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Measuring the properties of endogenous cell proteins,
such as expression level, subcellular localization, and
turnover rates, on a whole proteome level remains a major
challenge in the postgenome era. Quantitative methods
for measuring mRNA expression do not reliably predict
corresponding protein levels and provide little or no
information on other protein properties. Here we de-
scribe a combined pulse-labeling, spatial proteomics
and data analysis strategy to characterize the expres-
sion, localization, synthesis, degradation, and turnover
rates of endogenously expressed, untagged human pro-
teins in different subcellular compartments. Using quan-
titative mass spectrometry and stable isotope labeling
with amino acids in cell culture, a total of 80,098 pep-
tides from 8,041 HeLa proteins were quantified, and
their spatial distribution between the cytoplasm, nu-
cleus and nucleolus determined and visualized using
specialized software tools developed in PepTracker. Us-
ing information from ion intensities and rates of change
in isotope ratios, protein abundance levels and protein
synthesis, degradation and turnover rates were calcu-
lated for the whole cell and for the respective cytoplas-
mic, nuclear, and nucleolar compartments. Expression
levels of endogenous HeLa proteins varied by up to
seven orders of magnitude. The average turnover rate
for HeLa proteins was �20 h. Turnover rate did not
correlate with either molecular weight or net charge, but
did correlate with abundance, with highly abundant pro-
teins showing longer than average half-lives. Fast turn-
over proteins had overall a higher frequency of PEST
motifs than slow turnover proteins but no general correla-
tion was observed between amino or carboxyl terminal
amino acid identities and turnover rates. A subset of pro-
teins was identified that exist in pools with different turn-
over rates depending on their subcellular localization. This
strongly correlated with subunits of large, multiprotein
complexes, suggesting a general mechanism whereby their

assembly is controlled in a different subcellular location to
their main site of function. Molecular & Cellular Proteom-
ics 11: 10.1074/mcp.M111.011429, 1–15, 2012.

Cells can regulate proteins via phosphorylation and other
reversible modifications, and through altering protein level by
changing the rate of synthesis and/or degradation (1). DNA
microarrays are used extensively for analysis of gene expres-
sion at the RNA level. Although abundant mRNAs usually result
in high protein levels (2), the general correlation between mRNA
levels and protein abundance is often poor (3). The regulatory
complexity of mRNA translation and protein stability empha-
sizes the need for direct measurements of protein levels. Mass
spectrometry-based proteomics has emerged as the technol-
ogy of choice for studying proteins directly, allowing not only
identification of proteins and post-translational modifications,
but also quantitative comparisons of how relative protein levels
change in cells under different conditions (4).

There are two main pathways for intracellular protein deg-
radation, i.e. the proteasome and autophagy-lysosomal sys-
tems. The ubiquitin-proteasome pathway identifies proteins
for degradation by attachment of poly-ubiquitin tags, which
targets the modified proteins for degradation by the protea-
some (5). In the autophagy-lysosomal system proteins des-
tined for degradation are captured within membrane bound
organelles (phagosomes) for bulk digestion (1). Cell growth
requires a net increase in total protein and thus higher levels
of translation than degradation. Maintaining protein levels at
steady-state also involves continuous protein synthesis, bal-
anced with degradation. Protein turnover rates can range
from under 10 mins to over a hundred hours (1).

Some biological processes involve constant cycles of pro-
tein production and rapid degradation. For example, despite
continuous synthesis of the tumor suppressor p53, its con-
stant rapid degradation results in low steady state levels
under normal cell growth conditions (6). Upon oncogene ac-
tivation, degradation of p53 is prevented through sequestra-
tion of the E3 ligase mdm2, causing a rapid increase in p53
levels independent of transcriptional activation. Control of
protein degradation thus provides a flexible mechanism for
the rapid activation of gene expression in mammalian cells.

The turnover rates of specific proteins can vary between
different subcellular compartments. Using a combination of
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pulsed stable isotope labeling with amino acids in cell culture
(SILAC)1 and fluorescence microscopy, it was shown that
HeLa cells constantly import and degrade high levels of free
ribosomal proteins in the nucleus. Ribosomal protein stability
is dramatically increased upon assembly into ribosome sub-
units and export to the cytoplasm (7). Importantly, this shows
that protein half-life values based only on analyses of whole
cell extracts provide average values that can mask the exis-
tence of pools of protein with different properties.

Early studies of protein turnover relied on detecting incor-
poration of radiolabeled amino acids into newly translated
proteins and either analyzed bulk protein turnover, or else
turnover of individual proteins (8). Typically, proteins were
labeled with [35S] methionine and pulse-chase experiments
used to determine their rate of degradation after blocking
protein synthesis. The use of protein synthesis inhibitors such
as cycloheximide raises concerns whether the normal degra-
dation processes, or other aspects of cellular activity, may
also be disrupted. Mass spectrometry-based proteomics now
allows determination of the turnover rates of large numbers of
proteins in single experiments using pulse labeling with amino
acids incorporating stable isotopes (7, 9–12).

SILAC is the use of stable isotopic atoms for quantitative
mass spectrometry analysis (13, 14). This allows quantitative
analyses of proteins by comparison of the mass of light and
heavier forms of the same peptide containing amino acids
with stable isotopes such as 13C, 2H, and 15N. These isotope-
tagged amino acids are incorporated into proteins in vivo
where typically arginine and lysine are replaced with corre-
sponding heavy isotope-substituted forms (15). Cleavage at
the substituted arginine or lysine by trypsin generates a pep-
tide with a shift in mass relative to the control, “light” peptide
and this is resolved and quantitated by mass spectrometry.
The intensity ratio of “light” and “heavy” peptides correlate
with the relative amount of the cognate protein from each
sample. SILAC has been successful for quantitative analysis of
cell and organelle proteomes and for comparative studies of
protein modifications, and interactions (4) and to identify pro-
teins isolated from mitotic chromosomes (16). We have used
SILAC in combination with cell fractionation to generate “iso-
tope-encoded” subcellular compartments allowing subcellular
protein localization to be evaluated on a system-wide level (17).
This spatial proteomics approach provides a high-throughput
assay for the unbiased analysis of changes in subcellular protein
localization arising in response to perturbations such as DNA
damage and for comparing protein localization and responses
in cell lines with different genotypes (18).

Here we combine an enhanced pulse SILAC approach with
spatial proteomics to perform a system-wide analysis of pro-

tein turnover in cultured human cells. Protein abundance and
the rates of protein synthesis, degradation and turnover have
been measured in parallel for whole cells and for separate
cytoplasmic, nuclear and nucleolar compartments, providing
a cell-based functional annotation of the human proteome.

EXPERIMENTAL PROCEDURES

Cell Culture—HeLa cells were cultured as adherent cells in DMEM
(Dulbeccos’s modified eagle medium, Invitrogen, custom order) de-
pleted of arginine and lysine. The DMEM was supplemented with
10% fetal bovine serum dialyzed with a cut-off of 10 kDa (Invitrogen,
26400–044), 100 U/ml penicillin/streptomycin, 2 mM L-Glutamine.
Arginine and lysine was added in either light (Arg0, Sigma, A5006;
Lys0, Sigma, L5501), medium (Arg6, Cambridge Isotope Lab (CIL),
Andover, MA; CNM-2265; Lys4, CIL, DLM-2640), or heavy (Arg10,
CIL, CNLM-539; Lys8, CIL, CNLM-291) form to a final concentration
of 28 �g/ml for arginine and 49 �g/ml for lysine. Proteins were tested
for �99% incorporation of the label after six passages by mass
spectrometry (data not shown).

Cell Fractionation—Cytoplasm, nuclei, and nucleoli were prepared
from HeLa cells essentially as previously described (19). Briefly, cells
were washed three times with phosphate-buffered saline (PBS), re-
suspended in 5 ml buffer A (10 mM HEPES-KOH [pH 7.9], 1.5 mM

MgCl2, 10 mM KCl, 0.5 mM DTT), and dounce homogenized ten times
using a tight pestle. Dounced nuclei were centrifuged at 228 � g for
5 min at 4 °C. The supernatant represents the cytoplasmic fraction.
The nuclear pellet was resuspended in 3 ml 0.25 M sucrose, 10 mM

MgCl2, and layered over 3 ml 0.35 M sucrose, 0.5 mM MgCl2, and
centrifuged at 1430 � g for 5 min at 4 °C. The clean, pelleted nuclei
were resuspended in 3 ml 0.35 M sucrose, 0.5 mM MgCl2, and soni-
cated for 6 � 10 s using a microtip probe and a Misonix XL 2020
sonicator at power setting 5. The sonication was checked using
phase contrast microscopy, ensuring that there were no intact cells
and that the nucleoli were readily observed as dense, refractile bod-
ies. The sonicated sample was then layered over 3 ml 0.88 M sucrose,
0.5 mM MgCl2 and centrifuged at 2800 � g for 10 min at 4 °C. The
pellet contained the nucleoli, while the supernatant consisted of the
nucleoplasmic fraction. The nucleoli were then washed by resuspen-
sion in 500 �l of 0.35 M sucrose, 0.5 mM MgCl2, followed by centri-
fugation at 2000 � g for 2 min at 4 °C. Proteins were quantified using
the Quant-IT protein assay (Invitrogen) and measured using a Qubit
(Invitrogen).

Gel Electrophoresis and In-Gel Digestion—For each time point,
proteins were reduced in 10 mM dithiothreitol (DTT) and alkylated in
50 mM iodoacetamide prior to boiling in loading buffer, and then
separated by one-dimensional SDS-PAGE (4–12% Bis-Tris Novex
mini-gel, Invitrogen) and visualized by colloidal Coomassie staining
(Novex, Invitrogen). The entire protein gel lanes were excised and cut
into 16 slices each. Every gel slice was subjected to in-gel digestion
with trypsin (20). The resulting tryptic peptides were extracted by 1%
formic acid, then 100% acetonitrile, lyophilized in a speedvac, and
resuspended in 1% formic acid.

Liquid Chromatography-Tandem MS (LC-MS/MS)—Trypsin di-
gested peptides were separated using an Ultimate U3000 (Dionex
Corporation) nanoflow LC-system consisting of a solvent degasser,
micro and nanoflow pumps, flow control module, UV detector, and a
thermostated autosampler. Ten microliters of sample (a total of 2 �g
peptide) was loaded with a constant flow of 20 �l/min onto a PepMap
C18 trap column (0.3 mm id � 5 mm, Dionex Corporation). After trap
enrichment peptides were eluted onto a PepMap C18 nano column
(75 �m � 15 cm, Dionex Corporation) with a linear gradient of 5–35%
solvent B (90% acetonitrile with 0.1% formic acid) over 65 min with a
constant flow of 300 nl/min. The performance liquid chromatography

1 The abbreviations used are: SILAC, stable isotope labeling with
amino acids in cell culture; LC-MS/MS, liquid chromatography-tan-
dem MS; HPLC, high performance liquid chromatography; IPI, Inter-
national Protein Index; snRNP, small nuclear ribonucleoprotein.
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(HPLC) system was coupled either to a LTQ OrbiTrap XL (Thermo
Fisher Scientific Inc), or to a LTQ OrbiTrap Velos, via a nano ES ion
source (Proxeon Biosystems). The spray voltage was set to 1.2 kV
and the temperature of the heated capillary was set to 200 °C. Full
scan MS survey spectra (m/z 335–1800) in profile mode were ac-
quired in the Orbitrap with a resolution of 60,000 after accumulation of
500,000 ions. The five most intense peptide ions from the preview
scan in the Orbitrap were fragmented by collision induced dissocia-
tion (normalized collision energy 35%, activation Q 0.250 and activa-
tion time 30 ms) in the LTQ after the accumulation of 10,000 ions.
Maximal filling times were 1000 ms for the full scans and 150 ms for
the MS/MS scans. Precursor ion charge state screening was enabled
and all unassigned charge states as well as singly charged species
were rejected. The dynamic exclusion list was restricted to a maxi-
mum of 500 entries with a maximum retention period of 90 s and a
relative mass window of 10 ppm. The lock mass option was enabled
for survey scans to improve mass accuracy (21). Data were acquired
using the XCalibur software.

Quantification and Bioinformatic Analysis—Quantitation was per-
formed using the program MaxQuant version 1.1.1.14 (22, 23). The
derived peak list generated by Quant.exe (the first part of MaxQuant)
was searched using Andromeda as the database search engine for
peptide identifications against the International Protein Index (IPI)
human protein database version 3.68 containing 89,422 proteins, to
which 175 commonly observed contaminants and all the reversed
sequences had been added. The initial mass tolerance was set to
7 p.p.m. and MS/MS mass tolerance was 0.5 Da. Enzyme was set to
trypsin/p with 2 missed cleavages. Carbamidomethylation of cysteine
was searched as a fixed modification, whereas N-acetyl protein and
oxidation of methionine were searched as variable modifications.
Identification was set to a false discovery rate of 1%. To achieve
reliable identifications, all proteins were accepted based on the cri-
teria that the number of forward hits in the database was at least
100-fold higher than the number of reverse database hits, thus re-
sulting in a false discovery rate of less than 1%. A minimum of 2
peptides were quantified for each protein. Protein isoforms and pro-
teins that cannot be distinguished based on the peptides identified
are grouped and displayed on a single line with multiple IPI numbers
(see supplementary tables).

PepTracker Spatial Viewer Database—The PepTracker turnover
and spatial viewer consists of a web-based, multi-tier architecture,
where the data storage, server-side logic, and user interface are
separate components (see; http://www.peptracker.com/). The data
storage is implemented as a fully relational Oracle database (Oracle
Database 10g Enterprise Edition Release 10.2.0.5.0). This database
holds turnover details, both at the protein and peptide level. The
server-side logic and client interface reside on an Apache web server
(Version 2.2.3 - CentOS Linux Distribution). The server-side logic is
implemented using Python (Version 2.6.4), structured using the
Django framework (Version 1.2.1, http://www.djangoproject.com/).
The Django framework enforces code to follow the model view con-
troller design pattern, thus the functionality within the application is
separated from the overall look and feel of the application, ensuring a
more customizable solution. The server-side logic makes use of com-
plex Structured Query Language (SQL) in order to communicate with
the database and extract the relevant data required by the user
interface. It does so using SQLAlchemy (http://www.sqlalchemy-
.org/), a Python Structured Query Language toolkit and object rela-
tional mapper. The Django framework provides the ability to setup
html templates that form the user interface. These templates are
customized on the fly using the data passed to them from the server-
side logic. The templates are coded in HyperText Markup Language
(HTML), with Javascript additions to enhance functionality. Specifi-
cally, the viewer makes use of the JQuery library (http://jquery.com/)

and Google Visualization API (http://code.google.com/apis/visualiza-
tion/interactive_charts.html) to provide additional elements, such as
interactive charts. The interface also includes an Adobe Flex compo-
nent that provides an interactive chart and cell map for users to
navigate through the data. To further enhance the user experience the
user interface performs dynamic requests to the server using REST
(Representational State Transfer). These requests prevent HyperText
Markup Languages pages from having to be completely redrawn and
instead only the relevant sections of a page are updated. A detailed
description of the PepTracker software will be published separately.
Information on the data viewers, Protein Frequency Library and other
PepTracker resources available currently and in future is provided at
the website, www.peptracker.com.

RESULTS

Experimental Design—HeLa cells were grown in media
containing arginine and lysine, either with the normal light
isotopes of carbon, hydrogen and nitrogen (i.e. 12C14N)
(light – “L”), or else with L-arginine-13C6

14N4 and L-lysine-2H4

(medium – “M”) for at least five cell divisions, resulting in
�99% incorporation of the M amino acids (Fig. 1A). The
culture media with the M amino acids is then replaced with
media containing L-arginine- 13C6-15N4 and L-lysine-13C6-
15N2 (heavy –“H”). H amino acids are pulsed into cells with
M-labeled proteins for varying times, from 30 min to 48 h. For
each peptide at each time point the fraction of H amino acids
incorporated replacing the pre-existing M amino acids is de-
termined by MS.

Cells were harvested at 0.5, 4, 7, 11, 27, and 48 h time
points following the H amino acid-pulse. At each time point,
the pulsed cell sample was mixed with an equal number of
HeLa cells grown in normal (i.e. light – “L”) culture media. This
provides an internal control, allows separate measurement of
protein synthesis, degradation, and turnover rates and facili-
tates normalization of the isotope incorporation data, thereby
improving the accuracy of the measurements (supple-
mentary Information). Moreover, this light sample enables the
use of peptide ion intensity to estimate protein abundance,
both in the whole cell, and in each subcellular compartment.
The decreasing ratio of M/L isotopes over time measures the
rate of protein degradation (Fig. 1B), whereas the increasing
ratio of H/L measures protein translation (Fig. 1C) and the
change in the H/M ratio measures the rate of net protein
turnover (Fig. 1D). The 50% turnover time for each protein was
also determined separately by analysis of the crossover be-
tween the respective synthesis and degradation curves and
these values compared with the net turnover values obtained
by measuring rates of change in H/M ratio.

The mixture of 50% L cells with 50% H/M cells was frac-
tionated as described in the Methods section to generate
separate cytoplasmic, nuclear and nucleolar fractions for
each time point (Fig. 1A). All samples were solubilized with
loading buffer, proteins separated using SDS-PAGE and the
resulting gels cut into 16 equal pieces, trypsin digested, and
analyzed by LC-MS/MS. Every sample was analyzed twice by
mass spectrometry and the resulting ratios between light,
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medium, and heavy isotopic forms for each peptide were
quantified using MaxQuant (22).

Protein Identification, Abundance, and Subcellular Localiza-
tion—This analysis has identified and quantitated 80,098 pep-
tides, mapped onto 8,041 endogenous HeLa cell proteins,
yielding an average of �10 peptides per protein (see
supplemental Table S1). The abundance of each protein was
estimated based on the averaged peptide ion intensities
from the control, light sample at each time point (24). Pep-
tide intensity profiles were normalized from the top three
peptides, based on their mean profile intensity (see
supplementary Information).

The protein abundance data span a dynamic range of in-
tensity of �1 � 107 following a normal distribution with a
mean intensity of �7000 (Fig. 2A). This shows the very large
variation in copy number of endogenous human proteins ex-
pressed from different genes. Known abundant proteins, in-
cluding nucleophosmin, histones, ribosomal proteins, actin,
tubulin, GAPDH, and heat shock proteins, were among the
top 1% highest intensity proteins. Histones are predominantly
stably incorporated into nucleosomes with on average �150
million nucleosomes per human cell. Therefore, as histones
showed ion intensities �1,000,000, we estimate that proteins
with the lowest intensity values have a copy number �50–150
molecules per cell whereas the bulk of HeLa proteins are

expressed at �1000–10,000 copies per cell (Fig. 2A). How-
ever, as these estimates are derived from averaging values
over the cell population, there could be significant variation in
the levels of proteins present at the single cell level.

Gene ontology molecular function annotation analysis of
the 5% most abundant proteins identified factors involved in
nucleotide binding, intracellular transport, RNA processing,
and macromolecular complex subunit organization (Fig. 2B).
Analysis of the 5% lowest abundance proteins revealed func-
tions related to nucleotide binding, GTP binding, RNA bind-
ing, and cell cycle regulation (Fig. 2C). Although both the
highest and lowest abundance protein groups had “nucleo-
tide binding” as the largest molecular function class, the types
of nucleotide binding proteins were different in each case.
Thus, many transcription factors were included among the
very low abundance proteins whereas histones and hnRNPs
were prominent among the high abundance proteins. Over
40% of the lowest abundance proteins are either uncharac-
terized open reading frames (ORFs), or else proteins named
only based on their molecular weight, or on a recognizable
domain. In contrast, less than 1% of the most highly abundant
proteins are uncharacterized ORFs or of unknown function.

The light peptide ion intensities measured in the fraction-
ated subcellular compartments allow separate estimation of
protein abundance in the cytoplasm, nucleus and nucleolus,

FIG. 1. Pulse SILAC method. A, HeLa
cells are cultured in different SILAC me-
dia containing either “light” (L), or “me-
dium” (M) arginines and lysines until full
incorporation of the amino acids. The
medium of the cells growing with the
“medium” amino acids is then changed
for a “heavy” (H) medium. Cells are then
harvested at different times, along with
the equivalent cells growing in the “light”
medium. Equal amounts of cells are then
combined and separate cytoplasmic,
nuclear, and nucleolar fractions were
isolated from each time point. The re-
sulting ratios: M/L isotopes over time
measures the rate of protein degradation
B, increase in the ratio: of H/L measures
new protein synthesis C, and the change
in the H/M ratio measures the rate of net
protein turnover D.
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FIG. 2. Protein identification, abundance and subcellular localization. Peptide intensity profiles normalized from the top three peptides
based on their mean profile intensity were used to measure protein abundance. A, A distribution plot with the protein count on the y axis and
bins of 0.1 of the log10 intensity values on the x axis. The inset shows the distribution from the lowest intensity to the highest intensity protein
with the intensity on the y axis and the protein number on the x axis. B, A gene ontology annotation analysis of the 5% most abundant proteins
identified using functional clustering of biological processes and molecular functions (GO_BP and GO_MF). C, A gene ontology annotation
analysis of the 5% lowest abundant proteins identified using functional clustering of biological processes and molecular functions. D, A
hierarchical clustering was performed using the log10 value for intensity for the cytoplasm, the nucleus and the nucleolus and represented as
a heat map. In each case high values are shown in red and low ratios in black.
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providing a quantitative map of protein localization within the
cell. A hierarchical clustering was performed and visualized as
a heat map, using log10 intensity value for each compartment
(Fig. 2D). For more than half of the proteins, intensity values
were detected in more than one compartment. Relatively few
proteins show equal distributions between two or three com-
partments (Fig. 2D). Thus, at steady state, most HeLa proteins
are predominantly partitioned into specific subcellular locations.
However, this does not exclude that proteins can shuttle be-
tween their major site of accumulation and other compartments.

Determination of Protein Turnover—We have used two
methods to evaluate the time point at which 50% turnover has
occurred for each protein (supplementary Information). The
first method, relying on changes in the H/M isotope ratio,
directly measures when 50% of the intensity signal for a
peptide is M and 50% H, isotope. The corresponding protein
turnover is defined here as the mean time for 50% incorpo-
ration of H amino acids for all peptides identified from that
protein. The second method relies upon measuring the sep-
arate curves of synthesis and degradation rates for each
protein, based on rates of change in H/L and M/L isotope
ratios, and then identifying the point at which these curves
cross, which corresponds to the time it takes for 50% of the
protein to turn over (supplemental Fig. S2).

An interesting observation from the crossover method is
that we measured an offset value (B) of �20%. This B value
(see supplementary Information) reflects the fraction of M
amino acids remaining in proteins once a steady state level of
H amino acid incorporation is established. If H amino acid
incorporation completely replaced the pre-existing M amino
acids then the B value should be zero. The fact that it remains
at �20% indicates persistent incorporation of M isotope-
containing amino acids into proteins even after prolonged
growth in H amino acid medium. This could result from recy-
cling of M amino acids following degradation of the M-labeled
proteins present at the start of the pulse and/or from an
enduring intracellular M amino acid pool. Indeed, previous
work has reported amino acid recycling from degraded pro-
teins (25). To test whether the amino acid pool settles at
�80% H amino acids, we analyzed the mass isotopomer
distribution of peptides with missed trypsin cleavage to de-
termine the level of peptides that contained both M � H amino
acids (supplemental Fig. S7). This showed that �10–20% of
peptides with missed cleavages consistently had both M and
H amino acids in the same peptide, consistent with a precur-
sor pool of �80–90% H amino acids (supplemental Fig. S7).
Moreover, we found for these same missed cleavage peptides
that there was virtually no combined M � H amino acids in the
same peptide in an experiment where the SILAC medium was
changed every hour over the time course (supplemen-
tal Fig. S7). We infer that without more than one replacement
of the cell growth medium during the course of the experi-
ment, the internal amino acid pool is likely not fully replaced
with the externally supplied H amino acids.

A simple mathematical model of protein synthesis and deg-
radation developed here (see supplementary Information for
details) demonstrates that recycling of degraded proteins can
lead to a nonzero offset in degradation curves (supple-
mental Fig. S3 and S4). To test this hypothesis, we analyzed
whether the offset value B would decrease toward zero if
during the time course of the pulse the external media con-
taining H amino acids was repeatedly replaced (sup-
plementary Information). This showed that replacing the me-
dia containing the H amino acids several times during the time
course of the pulse resulted in the offset B reducing to � 0, as
expected for complete replacement of M with H amino acids
(supplemental Figs. S1 and S6). We conclude that the intracel-
lular pool of M amino acids either is not fully depleted when
the medium is initially replaced, or else is replenished through
recycling of amino acids from degradation of pre-existing
M-labeled proteins, or both.

Another parameter that was determined was the respective
protein half-life values, which represents here the time taken
for 50% of the pool of each pre-existing protein species to be
degraded (supplemental Table S2). We note that this study
does not provide half-life values at the single molecule level
but rather reflects average values for populations of protein
molecules. The half-life values should reflect rates of protein
degradation. To take into account the inevitable dilution effect
on pools of pre-existing M-labeled proteins as a result of cell
growth and new protein synthesis, rather than degradation, the
half-lives were calculated using a formula that incorporates the
growth rate measured here for HeLa cells growing in SILAC
medium (supplementary Information). A comparison of the sep-
arate protein turnover and half-life values determined in this
study showed that they are closely correlated (Pearson Corre-
lation Coefficient 0.54). As the 50% turnover values more di-
rectly reflect both protein synthesis and degradation rates, and
can be measured more accurately, we have focused our sub-
sequent analyses specifically on a comparison of turnover val-
ues with other protein properties.

Distribution of Protein Turnover—To compare proteins ac-
cording to their 50% turnover value, proteins are shown from
fastest to slowest 50% turnover value, represented as a scat-
ter plot with the protein turnover on the y axis (Fig. 3). Ap-
proximately 60% of HeLa proteins have 50% turnover values
clustered within 5 h of the average turnover rate of �20 h (Fig.
3, blue lines). However, if we correct for protein abundance, it
takes �24 h for 50% turnover of the total HeLa proteome,
because a subset of abundant proteins has turnover values
longer than the mean of �20 h. This is close to the cell
doubling time under the growth conditions used which we
measured to be 24.67 h for HeLa cells growing in the SILAC
medium, consistent with approximate doubling of the protein
content as the cell divides (Fig. 3, red line).

Functional annotation clustering of gene ontology terms
for the fastest and slowest turnover rates showed specific
enrichments of proteins with similar functions or character-
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istics (26, 27) (Fig. 3). The slowest turnover proteins have a
wide range of functions. However, most are either present in
large, abundant and stable protein complexes, such as
ribosome and spliceosome subunits, RNA polymerase II,
the nuclear pore, the exosome and the proteasome, or else
are mitochondrial (Fig. 3, top). In contrast, many proteins
with a faster than average turnover are involved in either
mitosis, or other aspects of cell cycle regulation (Fig. 3,
bottom). This includes protein components of the centrom-
ere, proteins with microtubule motor activity, proteins in-
volved in cytoskeleton reorganization and proteins involved
in chromatin assembly and condensation. We note that this
study analyzed unsynchronized HeLa cells where only a

minor fraction of the cells at any time point would be in
mitosis.

Protein Turnover in Different Subcellular Compart-
ments—We have used the spatial proteomics approach (17,
18) combined with pulsed SILAC to measure the turnover of
proteins in the separate cytoplasmic, nucleoplasmic, and nu-
cleolar fractions. The turnover data for subcellular compart-
ments are plotted against each other for comparison (Fig. 4).
This shows that most proteins have a similar turnover rate in
each compartment, particularly comparing nucleus and cyto-
plasm (Fig. 4A versus 4B and 4C). We performed correlation
analyses between the different compartments and found that
the Pearson correlation coefficient between the cytoplasm

FIG. 3. Distribution of protein turn-
over. Proteins were sorted on the x axis
from fastest to slowest turnover and rep-
resented as a scatter plot with the 50%
protein turnover value on the y axis. Ap-
proximately 60% (blue lines) of the HeLa
proteins show a 50% turnover rate
within 5 h of the average of �20 h (red
lines). Functional annotation clustering
of gene ontology terms for the 10% pro-
teins with the fastest (bottom) and slow-
est (top) turnover rates are shown as pie
charts, using the number of proteins as
weight for each annotation.
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and the nucleus is 0.67, compared with 0.42 between the
cytoplasm and the nucleolus and 0.50 between the nucleus
and the nucleolus.

Protein turnover values of HeLa proteins follow an apparent
bimodal distribution, with a major peak in the number of
proteins with a 50% turnover value of �20 h, and a minor
peak of �10 h (Figs. 5A, 5B and 5C). The similar distribution
of protein turnover for the cytoplasm and the nucleoplasm
(Fig. 5C and 5D), contrasts with the nucleolus, where there
appears to be a third peak with a faster 50% turnover rate
(�6 h), while the major peak is centered �22–23 h, slower
than the whole cell mean turnover value of �20 h (Fig. 3E).
The nucleolar proteins with the fastest turnover rate are pre-
dominantly ribosomal proteins. This may reflect the subset of
proteins and more specialized functions occurring within the
nucleolus as opposed to throughout the rest of the cell.

A clustering analysis grouped proteins with similar turnover
values in either the cytoplasm, nucleoplasm or nucleoli, rep-

resented as a heat map with the protein clusters on the y axis
and the subcellular compartments on the x axis (Fig. 6A). Most
proteins showed similar turnover values in each compart-
ment. Ribosomal proteins provide a clear example of a protein
cluster with differing turnover values between compartments,
i.e. fast turnover in the nucleolus (�6 h), but slow turnover in
the cytoplasm (�30 h), (Fig. 6A, bottom cluster). Other exam-
ples were identified where multiple subunits of the same
multiprotein complex also show differential turnover values in
one of the subcellular compartments. For example, Sm pro-
teins, (components of the small nuclear ribonucleoprotein
(snRNP) spliceosome subunits), showed faster turnover of
�18 h in the cytoplasm, where snRNP proteins are assembled
on snRNAs, compared with an average of �35 h in the nu-
cleus, where the snRNPs function to splice pre-mRNAs (Figs.
6B and 6C). Interestingly, the Sm C protein, which is not part
of the same complex as the other Sm subunits, did not show
this difference in protein turnover between compartments.
Other complexes with differences in subunit turnover values
between compartments include the 26S proteasome, nuclear
pore, T-complex, and RNA polymerase II. A common feature
is that protein subunits have a faster turnover in the compart-
ment where the complex assembles and are more stable in
the compartment where the fully assembled complex func-
tions.

Protein Characteristics Related to Turnover—A range of
protein properties and characteristics, including abundance,
size, pI values, sequence motifs, and amino acid composition
were analyzed for correlations with turnover (Figs. 6, 7, and
supplementary Information). A positive correlation was de-
tected between protein abundance, as measured from pep-
tide intensity, and protein turnover values (Figs. 7A and 7B).
This correlation was also recently observed in a study of
protein turnover in mouse cells (28). While there is variation,
higher abundance proteins generally had slower than average
turnover rates (Fig. 7B). The corollary is that the time to turn
over half of the total protein content of a HeLa cell is �15–
20% longer than the mean turnover value of all proteins
measured.

In contrast with the positive correlation with abundance,
there is minimal correlation between turnover and protein size
(Figs. 7C and 7D). Comparison of predicted molecular
weights deduced from amino acid sequences with measured
50% protein turnover values showed a Pearson correlation
coefficient of –0.09 (Fig. 7B). It has been proposed that acidic
proteins are degraded more rapidly than basic proteins (29). A
comparison of the rate of protein turnover with isoelectric
point, however, showed no correlation (Fig. 7E, Pearson cor-
relation 0.009). We conclude that the bulk charge property of
HeLa proteins is not a significant determinant of their stability.
However, the analysis showed that nucleolar proteins have an
inverse correlation between pI and protein turnover, with a
Pearson correlation of –0.23. Thus, basic nucleolar proteins
have a faster than average turnover (Fig. 5E, purple), likely

FIG. 4. Protein turnover in subcellular compartments. The turn-
over data for subcellular compartments are plotted against each other
to compare the 50% turnover values for each protein in the nucleus
versus the cytoplasm (A), the nucleolus versus the cytoplasm (B) and
the nucleolus versus the nucleus (C).
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FIG. 5. Distribution of protein turnover in subcellular compartments. A distribution plot with the number of proteins on the y axis and 50%
turnover values (in bins of 1 h intervals) on the x axis for the whole cell (B), cytoplasmic (C), nuclear (D) or nucleolar (E) proteins, as well as an
overlay of all four (A).
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because of the large number of basic ribosomal proteins in
the nucleolus, which have a very fast turnover.

The presence of protein segments rich in proline, glutamic
acid, serine, and threonine, (PEST sequences) are reported to
affect degradation levels (30). We therefore analyzed the pro-

teins whose turnover was measured for the presence and
frequency of PEST motifs. While no simple correlation was
observed between the presence of PEST sequences per se,
and fast turnover values (supplemental Fig. S6), the average
number of PEST regions found in proteins with faster than

FIG. 6. Clustering analysis of protein turnover in subcellular compartments. A, A hierarchical clustering using the 50% turnover values
for proteins in the cytoplasm, the nucleus, and the nucleolus is shown represented as a heat map. Fast turnover values are represented in red
and slow turnover in black. B, A table showing the 50% turnover of the Sm proteins, i.e. subunits of the small nuclear ribonucleoprotein (snRNP)
spliceosome and the Importin transport receptor proteins in the three subcellular compartments. C, Graphical representation of the 50%
turnover value of each protein in the cytoplasm (blue), the nucleus (red) or the average for the whole cell (green), with the turnover on the y axis.
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average turnover was �1, as compared with a PEST fre-
quency of �0.5 for proteins with a slower than average turn-
over. We conclude that there is a positive relationship be-
tween the presence of PEST motifs and protein turnover in
HeLa cells. However, the considerable variability in the 50%
turnover values of specific proteins containing PEST motifs
points to a complex relationship between sequence motifs

and protein stability. It is likely that multiple structural and
sequence elements, as well as abundance, localization, and
the presence of interaction partners, can all affect the net
stability of individual proteins.

Protein Turnover and the N-Terminal Amino Acid Rule—A
previously characterized determinant of protein stability is the
N-terminal amino acid of the mature protein, where the N-ter-

FIG. 7. Protein characteristics related to turnover. A, Protein abundance was estimated from the averaged sum of ion intensities measured
for every peptide in a protein and plotted on the y axis versus the turnover on the x axis. B, A distribution plot with the average log base 10
intensity on the y axis and bins of 100 proteins on the x axis, where proteins are sorted from the fastest turnover to the slowest turnover for
the whole cell. C, The log base 10 of molecular weight (in Daltons) was plotted versus the protein turnover in the whole cell. D, A distribution
plot of the average molecular weight in Daltons on the y axis and turnover (shown in 5 h bins) on the x axis. E, A comparison of the protein
turnover on the x axis with isoelectric point on the y axis. F, A distribution plot of the number of proteins in each bin of isoelectric points.
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minal amino acid is classified as either stabilizing, or desta-
bilizing (31). Although for most proteins, methionine is the first
amino acid encoded and translated, methionine aminopepti-
dase is thought to remove the N-terminal methionine when
the second amino acid is either C, G, A, S, T, C, or P (32).
Some mature proteins can also be generated by post-trans-
lational cleavage, resulting in different amino acids occurring
at the N terminus. We used our empirical measurements of
protein turnover rates to test whether the identity of the N- or
C-terminal amino acid could affect the stability of full-length
endogenous proteins in HeLa cells. The 50% turnover values
were averaged for all proteins measured with each amino acid
at either the first ten N-terminal positions (i.e. �1 to �10),
or the last ten positions from the C terminus (supple-
mental Table S3). No significant differences were observed
between mean protein turnover values according to the amino
acid identity at either the first or last ten N-terminal, or C-ter-
minal positions, respectively. We also made this comparison
specifically for the 10% fastest and 10% slowest turnover
proteins and also saw no correlation with amino acid identity
at N- or C- termini (supplemental Table S3). We conclude that
protein turnover for full-length, endogenous proteins in HeLa
cells is not determined primarily by either N-terminal or C-ter-
minal rules based upon amino acid identity.

The matrix of frequencies for each amino acid occurring at
either the first ten N-terminal positions or last ten C-terminal
positions in each protein identified was also determined and
compared with the corresponding in silico prediction of amino
acid frequencies for each ORF in the human genome. The
resulting Pearson correlation coefficient of 0.99 shows that
the sample of 6402 proteins for which 50% turnover values
were measured have a near identical distribution of N- and
C-terminal amino acid frequencies to the total translated hu-
man proteome (supplemental Table S4). We conclude that the
subset of human proteins sampled in our study is thus highly
representative of the total human proteome.

Viewer Description—We have implemented a database
viewer within the PepTracker software environment to provide
convenient access to these data through a web-based inter-
face (http://www.lamondlab.com/turnover/). The application
includes a search facility (supplemental Fig. S5) that allows
users to search for a protein(s) of interest using protein name,
description, gene as well as IPI or Uniprot identifiers. Proteins
can be selected also using the interactive chart component on
the home page, providing users with the ability to click either
on chart items or the cell map to drill down into data from the
cell fraction level to proteins and further to peptides. Right
clicking a bar chart item accesses detailed data for the se-
lected protein (supplemental Fig. S5C). The search result
page documents also spatial proteomics localization data
from human HCT116 cells, (17), as well as the localization
data resulting from averaging the intensity values of the pep-
tides identified in each subcellular compartment in this study
(supplemental Fig. S5C). The viewer displays all peptides

identified for a selected protein sequence, with different shad-
ing for each peptide reflecting differences in 50% turnover
values. The curve fits are displayed showing degradation and
synthesis rates for each protein, and showing the turnover
rate of each protein in each subcellular compartment. Protein
turnover for a selected protein is shown overlaid in red on
scatter plots showing all proteins in the respective subcellular
compartments in blue, providing a rapid overview of turnover
rates between subcellular compartments.

DISCUSSION

We have developed a combined pulse-labeling, spatial pro-
teomics and data analysis strategy to characterize the expres-
sion, localization, synthesis, degradation, and turnover rates
of endogenously expressed, untagged human proteins in dif-
ferent subcellular compartments. Using SILAC and mass
spectrometry, a total of 80,098 peptides from an estimated
8041 HeLa proteins were quantified, and their spatial distri-
bution between the cytoplasm, nucleus, and nucleolus deter-
mined and visualized using PepTracker. To our knowledge,
this study provides the first systematic, system wide quanti-
tative analysis of proteome localization and turnover that has
evaluated the properties of endogenous proteins in different
subcellular compartments. The approach described, together
with the software tools for data visualization and analysis,
provides a basis for further systematic proteome-wide char-
acterization of protein localization and turnover that can be
compared between different cell types, cell cycle stages,
physiological conditions, and genetic backgrounds.

Together with our collaborators, we previously used a
heavy-light amino acid pulse SILAC protocol to measure pro-
tein turnover in HeLa cell nucleoli and compared the MS data
with parallel studies on turnover of green fluorescent protein
(GFP)-tagged nucleolar proteins using fluorescence micros-
copy (7). Similar heavy-light pulse SILAC approaches were
used to study turnover of human A549 lung carcinoma cell
proteins (33) and most recently to study also mouse NIH3T3
cells (28). In our present study we extend the pulse SILAC
technique by analyzing a combination of heavy-medium
pulsed cells and an equal amount of control, light cells at each
time point. This offers advantages in terms of improved data
analysis and statistical evaluation procedures. Overall, the
pulse SILAC approach is useful for determining protein turn-
over because it allows measurement of endogenous proteins
expressed at physiological levels while avoiding the need to
treat cells with translation inhibitors. Techniques based on
translation inhibition complicate the interpretation of protein
turnover values as the effect of the inhibitors on cell physiol-
ogy, which can in turn affect protein stability, must be taken
into account (34).

Many large-scale, functional genomics studies characterize
global gene expression levels, either in different cell types
and/or under a range of growth conditions, by measuring
differences in mRNA expression levels. This either involves
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microarray technology, or, more recently, high-throughput
RNA sequencing. However, quantitative mRNA expression
data alone are not sufficient to reliably document gene ex-
pression at the proteome level. Similar mRNA expression
levels can be accompanied by a wide range (up to 20-fold
difference) in the corresponding abundance levels of the pro-
teins encoded by these mRNAs (3). We observe only weak
correlations (Pearson correlation coefficients �0.2) compar-
ing our estimates of HeLa protein expression levels with pub-
licly available HeLa mRNA expression data (ArrayExpress
(EBI), data not shown). This overall poor correlation between
cognate mRNA and protein expression levels likely reflects
differences both in rates of mRNA translation and in protein
turnover, but may also, at least in part, result from noisy
microarray measurements and variability of HeLa cell
batches. It is important to note that many proteins can differ
substantially in their in vivo half-lives, regardless of how fast
they are synthesized (35). This underlines the importance of
making direct measurements of endogenous cell proteins,
including the high-throughput analysis of protein turnover, to
fully evaluate gene expression responses and accurately de-
termine factors and mechanisms regulating intracellular pro-
tein abundance.

In silico translation of the human genome shows the pro-
teins identified in this study are highly representative of the
human proteome. Several lines of evidence also argue that
the MS-based proteomics approach used here is robust and
reproducible. First, a strong positive correlation (Pearson cor-
relation coefficient �0.73) was observed between the present
data and the smaller data set from our previous pulse SILAC
analysis of HeLa nucleolar protein turnover (7), despite the
lower number of peptides identified for each protein in that
case. This demonstrates that, at least when comparing the
same cell line, biological replicates produce similar results.
Second, we have confirmed that values from technical repli-
cates are reproducible by evaluating data obtained from sep-
arate MS analysis and quantitation of the same protein sam-
ples using different mass spectrometers. Third, we note that
there was a strong positive correlation between the localiza-
tion and turnover values obtained for most shared subunits of
common multiprotein complexes, consistent with proteins in
the same complex having similar biological properties. Most
peptides in the same protein also produced similar values.

Our approach differs in several aspects from most previous
studies on global protein turnover (28, 33, 34, 36, 37). First, we
simultaneously determine not only net protein turnover, but
also both protein degradation and synthesis rates. This pro-
vides additional information on the protein properties and
allows calculation of protein turnover using two separate
methods and statistical evaluation of the accuracy of the
turnover values for each protein. Second, we characterize
protein turnover not only for the global protein population in
whole cells, but also for proteins in separate subcellular frac-
tions. This spatial information recognizes that separate pools

of protein with distinct properties can exist in different sub-
cellular locations. Inevitably, analysis of whole cell extracts
measure average values for the protein population and will not
identify cases where the same protein can be present in more
than one complex with different turnover rates, as revealed in
this study. Third, our measurements are made on endoge-
nous, untagged cell proteins and not based upon analysis of
over-expressed, tagged fusion constructs. Either transient, or
stable, overexpression of tagged fusion proteins may affect
their turnover properties, both through changing the protein
structure and by altering their abundance and stoichiometry
relative to interaction partners.

A comparison of the protein turnover values reported here
with the corresponding turnover or half-life values reported for
the same proteins in previous large-scale studies showed
major differences. Thus, there appeared to be a near random
correlation with the values reported in two of these studies
(33, 37), and only a partial positive correlation (Pearson cor-
relation coefficient �0.2) with the data of Yen et al. (36). We
note that cross comparison of the data sets from each of
these previous studies also shows mostly random correla-
tions between them (data not shown). However, we found a
stronger correlation (Pearson correlation coefficient of 0.34)
between our data and a recent study also using a pulse-
SILAC method to analyze protein turnover in mouse NIH 3T3
cells (28).

The lack of correlation between many previous high-
throughput studies on human cells and our present data is not
simply explained by variation in the quality of our data. Even
focusing on the subset of proteins in our study with the
highest quality measurements did not significantly improve
the degree of correlation. Thus, considering only the �25% of
proteins for which we quantitated at least 20 separate pep-
tides with optimal chi2 curve fitting did not increase the pos-
itive correlation with the other data sets. We conclude that we
have generated a data set for endogenous human proteins
that is distinct from previous studies and, considering the
overall stringent data evaluation employed, argue that the lack
of agreement in protein turnover values between our data and
previous large-scale studies is not primarily reflecting data
quality issues in our measurements.

This surprising situation where apparently each separate
high-throughput analysis of protein turnover produces differ-
ent results could have multiple explanations. Two of the pre-
vious studies specifically analyzed the half-lives of over-ex-
pressed, GFP-tagged fusion proteins (36, 37). We anticipate
that the resulting fusion protein turnover values may differ
from the turnover values reported here for the corresponding
endogenous proteins expressed at physiological levels. It is
also important to note, however, that there is no expectation
that different cell lines growing under different culture condi-
tions should show identical protein turnover values, as ob-
served from the differences in turnover measured between
A549 cells (33), NIH 3T3 cells (28), and HeLa cells (this study).
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It will be interesting, therefore, to carefully evaluate differ-
ences in protein turnover values between cell lines and growth
conditions using the same stringent methodologies for all
measurements. Indeed, although most homologous proteins
showed a similar trend when comparing turnover values from
our study to those found in NIH 3T3 cells (28), it is interesting
to note that a few proteins showed a dramatic difference in
protein turnover between the two cell lines, indicating that
specific protein degradation might be either cell type specific,
or species-specific, or both.

An interesting general feature from this study is that protein
subunits from multiprotein complexes show faster turnover as
free proteins, prior to complex assembly. This is exemplified
by the ribosomal proteins, which have a 50% turnover of �6
h in the nucleus, where the protein pool includes free, unas-
sembled ribosomal proteins (7). In contrast, ribosomal pro-
teins are very stable in the cytoplasm, with turnover of over
30 h, where they accumulate only after assembly into a ribo-
some subunit. An important corollary is that a large increase in
the expression of a specific protein, as often occurs upon
either transient or stable over-expression of tagged proteins,
may change drastically its turnover in comparison with the
endogenous counterpart. The measured turnover values of
interaction partners of the over-expressed factor and of other
proteins may also be altered. We propose that this could
account for much of the difference between the turnover
values we report here for endogenous proteins and the faster
turnover measured using fluorescent protein-tagged proteins.
For example, Yen et al., reported that the turnover rates of
over 8000 GFP-tagged human proteins showed a bimodal
pattern, where the average turnover values were measured as
30 min and 2 h, respectively (36). Here we also found that
protein turnover followed a bimodal distribution, but with
slower turnover values of �20 h, close to the HeLa cell divi-
sion rate and a minor peak with a turnover value of �10 h.

The data indicate that the bulk of HeLa cell proteins may be
turned over passively during normal cell growth and are con-
sistent with the mean turnover rate reflecting approximate
doubling of the amount of proteins as the cell divides and
hence doubles its protein content. However, a subset of pro-
teins show faster turnover, suggesting they may be directly
targeted for degradation. The similar distribution of protein
turnover values seen for the cytoplasm and the nucleoplasm
likely reflects the high level of protein shuttling between these
compartments. This contrasts with the nucleolus, where a
distinct group of proteins show fast turnover (�6 h), mostly
corresponding to ribosomal proteins. Interestingly, recent
studies point to a role for the accumulation of specific free
ribosomal proteins in the nucleus in signaling mechanisms
involved in stress responses and growth control (38), suggest-
ing that the control of ribosomal protein stability in the nucleus
is involved in biological regulation.

Proteins with the slowest turnover have a wide range of
functions, but are commonly present either in large, abundant

and stable protein complexes, such as ribosome and spliceo-
some subunits, RNA polymerases, the nuclear pore, the exo-
some and the proteasome, or else are found inside mitochon-
dria. Interestingly, with almost all of these slow turnover
proteins, we note that the turnover rate of each subunit was
significantly slower in one subcellular compartment, correlat-
ing with the location where they exert their function. These
observations suggest a general assembly strategy whereby
cells produce an excess of subunits in order to favor complex
formation, but carry out this assembly in a compartment
separate to the eventual main site of function. This avoids the
need to tightly coregulate transcription, processing, transport
and translation of the mRNAs encoding different protein sub-
units in eukaryotes where genes are not organized in operons
and not co-transcribed and translated. Any excess protein
subunits produced will simply be degraded in the assembly
compartment. This model explains the differential stability of
ribosomal proteins between the nucleus, where they are as-
sembled with RNA, and the cytoplasm where they function to
translate mRNA and conversely, the higher stability of snRNP
proteins in the nucleus, where they function in pre-mRNA
splicing, as opposed to in the cytoplasm, where they assem-
ble on snRNAs.

We envisage in future that this general approach for char-
acterizing protein turnover and associated protein properties
can be extended in several ways. It is possible to expand the
subcellular fractionation strategy for example and thereby
obtain higher resolution spatial information regarding the sub-
cellular distribution of the proteome and how this correlates
with protein structure, isoforms and PTM patterns. Our pres-
ent study has not distinguished effects on the proteome of
cells growing at different stages of the cell cycle. However,
specific examples are already known where either protein
stability, or subcellular localization, can alter as cells progress
through interphase and mitosis. Work is in progress therefore
to carry out systematic, proteome-wide analyses of how pro-
tein properties, including turnover rates and subcellular local-
ization patterns, vary as a function of cell cycle progression,
providing a detailed quantitative annotation of the human
proteome in both time and space. None of the protein prop-
erties discussed above represent “absolute” values, and it is
to be expected that rates of protein turnover, localization
patterns, interaction partners and PTMs will vary considerably
between different cell lines, under different growth conditions
and in response to drugs or other external stimuli. Specific
mutations, which may be associated with either oncogenic
transformation or genetic disease, can also alter these protein
properties. The development and integration of many large-
scale, quantitative proteomic data sets of the sort described
here thus offers a promising future direction for expanding the
functional annotation of the human genome, and the genomes
of other model organisms, and for the discovery of new bio-
logical regulatory mechanisms.
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