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ABSTRACT Hierarchical mixed effects models have been demonstrated to be powerful for predicting genomic merit of livestock and
plants, on the basis of high-density single-nucleotide polymorphism (SNP) marker panels, and their use is being increasingly advocated
for genomic predictions in human health. Two particularly popular approaches, labeled BayesA and BayesB, are based on specifying all
SNP-associated effects to be independent of each other. BayesB extends BayesA by allowing a large proportion of SNP markers to be
associated with null effects. We further extend these two models to specify SNP effects as being spatially correlated due to the
chromosomally proximal effects of causal variants. These two models, that we respectively dub as ante-BayesA and ante-BayesB, are
based on a first-order nonstationary antedependence specification between SNP effects. In a simulation study involving 20 replicate
data sets, each analyzed at six different SNP marker densities with average LD levels ranging from r2 ¼ 0.15 to 0.31, the antede-
pendence methods had significantly (P , 0.01) higher accuracies than their corresponding classical counterparts at higher LD levels (r2 .
0. 24) with differences exceeding 3%. A cross-validation study was also conducted on the heterogeneous stock mice data resource (http://
mus.well.ox.ac.uk/mouse/HS/) using 6-week body weights as the phenotype. The antedependence methods increased cross-validation
prediction accuracies by up to 3.6% compared to their classical counterparts (P , 0.001). Finally, we applied our method to other
benchmark data sets and demonstrated that the antedependence methods were more accurate than their classical counterparts for
genomic predictions, even for individuals several generations beyond the training data.

WHOLE genome prediction (WGP) using commercially
available medium to high density (.50,000) single-

nucleotide polymorphism (SNP) panels have transformed
livestock and plant breeding. Typically, the allelic substi-
tution effects of all SNP markers are jointly estimated in
WGP evaluation models assuming additive inheritance and
summed to predict breeding values of each individual ani-
mal on the basis of its SNP genotypes (Meuwissen et al.
2001). This technology will not only lead to dramatically
increased rates of genetic improvement for economically
important traits such as meat and milk production in live-
stock (Wiggans et al. 2011) or crop production (Lorenz et al.
2011), but would also improve predictions of genetic pre-
disposition to human diseases for personalized medicine (de
los Campos et al. 2010).

Currently, the number of available SNP markers (m) is
typically much greater than the number of animals having

phenotypic records (n). Hence, hierarchical mixed-model or
Bayesian approaches have been generally adopted in WGP
to efficiently borrow information across these many markers
by specifying their corresponding effects to be random. Fol-
lowing Meuwissen et al. (2001), these effects are typically
specified to be either Gaussian or Student t-distributed
(BayesA), or a mixture of either of these two densities with
a point mass on zero (BayesB). When these effects are spec-
ified to be Gaussian, then best linear unbiased prediction of
these effects is typically pursued because of computational
tractability (VanRaden 2008; Hayes et al. 2009); applied to
WGP, this procedure is often known as GBLUP (genomic–
best linear unbiased prediction). Thus far, the distributional
specifications for these various hierarchical modeling approaches
have been based on a prior assumption of independence
between all such effects.

Gianola et al. (2003) anticipated that some of these effects
might be spatially correlated within chromosomes such that
greater inference efficiency might be provided by modeling
these effects as correlated. Their proposed specifications re-
quired equally spaced markers and/or within-chromosome cor-
relations depending strictly on physical/linkage map distance
between markers. However, the equally spaced assumption is
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rather tenuous for most currently available SNP marker pan-
els. Even more importantly, the inferred correlation structure
is likely to be nonstationary given that it should be primarily
driven by the proximity of SNP markers to quantitative trait
loci (QTL) of major effects. In other words, we anticipate that
the correlation between the inferred effects of adjacent SNPs
distal to major QTL would be substantially smaller than those
proximal to these QTL.

Antedependence models have been increasingly advocated
for the analysis of repeated measures data (Zimmerman and
Nunez-Anton 2010) to parsimoniously account for nonsta-
tionary correlations between repeated measurements over
time. In this article, we develop first-order antedependence
counterparts to BayesA and BayesB. Through simulation,
a cross-validation study involving the publicly available het-
erogeneous stock mice data (Valdar et al. 2006a,b) and jour-
nal-provided reference data (Hickey and Gorjanc 2012) to
potentially benchmark our proposed methods with others,
we demonstrate that, compared to their conventional coun-
terparts, these antedependence-based WGP models improve
the accuracy of genomic merit as well as potentially increase
the sensitivity of QTL detection, which is the key objective of
genome-wide association studies (GWAS).

Materials and Methods

Conventional WGP model

The base linear mixed model used for WGP is generally
written as

y5Xb1Zg1Wu1 e: (1)

Here, y 5 fyigni 5 1 is a n · 1 vector of phenotypes, b is an p · 1
unknown vector of fixed effects connected to y via a known n · p
incidence or covariate matrix X (e.g., environmental effects)
g 5 fgjgmj 5 1 is an m · 1 vector of random SNP effects con-
nected to y via a known n · mmatrix of SNP genotypes coded
as 0, 1, or 2 copies of the minor allele for each SNP (column)
and animal (row) in Z. Furthermore, u 5 fukgqk 5 1 is a q · 1
vector of random polygenic effects connected to y via a known
n · q incidence matrix W, and e 5 feigni 5 1 is the residual
vector. We assume that u � Nð0;As2

uÞ, where A denotes the
pedigree-derived numerator relationship matrix (Henderson
1976) and is often included in WGP models due to insufficient
genome coverage by Z (Calus and Veerkamp 2007). Further-
more, we specify g � Nð0;GÞ, where G 5 diagðs2

gjÞ and
e � Nð0; Is2

e Þ. From a Bayesian perspective, a subjective prior
may be also specified on b using b � Nðb0;VbÞ with b0 and
Vb taken as known (Sorensen and Gianola 2002).

Now the distinction between GBLUP, BayesA, and BayesB
in Meuwissen et al. (2001) depends upon the characteriza-
tion of G. If G 5 Is2

g (i.e., s2
gj 5 s2

g"j), then the model is
defined to be GBLUP. If, instead, the diagonal elements of
G are independent random draws from an scaled inverted
chi-square distribution, i.e., s2

gj � x22ðng; ngs2gÞ such that
Eðs2

gjÞ 5 ngs2g=ðng22Þ, then the model is said to be BayesA

such that marginally gj is a random draw from a Student t
distribution with mean 0, degrees of freedom ng, and scale
parameter s2g (de los Campos et al. 2009; Gianola et al.
2009). Now BayesB further extends BayesA by including
a two-component mixture with one component being
x22ðng; ngs2gÞ and the other component being a spike or point
mass at 0; i.e.,

s2
gj j ng; s

2
g

� 5 0                                                 with  probability   pg

� x22
�
ng; ngs2g

�
    with  probability   ð1-pgÞ:

(2)

That is, pg (0,pg,1) represents the proportion of SNP
markers having no associated genetic effects on the trait of
interest.

Clear warnings have been provided on how sensitive
inferences using BayesA or BayesB may be to specification
of the hyperparameters (de los Campos et al. 2009; Gianola
et al. 2009). It has not been widely appreciated that ng and s2g
are estimable; this recognition is critical as both hyperpara-
meters help define the genetic architecture in BayesA and
BayesB. That is, ng characterizes the variability of s2

gj about
a typical variance component of s2g . Details on how to esti-
mate ng and s2g in the context of BayesA were previously pro-
vided by Yi and Xu (2008). Furthermore, pg is estimable in
BayesB. For both BayesA and BayesB, we specify the prior
distribution ng � pðngÞ}ðng11Þ22, similar to what we have
previously adopted in other applications (Kizilkaya and
Tempelman 2005; Bello et al. 2010). Furthermore, we specify
pg � pðpg jap;bpÞ 5 Betaðap;bpÞ for BayesB, with values of
ap and bp chosen to reflect prior uncertainty on pg. We also
specify a proper conjugate prior on s2g in BayesB; i.e.,
s2g � pðs2g jag;bgÞ 5 Gammaðas;bsÞ recognizing that the
specifications on ag and bg become increasingly influential
as pg / 1.

Finally, we specify noninformative priors s2
e � x22ð21; 0Þ

and s2
u � x22ð21; 0Þ, which are congruent with specifying

uniform priors on se and su, respectively, and in line with
recommendations for variance components by Gelman
(2006). We similarly and confidently specify s2g � x22ð21; 0Þ
in BayesA, given that m is generally large enough for stable
inference on s2g without the need for more informative priors.

Antedependence extensions of WGP models

We propose a nonstationary first-order antedependence
correlation structure for g based on the relative physical
location of SNP markers along the chromosome(s):

gj 5
�
d1                                                   if j5 1
tj; j21gj21   1   dj               if 2 #  j # m : (3)

Here dj � NIDð0;s2
dj
Þ, j 5 1; . . . ;m, whereas tj; j21 is the

marker interval-specific antedependence parameter (Zimmerman
and Nunez-Anton 2010) of gj on gj21 in the specified order.
We can rewrite the recursive expression in (3) in matrix
notation,
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g5Tg1 d; (4)

where d 5 fdjgmj 5 1 5 ðI2TÞg for I being a m · m identity
matrix, and T having all null values except for elements tj,,j-1 at
the corresponding subscript addresses. It can be readily seen
using Equation 4 that varðgÞ 5 G 5 ðI2TÞ21DðI2TÞ21

’, where
ðI2TÞ21 is a lower triangular matrix with diagonal elements
equal to 1 and D 5 diagfs2

dj
gm
j 5 1

. As further illustrated in sup-
porting information, File S1, from the G21 5 ðI2TÞ9D21ðI2TÞ
is a readily determined tridiagonal matrix (Zimmerman and
Nunez-Anton 2010), which is important as it facilitates inference
on g.

Some of the other developments closely follow the BayesA
and BayesB models of Meuwissen et al. (2001). That is, we
specify s2

dj
� x22ðnd; nds2dÞ in a model that we label ante-

BayesA. Similarly, we propose an ante-BayesB model whereby
we specify a mixture similar to Equation 2 except that it is
specified on s2

dj
; i.e., a mixture of point mass on zero with

probability pd and scaled inverted chi-square prior
x22ðnd; nds2dÞ with probability (1 2 pd). As we suggested
earlier for pg, we believe that pd is estimable such that
ante-BayesA is merely a special case of ante-BayesB. In turn,
BayesA is merely a special case of ante-BayesA, as is BayesB of
ante-BayesB, when T 5 0 ; i.e., tj,,j-1 ¼ 0 "j.

These antedependence extensions, nevertheless, do re-
quire inference on the unknown m 2 1 nonzero elements
ftj; j21gmj 5 2 of T. Borrowing from Daniels and Pourahmadi
(2002) and Bello et al. (2010), we specify tj;j21 � Nðmt;s

2
t Þ

as a conjugate prior in both ante-BayesA and ante-BayesB,
thereby allowing flexible inference on the nonstationary cor-
relation structure in G. However, it should be further noted that
if interval j, j 2 1 specifies that between the last SNP of one
particular linkage group or chromosome and the first SNP in the
arbitrarily subsequent linkage group, then we set the corre-
sponding tj;j21 5 0. The remaining prior specifications are spec-
ified on the hyperparameters that essentially characterize the
hypothesized genetic architecture of the trait and are virtually
identical to those previously prescribed for BayesA and BayesB;
i.e., nd}ðnd11Þ22, s2d � Gammaðas;bsÞ, pd � Betaðap;bpÞ
with ap,bp as, and bs again all specified as known. Similarly,
we also estimate mt and s2

t by placing subjective priors,
mt � Nðmt0; s

2
t0Þ and s2

t � x22ðnt; nts2t Þ on these key hyper-
parameters, where mt0; s

2
t0, nt and s2t are specified to be known.

As in Meuwissen et al. (2001) and subsequent work, our
implementation strategy is based on the use of Markov chain
Monte Carlo (MCMC) methods; however, we also addition-
ally infer key hyperparameters, i.e., ngðndÞ, s2gðs2dÞ, and pgðpdÞ,
that characterize the genetic architecture of the trait, as al-
luded to earlier. Further details on the full conditional densi-
ties and any necessary Metropolis–Hastings strategies to
sample from the joint posterior density of all unknown
parameters using MCMC are provided in File S1.

Simulation study

We compare the performance of BayesA and BayesB with
their antedependence counterparts, ante-BayesA and ante-

BayesB, in a simulation study. Twenty replicated data sets
were each generated from a base population containing 50
unrelated males and 50 unrelated females. Each data set
underwent random mating while maintaining constant pop-
ulation size for 6001 generations beyond the base population.
The entire genome was composed of one chromosome of
length 1 M. All of 20,001 potential SNP markers were equally
spaced on this genome with a potential QTL placed directly in
the middle of each interval of adjacent markers. In the base
population, all 20,000 QTL and 20,001 SNP marker alleles
were coded as monomorphic. The number of simulated
crossover events per meiosis was generated from a Poisson
(mean 1) distribution with the location of the crossover events
uniformly distributed throughout the chromosome in accor-
dance with the Haldane mapping function. The mutation rate
for both QTL and SNP markers was specified to be 1024 per
locus per generation and to be recurrent, that is, switching
between one of two alternative allelic states 0 and 1 whenever
mutation occurred so as to ensure biallelic loci (e.g., Coster
et al. 2010; Daetwyler et al. 2010).

In Generation 6001, all SNP markers and QTL with
a minor allele frequency (MAF) ,0.05 were discarded. We
then randomly selected only 30 of the remaining QTL and
their corresponding allelic substitution effects. For each of
these k ¼ 1, 2, . . ., 30 QTL, an allelic substitution effect
(ak) was drawn from a reflected gamma distribution with
shape parameter 0.4 and scale parameter 1.66, with a posi-
tive or negative sign on ak sampled with equal probabil-
ity. The genetic variance at QTL k was determined to be
2pkð12pkÞa2

k , where pk is the MAF at QTL k. The total genetic
variance was subsequently determined to be the summation
of these terms across the 30 selected QTL, i.e., as
2
P30

k 5 1 pkð12pkÞa2
k. Now the true breeding values (TBV)

were defined to be a genotype-based linear function of the
30 generated QTL effects, which, because these QTL were
located between various SNP, are not subsets of g. These
TBV were further scaled such that the total genetic variance
was 1 as per Meuwissen and Goddard (2010). Residual
effects were, in turn, sampled from a standard normal distri-
bution, such that the heritability was 0.50. That is, each phe-
notypic record was generated by adding the TBV for that
animal plus its corresponding residual. Hence, 100 animals
with known phenotypes and genotypes in Generation 6001
were simulated for inferring upon the SNP effects, using each
of the competing methods. Genotypes and the TBV for each
of 100 offspring were also generated in Generation 6002, on
the basis of randomly mating animals in Generation 6001.

For each of the 20 replicated data sets, the effect of six
different marker densities on the comparison between the
competing methods were investigated by selecting every 1,
4, 7, 10, 15, and 20 SNP markers from those with MAF .
0.05. That is, the data sets were used as a blocking factor in
comparing different marker densities for the accuracy of
predicting genetic merit in Generation 6002, using each of
the four different methods: BayesA, BayesB, ante-BayesA,
and ante-BayesB. Accuracy was defined as the correlation
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between estimated breeding values (EBV) for Generation
6002, using just Generation 6001 phenotypes and genotypes
data, and the corresponding TBV of Generation 6002. These
EBV are based on the posterior mean (�g) of g; i.e., EBV are
elements of Z�g. Comparisons between the BayesA/BayesB pro-
cedures and their antedependence counterparts were also
drawn for inference on the key hyperparameters that charac-
terize genetic architecture. This was conducted using multifac-
torial ANOVA on the posterior means using replicate as the
blocking factor for assessing the importance of model and
marker density and their interaction across the 20 replicates.
Furthermore, an assessment of the relative ability of ante-
BayesB compared to BayesB to identify the top QTL by genetic
variance was based on the difference in posterior probabilities
of dj and gj, respectively, of adjacent SNP markers being non-
zero. As QTL were placed between SNP markers and never on
top of SNP markers, we calculated this probability of associa-
tion by determining the proportion of MCMC cycles that either
or both of the two markers adjacent to the known QTL were
chosen to be nonzero within each analysis.

All comparisons were based on the linear mixed model in
Equation 2 with X being a column vector of ones, except that
polygenic effects (u) were ignored for simplicity and com-
putational tractability.

Application to heterogeneous stock mice data set

We used a data set publicly available from the Wellcome Trust
(http://gscan.well.ox.ac.uk/), which includes phenotypic re-
cords on 2296 mice, each genotyped for 12,147 SNP markers.
This data resource, which also includes pedigree information,
was based on an advanced intercross mating among eight in-
bred strains after 50 generations of random mating (Valdar
et al. 2006a). The average linkage disequilibrium (LD), as mea-
sured by r2 between adjacent markers is 0.62 (Legarra et al.
2008), which is high compared to commonly used SNP panels
available for livestock populations. For example, the average r2

between adjacent markers in most commercially available live-
stock SNP panels ranges from 0.10 to 0.37 for markers that are
generally around 100 kb apart (Du et al. 2007; de Roos et al.
2008; Abasht et al. 2009; Bohmanova et al. 2010).

Given this high pairwise LD, we considered only a random
subset of all markers from this data set to ensure adjacent
marker LD levels that are representative of livestock popula-
tions. We first excluded SNP markers if the percentage of
missing genotypes across samples was .10% or if the MAF
was ,2.5%. We also discarded animals having greater than
20% missing SNP genotypes. We then randomly selected 50
SNP markers from each of the 19 autosomes, leading to an
average LD of r2 of 0.35 between adjacent markers. The
resulting data set then involved records on 1917 animals with
genotypes on 950 SNPs. The phenotypes and pedigrees are
available as File S2 and the SNP genotypes as File S3 based
on the chosen SNP markers are provided in File S4.

As in Legarra et al. (2008), we also added the random
effect of cage in the WGP model of [2]; i.e., y 5
Xb1Zg1Wu1Sc1e, where c � Nð0; Is2

c Þ and S is the cor-

responding incidence matrix with all other terms de-
fined as before. Furthermore, we specified Gelman’s prior
s2
c � x22 ð21; 0Þ on s2

c in addition to all previously provided
prior specifications. Also, as per Legarra et al. (2008), we
chose to use the data provided on body weight at 6 weeks
that was already precorrected for fixed effects such that Xwas
a column vector of ones and b consisted of just an overall
mean. Missing SNP genotypes were simply imputed from bi-
nary distributions on the basis of their corresponding allelic
frequencies in the data set following Legarra et al. (2008). We
adopted the same within-family cross-validation technique as
described in Legarra et al. (2008) by randomly partitioning
each family into two. This partitioning was replicated 20 times
to obtain 20 different nearly equal-sized partitions of training
and validation data subsets. Also, as in Legarra et al. (2008),
we compared the various methods using predictive abilities,
defined as the correlation between phenotypes in the valida-
tion subset and their corresponding predictions on the basis
of their inferences from the training data subset.

Application on simulated genomic data from Hickey
and Gorjanc

To provide a benchmark comparison of our proposed methods
with competing methods in other articles in this issue, we
analyze simulated data sets provided by and described in
detail by Hickey and Gorjanc (2012). They generated 10 rep-
licated data sets for each of four different traits whereby 9000
QTL effects were generated for trait 1 and 900 QTL effects
were generated for trait 2. Traits 3 and 4 mirrored traits 1 and
2, respectively, with the further requirement that the MAF for
these QTL was ,0.30. Since we were permitted to simulta-
neously run 144 jobs on the high-performance computing
cluster at MSU (hpcc.msu.edu), we chose to compare the four
methods for each of the four traits on each of the first nine
data sets (4 · 4 · 9 ¼ 144). For all analyses, training data
were based on 2000 animals in generations 4 and 5 whereas
TBV were provided on 500 animals within generations 6, 8,
and 10. To facilitate computing tractability, we saved every
tenth SNP marker that had a MAF .0.20. This led to a range
of 2884–2952 SNP markers and an average LD between ad-
jacent markers from 0.16 to 0.17 across the nine replicates.
The actual SNP markers chosen from each of the nine data
sets are provided in File S5 based on the original data (File
S6) as provided by Hickey and Gorjanc (2012). All four mod-
els also included polygenic effects. Antedependence methods
were directly compared with their classical counterparts for
accuracy (correlation of EBV with TBV) and bias (deviation of
slope from 1 from regressing TBV on EBV) in these latter
validatation generations using a Wilcoxon signed rank test.

Bayesian inference

For each of the four methods, BayesA, BayesB, ante-BayesA,
and ante-BayesB in both our simulation study and the
heterogeneous stock mice application, we ran MCMC for
50,000 cycles of burn-in followed by an additional 300,000
cycles; for the benchmark data from Hickey and Gorjanc
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(2012), the corresponding numbers were 80,000 and
1,000,000, respectively. Every tenth MCMC cycle was subse-
quently saved for inference post burn-in. We monitored
MCMC convergence via inspection of trace plots and deter-
mined the effective sample size (ESS) for number of random
draws from the joint posterior density for all key hyperpara-
meters using the R package CODA (Plummer et al. 2006).
The larger number of MCMC cycles for the Hickey–Gorjanc
data were based on ensuring that ESS for all hyperparameters
at least exceeded 100. Inferences were primarily based on the
posterior means and posterior standard deviations for key
parameters, including those hyperparameters that character-
ize genetic architecture.

Prior specifications

For all analyses in this article, we chose ap 5 10 and bp 5 1
in both BayesB and ante-BayesB to reflect the prior belief
that most of the markers will not be associated with any
genetic effects; however, the dispersion of this correspond-
ing beta distribution is still large enough such that values of
pg (pd) close to 0.70 are plausible. On the basis of prelim-
inary runs, we also found that this prior specification led to
superior mixing properties of the MCMC chains over a naïve
Uniform(0,1) prior, yet facilitated domination of data over
prior information since ap1bp ,, m.

For BayesB and ante-BayesB, we always specified
as 5 bs 5 0:1 for the Gamma prior on s2g (s2d). For the ante-
dependence-based models, we specified mt0 5 0, s2t0 5 1,
nt 5 21, and s2t 5 0, i.e., a standard normal prior on mt
and Gelman’s prior on s2

t . We also always specified a flat
prior on b by defining V21

b ¼ 0. Prior specifications for all
other parameters (e.g., variance components) were based on
those previously recommended in this article.

Results

Simulation study

For the six different marker densities, the average distances
between adjacent markers ranged from 0.046 to 0.918 cM
over the 20 replicates whereas the average LD between
adjacent markers, measured by r2 values, ranged from 0.15 to
0.31, as shown in Table 1. Among the 30 chosen QTL within

each of the 20 replicates, anywhere between 6 and 11 of the
QTL had variances .2% of the total genetic variance.

Inferences on key hyperparameters

It is important to recognize that none of the modeling
assumptions behind BayesA, BayesB, anteBayesA, or ante-
BayesB truly match the data generation model based on
thousands of generations of LD created between markers and
QTL, even for simulated data. This goes beyond the fact that
the QTL effects were drawn from reflected Gamma distribu-
tions in our simulation study as typically done (e.g., Meuwissen
et al. 2001; Meuwissen and Goddard 2010). That is, the pro-
cess of recombination over thousands of generations in terms
of how it generates LD between QTL and SNP markers is not
explicitly captured in any known WGP model, including any of
the competing models, especially when the effects of neigh-
boring SNP markers rather than the causal QTL effects are
being estimated. Hence, there is no way to surmise the “true”
values of key hyperparameters, whether for s2g, ng, or pg in
BayesA or BayesB or for s2d,nd, pd, mt, or s2

t in anteBayesA
or anteBayesB. However, one should anticipate that estimates
of s2g or s2d should be inversely related to marker density, since
they closely represent the mean value of the variance compo-
nents fs2

gjg
m

j 5 1
or fs2

dj
gm
j 5 1

, respectively, accounted for by
each SNP. Indeed, we observe this phenomenon in the com-
parison between BayesA and anteBayesA in Figure 1A. We also
note a similar comparison between s2d and s2g for BayesB vs.
anteBayesB in Figure 1B, but further recognize that the corre-
sponding estimates of s2g and s2d are roughly 1 order of magni-
tude greater than those seen in Figure 1A. That is, s2g and s2d
specify a typical value for s2

gi and s2
di
, respectively, over many

more loci in (ante)BayesA than their (ante)BayesB counter-
parts. In spite of the lower values observed in Figure 1A, how-
ever, there was a significant difference (P , 0.01) between s2g
and s2d when r2 $ 0.21.

As marker density increased, we also expected that the
estimates of pg or pd should increase as well; that is, it
becomes increasingly unlikely that individual SNP markers
become associated with a particular QTL with greater
marker density. Indeed we observed this in Figure 2. It
was particularly interesting that the posterior means of pd

were generally lower than that of pg, with differences wid-
ening with increasing marker density (i.e., LD level) such

Table 1 Summary statistics for six different marker densities in the simulation study over 20 replicates

Marker
density
levela

Average no. of
markers per
replicate

Average distance between
adjacent marker loci (cM)

per replicate

Average r2 between
adjacent marker loci

per replicate

1 108 0.918 0.15
2 145 0.689 0.18
3 217 0.459 0.21
4 311 0.321 0.24
5 545 0.184 0.27
6 2182 0.046 0.31
a Marker density levels 1–6 pertain to saving every 20th, 15th, 10th, 7th, and 4th and every single SNP marker from a single 1-M chromosome
within each data replicate.
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that the differences were significant beyond r2 ¼ 0.24 (P ,
0.01). Note the subtle difference in interpretation between
pg and pd as pg pertains to the probability of nonassocia-
tion for the corresponding SNP whereas pd pertains to the
probability of nonassociation conditional on a neighboring
SNP.

The estimates of ng and nd also changed as a function of
marker density for anteBayesA vs. BayesA in Figure 3A and for
anteBayesB vs. BayesB in Figure 3B. Specifically, the posterior
means of ng and particularly of nd both decrease with increas-
ing marker intensity. Since these parameters, respectively, char-
acterize the heterogeneity of s2

gj and s2
dj

across SNP or,
alternatively, the heaviness of the tails for the resulting mar-
ginal Student t distribution on gj and dj across SNP, our results
imply that these hierarchical methods, and particularly those
based on nonstationary first-order antedependence correlation
structures, identify SNP with large effects as being more out-
lying relative to a normal distribution when marker density
increases. However, these differences between ng and nd were
not seen to be statistically significant at any marker density.

Figures S1 and S2 in supporting information File S1
shows the average posterior means for mt and s2

t against
LD level across the 20 replicates under both ante-BayesA
and ante-BayesB. There was no evidence (P . 0.01) across
these 20 replicates that the posterior means of mt were dif-
ferent from zero at any LD level; however, at higher LD levels,
the posterior means tended to converge to zero as antici-
pated. Similarly, the posterior estimates for s2

t were also
lower at higher LD levels. Again, this was somewhat antici-
pated since there should be less disparity in different values
of the antedependence parameters (tj;j21) between adjacent
markers with increasing marker intensity.

Comparison between true and estimated total
breeding values

The average accuracies of the EBV over the 20 replicated
data sets are plotted as a function of the average r2 (i.e., the
different marker densities) between adjacent markers for
the four different methods in Figure 4. As anticipated, given
the simulated genetic architecture of few QTL, the accura-
cies for the BayesB methods were consistently greater than

Figure 1 Average posterior means of s2g (BayesA, BayesB)
and s2d (ante-BayesA, ante-BayesB) across 20 replicates for
six different levels of LD comparing BayesA and ante-
BayesA (A) and BayesB vs. ante-BayesB (B). Significant dif-
ferences in posterior means between competing methods
at each LD level are indicated: (**) P , 0.001.

Figure 2 Average posterior means of pg (BayesB) vs. pd (ante-BayesB)
across 20 replicates as a function of six different LD levels. Significant
differences in posterior means between competing methods at each LD
level are indicated by (*) P , 0.01, or (***) P , 0.0001.
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their corresponding BayesA counterparts at all marker den-
sities. Also, ante-BayesA and ante-BayesB outperformed
their classical counterparts with differences increasing with
LD level. Specifically, anteBayesA had significantly greater
accuracies compared to conventional BayesA, as did ante-
BayesB compared to BayesB (P , 0.01), when average LD
levels exceeded r2 ¼ 0.24.

We anticipated that the antedependence parameters tj;j21 ’s
would have greater importance at higher marker densities.
To demonstrate this, we standardized the posterior means of
these parameters as a ratio over their posterior standard
deviations, i.e., ~tj; j21 5 Eðtj;j21 j yÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðtj;j21 j yÞ

p
, for each

analysis. We then determined the proportion of these ~tj;j21

whose absolute value exceeded an arbitrary value of 2 for
each data replicate and marker density analysis to indicate
the relative importance of these antedependence parame-
ters. We present boxplots of these proportions across the
20 replicates for ante-BayesA and for ante-BayesB in Figure
S3 in File S1. We anticipated and noted that a higher pro-
portion of ~tj;j21 exceeded 2 in data sets characterized by
higher marker densities, thereby indicating that, in general,
nonstationary serial correlation between adjacent markers
becomes increasingly more important with higher levels of
LD. We believe this phenomenon is responsible for driving
the differences in accuracies between ante-BayesA (ante-
BayesB) and BayesA (BayesB) with increasing LD levels as
seen earlier in Figure 4.

Potential merit for GWAS

Hierarchical methods that are similar to BayesB, in that they
jointly infer upon all SNP effects, have been increasingly
advocated as tools for GWAS (Hoggart et al. 2008; Lee et al.
2008; Logsdon et al. 2010). Figure S4 in File S1 shows the
average (across 20 replicates) posterior mean probabilities of
identifying the largest QTL by genetic variance within each
replicate using BayesB and ante-BayesB, respectively. These
estimated posterior probabilities increased with LD level for
both models but were significantly greater for ante-BayesB
than for BayesB with statistical significance also increasing
with LD or marker density. That is, the precision for detecting
QTL was increasingly greater for ante-BayesB than for BayesB
at higher LD levels. We observed this consistently across data
replicates with the ability of ante-BayesB to better track causal
variants increasing with marker density (Figure S5 in File S1).

Application to heterogeneous stock mice data

We summarize posterior inferences of key parameters using
BayesA and BayesB in Table S1 and for their antedependence
counterparts in Table S2 (see File S1) for the heterogeneous
stock mice data. Inferences on s2

u, s
2
c , and s2

e were consistent
with results previously reported by Legarra et al. (2008). As
expected from our simulation study, the estimates for ng (nd)
and s2g (s2d) were substantially greater for BayesB (ante-
BayesB) than for BayesA (ante-BayesA). Although the poste-
rior mean for pg of 0.81 (BayesB) was only slightly larger than
pd 5 0.80 (ante-BayesB), the posterior mean of s2d was sub-
stantially larger in ante-BayesB than s2g in BayesB. The average
estimates 6empirical standard errors of predictive ability cor-
relations over the 10 cross-validation partitions of training and
validation data subsets were 0.576 0.01, 0.626 0.01, 0.606
0.01, and 0.66 6 0.01 for BayesA, BayesB, ante-BayesA, and

Figure 3 Average posterior means of vg (BayesA, BayesB) and vd (ante-
BayesA, ante-BayesB) across 20 replicates for six different levels of LD
comparing BayesA and ante-BayesA (A) and BayesB vs. ante-BayesB (B).
No significant differences (P . 0.01) were determined between the two
sets of competing procedures at each LD level.

Figure 4 Average accuracies of estimated breeding value across 20
replicates for analyses based on each of six LD levels. Differences in
accuracy between BayesA and ante-BayesA (circle and square) and be-
tween BayesB with ante-BayesB (triangle and diamond) indicated as sig-
nificant by (*) P , 0.01 or (**) P , 0.001.
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ante-BayesB, respectively. The differences between BayesA
with ante-BayesA and BayesB with ante-BayesB were both
determined to be statistically significant (P , 0.005), indicat-
ing the relative advantage of the antedependence methods.
Furthermore, BayesB and ante-BayesB had significantly greater
predictive abilities than BayesA and ante-BayesA, respectively
(P , 0.001).

Application to Hickey and Gorjanc data

Average posterior means for key hyperparameters for each
of the four methods across the nine replicates are provided
in Table S3 in File S1, whereas the corresponding average
ESS are provided in Table S4 in File S1. Estimates of pg (pd)
and s2g (s2d) were lower whereas estimates of ng (nd) are
higher for traits with higher numbers of QTL (traits 1 and
3) compared to those with lower numbers of QTL (traits 2
and 4), relative to the same number of markers.

A side-by-side comparison of the accuracies of the four
methods across the validation generations (6, 8, and 10) is
provided in Figure 5. It is remarkable to note that ante-
BayesA had generally significantly greater accuracies than
BayesA for traits 1 and 3 (larger numbers of QTL) that was
still maintained until generation 10, whereas ante-BayesB
had generally significantly greater accuracies than BayesB
for traits 2 and 4 (lower numbers of QTL) but only in
generations 6 and 8. An assessment of bias of the four
procedures based on regressing TBV on EBV is provided
in Figure S6 in File S1. For all traits, all four methods
had some significant bias in generation 6 but not in later
generations.

Discussion

In this article, we extend two very popular Bayesian
methods, BayesA and BayesB, for WGP to model potential
nonstationary correlations between SNP effects in close
proximity to QTL. We demonstrated using a small-scale
simulation study that the accuracies of our proposed first-
order antedependence extensions, labeled ante-BayesA and
ante-BayesB, were greater than their classical counterparts
with differences increasing with marker density. This result
was anticipated given that the magnitude and importance of
the antedependence parameters ftj;j21gmj 5 2 in T should in-
crease as marker densities increase. To further illustrate the
importance of modeling nonstationary correlations, rather
than basing correlations between SNP effects purely as
a function of distance (Gianola et al. 2003), we observed
the magnitude of the posterior means of ftj;j21gmj 5 2 at the
various locations through the chromosome for the first four
replicates using ante-BayesA and ante-BayesB (see Figure S7
in File S1). These posterior means tended to be rather large
in absolute value in the general vicinity of the major QTL.
This result was anticipated since each QTL is likely tracked by
several SNP, each in incomplete LD with the QTL (Goddard
and Hayes 2009). Interestingly, there appeared to be a greater
spread in these posterior means around a greater number of
QTL using ante-BayesB compared to ante-BayesA.

We realize that the order in which Equation 3 is specified
for the antedependence methods is rather arbitrary; i.e., one
might specify Equation 3 from the end of the p-arm to the end
of the q-arm of a chromosome or vice versa. For instance,
instead of specifying Equation 3 from j 5 1; 2; . . . ;m, we

Figure 5 Boxplots of average accuracies of estimated breeding value across nine replicates for four traits in generations 6, 8,
and 10 for benchmark data from Hickey and Gorjanc (2012). Differences in accuracy between anteBayesB (solid bars) and BayesB
(dark shading) and between anteBayesA (light shading) with BayesA (open bars) indicated as significant by (*) 0.05 , P , 0.10,
(**) 0.01, P , 0.05, or (***) P , 0.01.
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might have also modeled antedependence in the opposite
direction, i.e., from j 5 m;m21; . . . ; 1. It has been demon-
strated by Zimmerman and Nunez-Anton (2010) in the con-
text of longitudinal data analysis that the (co)variances based
on a first-order antedependence model are invariant to di-
rectionality as long as the relative order is correctly specified.
To illustrate this, we reanalyzed the first four replicates on
the basis of the highest average marker density (r2 ¼ 0.31),
again using ante-BayesA and ante-BayesB but this time spec-
ifying Equation 3 in the opposite direction from what was
used previously. We plotted the posterior means (�g) of g on
the basis of the analysis in the original direction again the
same estimates on the basis of the analysis in the opposite
direction (Figure S8 in File S1), further demonstrating that
inferences on EBV are invariant to direction. Noting that the
EBV are linear functions of �g, i.e., Z�g, we noted even greater
consistency for EBV between the two directions for these
same four replicates in Figure S9 in File S1.

Given that the accuracy of EBV was greater using the
antedependence-based procedures compared to their classi-
cal counterparts, we examined the elements of �g for each
marker between the two different classes of models within
each of the first four replicates and the highest average
marker density (Figure S10 in File S1). It was interesting
to note that these elements were more shrunk to zero using
the antedependence-based procedures than were the con-
ventional counterparts. Given the specification of nonsta-
tionary correlations between effects of adjacent SNP
markers, the effective number of SNP may be considered
to be somewhat lower using the antedependence-based pro-
cedures, particularly in regions containing a major QTL.
That is, larger elements of �g using the antedependence-
based models will tend to be more highly correlated and
hence shrunk closer to zero than elements of �g derived from
their conventional counterparts. Goddard et al. (2009) have
previously described the optimal statistical properties of �g
when g is specified as a set of “random effects” having an
exchangeable distribution, such as the normal or Student’s t.
However, these properties are better realized when a more
appropriate correlation structure is specified, as would be
true, for example, modeling polygenic effects with a classical
animal model (Henderson 1984). The more optimal proper-
ties of �g using the antedependence-based models was also
partly reflected in the earlier EBV comparisons with their
classical counterparts.

In spite of the limited scale of our simulation studies, it
has been demonstrated that inferences on accuracy based on
100 individuals and a genome length of 1 M is roughly
equivalent to inferences derived from 3000 individuals and
a genome length of 30 M (Meuwissen and Goddard 2010),
the latter of which might depict a more common scenario
in livestock populations. We also based all of our simulation
work on a heritability of 50%; for situations with lower
or higher heritabilities, we would naturally expect the ac-
curacies to, respectively, decrease or increase accordingly
in concert with previous simulation results (Calus and

Veerkamp 2007) and/or analytical derivations (Meuwissen
and Goddard 2010); however, we believe that there is no
reason to believe that the antedependence methods would
not outperform the conventional Bayesian WGP methods in
these situations as well. This was further substantiated by
our analyses of the data from Hickey and Gorjanc (2012),
which were based on a heritability of 25%. In our own
simulation study, there were around 2200 markers per the
single 1-M chromosome using the highest average LD level
of r2 ¼ 0.31, whereas there were around 100 markers per
the single chromosome with the lowest average LD level of
r2 ¼ 0.15. Using Meuwissen and Goddard (2010), these two
specifications are, respectively, analogous to a panel of
60,000 SNP markers and to a panel of 3000 SNP markers
for a 30-M genome; commercially developed panels having
roughly these same numbers of SNP markers are now widely
available for cattle (Wiggans et al. 2011). On the basis of
the results of our work, we anticipate that the antedependence-
based methods, compared to their classical counterparts,
would lead to even greater accuracies with higher density
SNP marker panels (m . 500,000) that are being developed
for livestock or for situations in which there is sequence data
(Meuwissen and Goddard 2010). Along those lines, we an-
ticipate that these methods would also perform better in
populations where LD is greater between markers due to
other phenomena, e.g., selection history.

Our simulation studies were also based on a particular
genetic architecture; i.e., 30 QTL that were randomly distrib-
uted throughout a 1-M chromosome (or equivalently, 900
QTL for a 30-M genome). Although this is not the focus of
our article, we realize that genetic architecture (i.e., number
of QTL, average QTL substitution effect, marker density, etc.)
can affect the relative merit of BayesA, BayesB, and GBLUP
on the basis of other studies in which key hyperparameters
such as pg, ng, and s2g are arbitrarily specified to be known
(Daetwyler et al. 2010; Meuwissen and Goddard 2010). That
is, the greater the number of QTL, each with small effects,
relative to the number of SNP markers, the more likely the
genetic architecture reflects the GBLUP assumptions (pg 5 1,
ng/N such that s2

gj 5 s2g"j). Conversely, BayesB would
be favored in the situation in which SNP marker density is
high relative to the number of QTL (pg,1). However, we
believe that formal comparisons in data fit between BayesA,
BayesB, and GBLUP, along with ante-BayesA and ante-
BayesB, are not entirely necessary since ante-BayesB repre-
sents the most general model. As previously noted, ante-
BayesA is a special case of BayesA, as is ante-BayesB of
BayesB, when T ¼ 0 such that then pd 5 pg, nd 5 ng, and
s2d 5 s2g . Furthermore, BayesB becomes BayesA as pg/1,
whereas BayesA becomes GBLUP as ng/N. Nevertheless,
our claim that one needs only to fit ante-BayesB, rather than
any of the other three competing submodels, vitally depends
upon reliable inferences being provided on these key hyper-
parameters defining genetic architecture, rather than arbi-
trarily specifying them (Daetwyler et al. 2010; Meuwissen
and Goddard 2010) or estimating a subset thereof (Habier
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et al. 2011). We provide details on MCMC inference strategies
on these and other unknown parameters in File S1. We are
currently pursuing more suitable inferential strategies for vari-
able selection (O’Hara and Sillanpaa 2009) when inferring
upon pg or pd. Also, although our proposed antedependence
methods seem to work well under additive genetic model
assumptions, it is not clear how well they may perform in
the presence, for example, of extensive nonadditive gene
action where nonparametric approaches may be warranted
(Gianola et al. 2010). Nevertheless, even in the extensive
presence of such phenomena, genetic variance is still con-
sidered to be primarily additive (Hill et al. 2008).

Although the scope of this work was focused on the
potential merit of these antedependence models for WGP,
we suggested earlier that there may be also merit in using
these models in GWAS in both livestock and human
populations. It has become increasingly recognized that
GWAS procedures based on joint analyses of all SNP
markers are more powerful than the conventional series of
single SNP analyses. Our results suggest that modeling
nonstationary correlations between SNP effects will further
augment this power. At any rate, we recognize that for
reasonably accurate GWAS, a greater marker density (m)
per chromosome and sample size (n) should be considered
(e.g., Meuwissen and Goddard 2010) than those studied in
this article; i.e., most of the posterior probabilities reported
in Figures S4 and S5 in File S1 are too low to be of practical
benefit in current applications.

We also acknowledge that our ante-BayesA and ante-
BayesB models increase the computational load relative to
their conventional counterparts. Since m is typically large, the
computing time for the proposed antedependence models is
bottlenecked primarily by the m elements of d, the m diagonal
elements ofD, and them2 1 nonzero elements of T. Similarly,
computing time for the two conventional methods, BayesA and
BayesB, is primarily restricted by the dimension of d andD, i.e.,
roughly two-thirds as many variables for the antedependence-
based models, ignoring the remaining parameters such as
variance components and hyperparameters. Hence, the com-
puting time for the antedependence-based procedures should
be somewhat less than one-third greater than for their conven-
tional counterparts. Indeed, we discovered from our simulation
study that computing time for all four competing models were
linear in m with the antedependence-based models taking
,30% greater computing time than the conventional counter-
parts for the wide range of values of m considered in this
article. We recognize for much larger number of SNP markers
than those pursued in this study that alternative algorithmic
adaptations already developed for models similar to conven-
tional BayesA or BayesB, such as those based on the EM algo-
rithm (Shepherd et al. 2010) or variational Bayes (Logsdon
et al. 2010), would be worth exploring.

We believe the proposed antedependence models provide
opportunities for further study and extension. For example,
it has been previously recognized that basing inferences on
allelic effects on the use of multiple marker haplotypes rather

than single markers increases accuracy of WGP (Calus et al.
2008; Villumsen et al. 2008) or GWAS (Grapes et al. 2004).
Given the difficulty in how to appropriately specify these hap-
lotypes, we believe our antedependence-based methods may
help bridge these two different strategies as the effects of
adjacent SNP markers connected by large values of tj;j21

may somewhat determine “effective haplotype” effects. We
also think that our antedependence specifications might facil-
itate multiple breed inference if, for example, genomic effect
differences between breeds is primarily due to differences in
SNP associations with QTL, as partly manifested in T.
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