g (for example, g = 0.1).
The BEAGLE model output is expressed as marker-to-marker
transitions and incorporates any features of the LD patterns
along the chromosome that are due to variable marker spac-
ing or variation in recombination rates. Hence our beaglesim
procedure for attenuating LD using the parameter g is also
on a marker-to-marker basis. However, if desired, clearly it
could be easily modified so that the probability of breaking
from the BEAGLE haplotype clusters depends on physical or
genetic distance.

Several other approaches exist for simulating haplotypes
with particular levels of LD. Programs such as fastsimcoal
(Excoffier and Foll 2011) and MaCS (Chen et al. 2009)
sample realizations of the coalescent process along a chro-
mosome, which, along with a mutational model, describe
the joint distribution of markers. Forward simulations begin
with a set of real haplotypes (Peng and Amos 2010) or
artificial haplotypes with high levels of LD (Yuan et al.
2011) and evolve a population forward in time according
to the desired model. These methods simulate the process
giving rise to the LD, which is necessary if that process is the
object of study. For our study, we are interested in LD only as
a confounding factor and do not require that the LD be
influenced by any particular population genetic process.
However, we do require sets of founder chromosomes with
not only the same marker locations and and population al-
lele frequencies, but also the same pattern of LD across the
chromosome, differing only in the overall LD level; beagle-
sim achieves this.

In our study we aimed to detect segments of coancestry
relative to founders at 200-generation time depth and
examined the impact of LD in the founder chromosomes of
the population. While the haplotypic similarities resulting
from LD led to “false-positive” calls of ibd relative to our
simulation truth, in reality LD results from the same coan-
cestry that underlies ibd, but at greater time depth. Thus,

were ibd to be measured relative to greater time depths,
these false-positive calls should be true. There is no absolute
definition of ibd, nor, outside of a simulation study, of what
ibd is true. Rather, our goal has been to examine the limits of
detection given a population of given size and structure. In
genetic epidemiological studies, individuals will be ascer-
tained for a trait of interest, which leads in turn to the
chance of more recent coancestry, and larger segments of
ibd in regions harboring relevant genes. The relevant time
depth for inference of ibd is that of a mutation underlying
a trait. While this is unknown, the results of this article show
that we can, even in the case of randomly sampled individ-
uals, achieve good overall performance at time depths that
might correspond to 5000 years.

The parameter b is the overall level of population kinship
and, in effect, determines the time depth of what is to be
considered ibd. While the true level of ibd in our simulated
population corresponded to b = 0.02, results were quite
robust to the use of b = 0.05 in our analyses, and even to
higher b-values (results not shown). The amount of ibd that
will be called is determined also by the calling threshold. A
high threshold will lead to many segments being missed and
a high level of no-calls, while a low threshold leads to in-
creasing calls of incorrect ibd states. We have found that the
0.9 threshold provides a good balance and recommend that
b rather than the calling threshold be varied in analyses to
check the consistency of segments detected at different kin-
ship levels.

An unexpected result of our study is the role of the
scaling parameter a in our population with relatively high
population kinship b. In the studies of Browning and Brown-
ing (2010), b= 0.0001, and under their model the length of
an ibd segment is (a(1 2 b))21, so that a � 1 is chosen to
seek segments of �1 Mbp. In our study, we found that such
a high value of a led to many no-calls and generally poor
results and that results were much improved by using an
a-value substantially smaller than that corresponding to
the lengths of segments of ibd we aim to detect. The prior
expected length of any segment is exponential with mean
proportional to a21. A large a makes change of ibd -state
a priori probable and leads to many inferred state changes.
A smaller a provides a much flatter a priori distribution of
segment lengths and enables the genetic marker data to
dictate where there is evidence for a change in ibd state.
This smaller a, resulting in longer segments, also means
there will be a larger number of markers available to provide
evidence of the correct ibd state in the segment.

The interplay between presence of LD at the population
level and the ability to infer shorter segments of ibd is evi-
dent also in the comparison of ibd_haplo and fastIBD. At
high LD, the fastIBD fitting of an LD model controls false-
positive rates, but at the expense of lower true-positive
rates. By not modeling LD, ibd_haplo has high false-positive
rates, but also higher true-positive rates. At low LD, fastIBD
can achieve high true-positive rates, but at the expense of
higher false-positive rates than those of ibd_haplo. It is likely
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that ibd_haplo performs better with smaller a not only be-
cause of our relatively high b but also because we do not
model LD. If ibd is permitted to change too frequently, there
will be a tendency for many short segments of haplotypic
similarity resulting from LD to be inferred as ibd. Where the
LD is explicitly modeled, as in fastIBD, there may be no need
to discourage state changes; the higher a recommended for
that software can be used.

In our population simulation of the descent of genome
we assumed a uniform recombination rate, and in our ibd_
haplo analyses marker locations were specified in terms of
megabase pairs rather than in terms of genetic distance.
However, this was for convenience only. If a genetic map is
known, or if local variations in recombination rate can be
scaled using a framework map, marker locations may be
specified in terms of genetic distance. There is no difference
in the ibd_haplo implementation or in the processing of out-
put; it is simply a variable rescaling of the chromosome on
a marker-to-marker basis. Extreme hotspots of recombina-
tion would result both in low LD and in more transitions in
ibd per available marker. The former would improve ibd_haplo
performance in the region, while the latter might lead to fail-
ure to detect some ibd transitions.

In detecting ibd segments, our method performs better
with haplotypic data than with genotypic data. This is sim-
ply because the additional phase information provided to
the program provides much more evidence as to the true
underlying local ibd state among the chromosomes. Where
there are sufficient data to use fastIBD, information on hap-
lotypes is recovered via the fitted LD model. Having no LD
model, ibd_haplo cannot use this information. In the future,
as sequence data become available and increasing read
lengths cover more than one heterozygous site in an indi-
vidual, phased data on diploid individuals may become the
rule. This can only improve the ability of ibd_haplo to detect
ibd segments.

A key feature of our approach is not to analyze
chromosomes pairwise, but to make use of the joint in-
formation in a set of four chromosomes. For this case, with
15 haplotypic ibd states and with only 9 genotypic ibd states,
the HMM forward–backward computation is efficient. How-
ever, with more chromosomes the number of ibd states
increases rapidly, even when these are reduced to genotypic
form (Thompson 1974). While exact HMM computations
become infeasible for larger numbers of chromosomes, an
MCMC approach can use the same underlying models to
detect ibd segments, as has recently been done for the sim-
pler and more restricted state model of Moltke et al. (2011).
The balance between the gains of joint information and
the increasing computational and modeling complexities
remains to be studied.
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Appendix A

In terms of the parameter u of Ewens’ sampling formula
(Ewens 1972), a partition z of the n chromosomes into |z|
subsets x has probability

pðzÞ ¼
0
@ Yn21

j¼1

ðuþ jÞ
1
A
21

ujzj21
Y
x2z

ðjxj2 1Þ!: (3)

Note that |z| is the number of subsets in the partition z,
while |x| is the number of elements (chromosomes) in sub-
set x.

For a partition of 2 objects, it immediately follows that
the probability that |z| = 1 (the two chromosomes are ibd)
is b = 1/(1 + u). For the model as described in the text,
potential state changes occur at total rate a(nb + (1 2 b))
= a(n + u)/(1 + u) independently of the current state. This
does not imply equal sojourn times, since, as seen in the
examples in Appendix B, the chance that the described pro-
cess of adding and deleting a chromosome results in a state
change does depend on the current state. However, for pur-
poses of the following we consider all “transitions,” whether
or not they result in a state change. At a transition point, a
new chromosome is added to a subset size j with probability
j/(n + u) and as a new singleton with probability u/(n + u),
corresponding to the relative rates jb and (1 2 b) given in
the text. Then we randomly delete one of the n + 1 chro-
mosomes. If the newly inserted chromosome is not deleted,
it receives the label of the deleted chromosome.

Consider a transition from state z to state w, with the
transition probability p(w|z). To show that this process
retains the distribution (3) we show p(z)p(w|z) = p(w)p
(z|w). Note that w = z if the deleted chromosome is
either the new chromosome or any other chromosome in
the set to which the new chromosome was added. The case
z = w trivially satisfies the required condition, so consider
w 6¼ z.

Case 1: Suppose w is formed from z by inserting the new
chromosome into z as a singleton and deleting one
chromosome from a subset size j. Then

pðwjzÞ ¼ u

nþ u

1
nþ 1

ð1þ Iðj ¼ 2ÞÞ;

where I(j2 2) = 1 if j = 2 and 0 otherwise. (This extra term
derives from the fact that if j = 2 the same state will result
whichever of the two chromosomes is deleted.) Conversely,
z is formed from w by inserting the new chromosome into
a subset size j 2 1 of w and deleting the relevant singleton:

pðzjwÞ ¼ j2 1
nþ u

1
nþ 1

ð1þ Iðj ¼ 2ÞÞ:

Again, if j = 2 either chromosome may play the role of the
deleted singleton. Thus we have

pðzÞ
pðwÞ ¼

ujzj
Q

x2zðjxj2 1Þ!
ujwj

Q
x92wðjx;9j2 1Þ! ¼

1
u

ðj2 1Þ!
ðj2 2Þ! ¼

j2 1
u

¼ pðzjwÞ
pðwjzÞ:

Case 2: Suppose w is formed from z by inserting the new
chromosome into a subset size j of z and deleting one
chromosome from a subset size l of z. Then

pðwjzÞ ¼ j
nþ u

1
nþ 1

:

Conversely, z is formed from w by inserting the new chro-
mosome into the subset size l 2 1 of w and deleting the
relevant chromosome in the subset size j + 1 of w:

pðzjwÞ ¼ l2 1
nþ u

1
nþ 1

:

Thus we have
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pðzÞ
pðwÞ ¼

ujzj
Q

x2zðjxj2 1Þ!
ujwj

Q
x92wðjx;9j2 1Þ! ¼

ðj2 1Þ!ðl2 1Þ!
j!ðl2 2Þ! ¼ l2 1

j
¼ pðzjwÞ

pðwjzÞ:

Appendix B

For the case n= 4, we label the four chromosomes a, b, c, and
d. For diploids, a and b denote the two chromosomes of one
individual and c and d the two chromosomes of the other. We
represent the states via the partition of the chromosomes.
Thus, for example, the state (abd)(c) denotes that a, b, and
d are ibd and c is not. However, we retain the usual ordering of
the 15 states, the first 8 corresponding to states in which there
is ibd within individuals. Note that states 2, 5, and 8 are states
in which ibd is only within individuals and not between them.

The unscaled transition rate matrix among the 15 ibd
states is shown in Table B1, where for conciseness we write
h = 1 2 b and omit the diagonal terms. We give three
examples of the derivation of rows in Table B1:

i. Consider first transitions from any of the three states in
which two pairs are ibd, for example, the state (ac)(bd).
Transitions to either of the two states in which only a single
pair remains ibd is possible. These transitions occur at rate

2(1 2 b) = 2h, since the new chromosome must form
a new group, and either one of the two in the dissolved
pair is the one removed. Transitions are also possible to
any one the four states in which three chromosomes are
ibd. Each of these transitions occurs at rate 2b, since the
new chromosome must join a group size 2, and the specific
chromosome that is changing its ibd group must be the one
deleted. The total rate of leaving the original state is 2 · (2
(1 2 b)) + 4 · (2b) = 4(1 + b).

ii. Next consider any state with three chromosomes ibd, for
example, (abc)(d). The new chromosome may join the
trio, rate 3b, and the singleton may be deleted, leading
to the state (abcd). The new chromosome may join the
singleton, rate b, and each possible deletion from the trio
leads to one of the three states of two ibd pairs. The new
chromosome may form a singleton, rate (12 b) = h, and
each of the three possible deletions from the trio gives
one of the six states with a single ibd pair.

iii. Consider finally the state of no-ibd, (a)(b)(c)(d). The rate of
change to each of the six states with one pair ibd is 2b, since,
for example, an ibd pair (bc) may be formed either by the
new chromosome joining c (rate b) with b being deleted or
by the new chromosome joining b with c being deleted. The
total rate of leaving the no-ibd state is thus 6 · 2b = 12b.

Table B1 The unscaled transition rate matrix among the 15 ibd states

State 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 (abcd) — 0 h h 0 h h 0 0 0 0 0 0 0 0
2 (ab)(cd) 0 — 2b 2b 2h 2b 2b 2h 0 0 0 0 0 0 0

3 (abc)(d) 3b b — 0 h 0 0 0 b b h 0 h 0 0
4 (abd)(c) 3b b 0 — h 0 0 0 b b 0 h 0 h 0
5 (ab)(c)(d) 0 2b 2b 2b — 0 0 0 0 0 b b b b 2h

6 (acd)(b) 3b b 0 0 0 — 0 h b b h h 0 0 0
7 (a)(bcd) 3b b 0 0 0 0 — h b b 0 0 h h 0
8 (a)(b)(cd) 0 2b 0 0 0 2b 2b — 0 0 b b b b 2h

9 (ac)(bd) 0 0 2b 2b 0 2b 2b 0 — 0 2h 0 0 2h 0
10 (ad)(bc) 0 0 2b 2b 0 2b 2b 0 0 — 0 2h 2h 0 0

11 (ac)(b)(d) 0 0 2b 0 b 2b 0 b 2b 0 — b b 0 2h
12 (ad)(b)(c) 0 0 0 2b b 2b 0 b 0 2b b — 0 b 2h
13 (a)(bc)(d) 0 0 2b 0 b 0 2b b 0 2b b 0 — b 2h
14 (a)(bd)(c) 0 0 0 2b b 0 2b b 2b 0 0 b b — 2h

15 (a)(b)(c)(d) 0 0 0 0 2b 0 0 2b 0 0 2b 2b 2b 2b —
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We	
  provide	
  two	
  collections	
  of	
  data	
  and	
  processed	
  output	
  files	
  from	
  our	
  simulation	
  study.	
  Many	
  other	
  files	
  can	
  be	
  
made	
  available	
  by	
  request.	
  
	
  
File	
  S2	
  (data_files.tar.gz;	
  see	
  next	
  page	
  3SI)	
  consists	
  of	
  the	
  marker	
  map	
  and	
  frequencies,	
  the	
  true	
  ibd	
  states	
  among	
  
our	
  500	
  pairs	
  of	
  individuals	
  sampled	
  for	
  the	
  study,	
  and	
  the	
  generated	
  haplotypes	
  of	
  the	
  100	
  individuals	
  who	
  provide	
  
these	
  500	
  pairs.	
  The	
  files	
  included	
  in	
  the	
  S2	
  tar	
  archive	
  are	
  
	
  
samp500_9_trueibd.txt	
   The	
  true	
  genotypic	
  ibd	
  state,	
  by	
  marker,	
  for	
  the	
  sample	
  of	
  500	
  pairs.	
  
samp500_15_trueibd.txt	
   The	
  true	
  haplotypic	
  ibd	
  state,	
  by	
  marker,	
  for	
  the	
  sample	
  of	
  500	
  pairs	
  
posandfreq.txt	
   position	
  in	
  cM	
  and	
  allele	
  frequencies	
  of	
  the	
  markers	
  simulated	
  
	
   	
  
haps_LD_[gamma].txt	
   The	
  simulated	
  haplotypes	
  for	
  the	
  100	
  individuals	
  generated	
  at	
  LD	
  level	
  gamma,	
  	
  
	
  	
  	
  	
  where	
  gamma	
  =	
  00,	
  05,	
  10,100	
   where	
  gamma	
  =	
  0	
  (very	
  high	
  LD),	
  0.05	
  (moderately	
  high),	
  0.1	
  (moderately	
  low),	
  

and	
  1.00	
  (no	
  LD)	
  
	
  
	
  
File	
  S3	
  (sweave_ldresults.tar.gz;	
  see	
  following	
  page	
  4SI)	
  contains	
  the	
  output	
  files	
  of	
  inferred	
  states	
  from	
  running	
  
ibd_haplo	
  in	
  MORGAN	
  3.0.3	
  	
  (Fall	
  2011	
  release),	
  to	
  produce	
  "qibd"	
  files	
  and	
  then	
  calling	
  the	
  states	
  using	
  the	
  R-­‐
package	
  IBDhaploRtools	
  	
  (Fall	
  2011	
  release)	
  as	
  described	
  in	
  the	
  paper.	
  	
  The	
  qibd	
  files	
  provide	
  the	
  probabilities	
  of	
  each	
  
ibd	
  	
  state,	
  at	
  each	
  marker,	
  for	
  each	
  of	
  the	
  500	
  pairs	
  of	
  individuals.	
  	
  We	
  have	
  not	
  provided	
  the	
  original	
  qibd	
  files,	
  since	
  
each	
  of	
  the	
  22	
  files	
  is	
  approx	
  400	
  Mb	
  (and	
  30Mb	
  even	
  when	
  compressed).	
  
Instead	
  we	
  have	
  provided	
  the	
  called	
  state	
  results	
  from	
  each	
  of	
  these	
  runs	
  in	
  the	
  form	
  of	
  an	
  Rdata	
  file,	
  together	
  with	
  a	
  
Sweave	
  document	
  that	
  can	
  be	
  used	
  together	
  with	
  the	
  the	
  R-­‐package	
  IBDhaploRtools	
  	
  (Fall	
  2011	
  release)	
  and	
  used	
  to	
  
regenerate	
  the	
  tables	
  and	
  figures	
  of	
  our	
  study.	
  	
  We	
  have	
  provided	
  only	
  the	
  22	
  files	
  of	
  inferred	
  ibd	
  states	
  that	
  provide	
  
the	
  results	
  tabulated	
  in	
  the	
  paper.	
  	
  	
  	
  The	
  files	
  included	
  in	
  the	
  S3	
  tar	
  archive	
  are	
  
	
  
data.files.needed.txt	
   list	
  of	
  the	
  files	
  needed	
  to	
  run	
  the	
  Sweave	
  code	
  
marker.pos.Rdata	
   marker	
  data	
  (as	
  in	
  File	
  S2)	
  in	
  .Rdata	
  format	
  
samp500_15_trueIBD.txt	
   true	
  hapotypic	
  ibd	
  states	
  	
  (see	
  details	
  for	
  file	
  S2	
  above)	
  
samp500_9_trueIBD.txt	
   true	
  genotypic	
  ibd	
  states	
  	
  (see	
  details	
  for	
  file	
  S2	
  above)	
  
	
   	
  
Rplots.pdf,Sweave.sty,	
  	
  
create_figures.*	
  

Sweave	
  files	
  (input	
  and	
  output)	
  required	
  to	
  recreate	
  the	
  figures	
  of	
  the	
  paper	
  
relating	
  to	
  the	
  performance	
  of	
  ibd_haplo	
  to	
  infer	
  segments	
  of	
  ibd.	
  

create_figures-­‐fig*.pdf	
  
create_figures-­‐fig*.eps	
  

PDF	
  and	
  EPS	
  versions	
  of	
  figures	
  1,	
  4,	
  and	
  5	
  of	
  the	
  paper,	
  as	
  recreated	
  using	
  the	
  
Sweave	
  document	
  and	
  IBDhaploRtools	
  R	
  package.	
  

	
   	
  
inf_states_h_gamma*_ch.Rdata	
  	
   Inferred	
  states,	
  using	
  haplotypic	
  data,	
  on	
  each	
  of	
  the	
  four	
  data	
  sets	
  at	
  varying	
  LD	
  

levels	
  gamma,	
  for	
  four	
  values	
  of	
  gamma	
  =”*”=	
  0.0,	
  0.05,	
  0.1	
  and	
  1.0.	
  Run	
  at	
  model	
  
parameters	
  alpha=0.05,	
  beta=0.05,	
  and	
  delta=0.1,	
  as	
  described	
  in	
  the	
  paper.	
  

inf_states_g_gamma*_ch.Rdata	
   Inferred	
  states,	
  as	
  above,	
  for	
  the	
  same	
  data	
  analyzed	
  as	
  unphased	
  genotypes.	
  
inf_states_h_fkin*_ch.Rdata	
   Inferred	
  states,	
  using	
  haplotypic	
  data,	
  for	
  the	
  LD	
  (gamma)	
  value	
  0.1,	
  for	
  two	
  values	
  

of	
  beta	
  =”*”=0.02	
  and	
  0.05.	
  With	
  alpha=0.05,	
  delta=0.1	
  as	
  above.	
  
inf_states_g_fkin*_ch.Rdata	
   Inferred	
  states,	
  as	
  above,	
  for	
  the	
  same	
  two	
  beta	
  values,	
  with	
  the	
  data	
  analyzed	
  as	
  

unphased	
  genotypes.	
  
inf_states_h_ffrate*_ch.Rdata	
   Inferred	
  states,	
  using	
  haplotypic	
  data,	
  for	
  the	
  LD	
  (gamma)	
  value	
  0.1,	
  for	
  five	
  values	
  

of	
  rate	
  parameter	
  alpha	
  =	
  “*”	
  =	
  0.01,	
  0.05,	
  0.1,	
  0.5,	
  2.0.	
  	
  
With	
  beta=0.05,	
  delta	
  =-­‐0.1	
  as	
  above.	
  

inf_states_g_ffrate*_ch.Rdata	
   Inferred	
  states,	
  as	
  above,	
  for	
  the	
  same	
  five	
  alpha	
  values,	
  with	
  the	
  data	
  analyzed	
  as	
  
unphased	
  genotypes.	
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File	
  S2	
  

data_files.tar.gz	
  

	
  

File	
  S3	
  

sweave_ldresults.tar.gz	
  

	
  
	
  
Files	
  S3	
  and	
  S3	
  are	
  available	
  for	
  download	
  as	
  a	
  compressed	
  (gzipped)	
  tar	
  archive	
  at	
  
http://www.genetics.org/content/suppl/2012/01/31/genetics.111.137570.DC1.	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  
	
  


