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In higher eukaryotes many genes encode protein isoforms
whose properties and biological roles are often poorly
characterized. Here we describe systematic approaches
for detection of either distinct isoforms, or separate pools
of the same isoform, with differential biological proper-
ties. Using information from ion intensities we have esti-
mated protein abundance levels and using rates of
change in stable isotope labeling with amino acids in cell
culture isotope ratios we measured turnover rates and
subcellular distribution for the HeLa cell proteome. Pro-
tein isoforms were detected using three data analysis
strategies that evaluate differences between stable iso-
tope labeling with amino acids in cell culture isotope ra-
tios for specific groups of peptides within the total set of
peptides assigned to a protein. The candidate approach
compares stable isotope labeling with amino acids in cell
culture isotope ratios for predicted isoform-specific pep-
tides, with ratio values for peptides shared by all the
isoforms. The rule of thirds approach compares the mean
isotope ratio values for all peptides in each of three equal
segments along the linear length of the protein, assessing
differences between segment values. The three in a row
approach compares mean isotope ratio values for each
sequential group of three adjacent peptides, assessing
differences with the mean value for all peptides assigned
to the protein. Protein isoforms were also detected and
their properties evaluated by fractionating cell extracts on
one-dimensional SDS-PAGE prior to trypsin digestion and
MS analysis and independently evaluating isotope ratio
values for the same peptides isolated from different gel
slices. The effect of protein phosphorylation on turnover
rates was analyzed by comparing mean turnover values
calculated for all peptides assigned to a protein, either
including, or excluding, values for cognate phosphopep-
tides. Collectively, these experimental and analytical ap-
proaches provide a framework for expanding the func-

tional annotation of the genome. Molecular & Cellular
Proteomics 11: 10.1074/mcp.M111.013680, 1–15, 2012.

Biological regulatory mechanisms and cellular responses
are predominantly mediated by proteins and multi-protein
complexes. The structures and properties of these proteins
are crucial for their function and can vary greatly. For exam-
ple, protein expression levels in mammalian cells vary over a
large dynamic range of 106 or more (1), whereas subcellular
localization patterns, post-translational modifications, rates of
synthesis, and degradation and interactions with partner pro-
teins are also variable properties (2). Furthermore, all of these
properties not only vary between proteins, they are also dy-
namic and can vary for the same protein either at different
times, or in different subcellular locations, depending on pa-
rameters such as cell cycle progression, growth rate, and
signaling events.

In higher eukaryotes, many genes encode two or more
separate protein isoforms (3, 4). Even minor structural differ-
ences between isoforms can alter their biological properties
and result in distinct pools of related proteins whose subcel-
lular location, function, and interactions vary (5, 6). Further-
more, even apart from isoforms, single polypeptides can par-
tition into two or more distinct functional pools within the cell
that have different roles. For example, a single isoform of
protein phosphatase I can interact with numerous different
interaction partners to create different phosphatase enzymes
that target different substrates (7). Proteomes are thus inher-
ently complex and their properties in constant flux. This pres-
ents a major challenge for proteomic studies, as we aspire not
only to identify which proteins are expressed in a cell or
organelle, but also to characterize their properties and quan-
tify how these change in response to different perturbations
and cell cycle stages etc (8).

Alternative splicing of pre-mRNA transcripts is common-
place and this can generate multiple mRNAs from the same
gene and hence multiple different proteins (9, 10). Shoemaker
et al. have reported that over 73% of all human genes are
alternatively spliced (11). Such isoforms can vary in length,
share common exons, include variable exons, and even have
very different amino acid sequences because splicing events
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can alter the translational reading frame of the differentially
spliced mRNAs. It is estimated that 15% of all point mutations
causing human genetic disease result in an mRNA splicing
defect (12). Isoforms can also arise from differential post-
translational processing and modification (6, 13) of a polypep-
tide encoded by a single mRNA. In other cases gene dupli-
cation results in expression of closely related protein paralogs
that share extensive sequence identity and may thus be hard
to distinguish by MS depending on the number and structures
of peptides that encode the variance between these paralogs.

The structural and functional diversity of the expressed
proteome in multicellular eukaryotes is thus generated by a
combination of alternative splicing, together with other pro-
cesses such as the use of alternative transcription start sites,
alternative polyadenylation, RNA editing, SNPs, as well as
complex patterns of post-translational modification and
cleavage events (14). Although the use of mass spectrometry
has now revolutionized the efficient and sensitive detection
and quantitation of cell proteins, a complication of interpreting
the results of protein identification and quantification using
mass spectrometry is that proteins are typically extracted
from cells and digested into peptides before MS analysis. This
affects the interpretation of the resulting data because the
same peptide sequence can be present in either multiple
different proteins, or protein isoforms (3). As noted above, the
same peptides may even belong in vivo to functionally distinct
pools of the same protein. Such shared peptides therefore
can lead to ambiguities, both in determining the identities of
proteins and in reliably measuring their functional properties.
It will therefore be helpful to develop methods that can help to
distinguish between different isoforms and functionally dis-
tinct protein pools when interpreting MS data.

Some of the current approaches used to identify protein
isoforms include deep sequencing, tiling arrays, protein proc-
essing through identification of new N-terminal peptides, SNP
detection, alignment of identified peptides to the genome
combined with target analysis of predicted peptides and Ex-
pressed Sequence Tags (15). A recent study by Alm et al.
reported the identification of isoforms via alignment of mass
spectra of spots on two-dimensional gels by use of extracted
peak lists and hierarchical clustering (16). Methods for de
novo sequencing and identification of post-translational mod-
ifications have also been developed, which operate indepen-
dent of sequence databases (17). Combining transcriptome
data with MS-based proteomics in specific forms of cancer
cells has enabled identification of novel protein isoforms and
splicing variants (18). Bioinformatics approaches have made
use of Expressed Sequence Tag and RNA and genomic se-
quence data to match new splice forms with peptides re-
vealed in MS spectra. Nonetheless, these strategies are lim-
ited by the availability and often incompleteness and
fragmentation of relevant gene expression data (19).

The functional annotation of genome expression will be
improved if it is possible to take into account and measure

expression levels, structures, properties, and biological roles
of separate protein isoforms and protein pools. In general this
information on isoforms and protein pools is not available in
most large-scale proteomic analyses (20). It will aid the bio-
logical interpretation of proteomics experiments to decide
whether all peptides identified and quantified that are mapped
to a specific gene are encoded either in a single polypeptide,
or in two or more isoforms, and whether the peptides belong
to a polypeptide that behaves within the cell as one or more
functional pools with respect to its properties, such as sub-
cellular localization and/or turnover rate. For example, when
studying subcellular localization, the averaged value for all
peptides mapped to a specific gene may indicate that the
protein is present in both the cytoplasm and the nucleus,
when in fact they belong to two isoforms, with one isoform
predominantly cytoplasmic and the other predominantly nu-
clear. This is likely to be of general importance for annotating
the genome because a recent comparative study of subcel-
lular protein localization in three human cell lines detected
�40% of the 4000 genes analyzed localizing to multiple sub-
cellular compartments (21).

Mass spectrometry-based proteomics has become the
technology of choice for the direct identification and charac-
terization of proteins (22). In combination with quantitative
approaches, such as SILAC (stable isotope labeling with
amino acids in cell culture)1, mass spectrometry can not only
identify proteins and post-translational modifications, but also
measure how relative protein levels change in cells under
different conditions (23, 24). This provides a flexible assay
format for proteomic studies that evaluate differences be-
tween two or more cell states, each defined by metabolic
labeling of proteins with amino acids that have different com-
binations of isotopes incorporated into selected amino acids.
Subsequent isolation of proteins and enzyme cleavage results
in mixtures of isotopically labeled peptides where the relative
levels of each isotopic form can be resolved and quantified by
mass spectrometry. The peptide isotope ratios are then
mapped back to the genome sequences encoding the cog-
nate proteins and used to infer whether either the levels, or
properties, of these proteins have been changed. The SILAC
strategy has been used for quantitative studies of cell and
organelle proteomes and for comparative studies of protein
modifications, and interactions (22) and to identify proteins
isolated from mitotic chromosomes (25). It has also been used
in combination with cell fractionation to generate “isotope-
encoded” subcellular compartments allowing subcellular pro-
tein localization to be evaluated on a system-wide level (26,
27). By examining incorporation rates of isotope-labeled
amino acids into proteins, pulse-labeling SILAC has been
employed to measure protein turnover in cells and organelles

1 The abbreviations used are: SILAC, stable isotope labeling with
amino acids in cell culture; DMEM, Dulbeccos’s modified Eagle me-
dium; GFP, green fluorescent protein; IPI, International Protein Index.
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(28–32). We have recently reported a global analysis of pro-
tein properties in human cells using a combined pulse-label-
ing, spatial proteomics and data analysis strategy to charac-
terize the expression, localization, synthesis, degradation and
turnover rates of endogenously expressed, untagged human
proteins in different subcellular compartments (33). Mass
spectrometry combined with pulsed incorporation of stable
isotopes of arginine and lysine were used to perform quanti-
tative analyses of the rates of synthesis, degradation, and
turnover of HeLa cell proteins. Cells were pulsed for 0.5, 4, 7,
11, 27, and 48 h before being fractionated into cytoplasmic,
nucleoplasmic, and nucleolar fractions. Proteins from each of
the respective subcellular fractions and time points were fur-
ther fractionated by 1-D SDS-PAGE and each of 16 gel slices
trypsin digested. The resulting peptides were analyzed by
liquid chromatography (LC)-tandem MS (MS/MS) and ratios
between light, medium, and heavy isotopic forms for each
peptide quantified using MaxQuant and the data managed
and analyzed using PepTracker. A total of 80,098 peptides
from an estimated 8041 HeLa proteins were quantified, and
their spatial distribution between the cytoplasm, nucleus, and
nucleolus determined as described in the related paper (33).
Using information from ion intensities and rates of change in
isotope ratios, protein abundance levels and protein synthe-
sis, degradation, and turnover rates were calculated for the
whole cell and for the respective cytoplasmic, nuclear, and
nucleolar compartments.

Here we analyze this same HeLa proteomics data set (33)
using systematic approaches for the detection of protein
isoforms and protein pools with differential biological prop-
erties. We evaluate methods that can identify human protein
isoforms whose turnover and/or subcellular localization
properties vary and analyze phosphorylated peptides that
are correlated with altered rates of protein turnover in the
separate cytoplasmic, nuclear, and nucleolar compart-
ments. The methods described here maximize the opportu-
nity of using empirically measured protein properties to
identify functionally distinct pools of proteins and protein
isoforms.

EXPERIMENTAL PROCEDURES

Cell Culture, Translation Inhibition, and Transfection—HeLa cells
were cultured as adherent cells in DMEM (Dulbeccos’s modified
Eagle medium; Invitrogen, Carlsbad, CA) supplemented with 10%
fetal bovine serum, 100 U/ml penicillin/streptomycin and 2 mM

L-Glutamine. For translation inhibition, HeLa cells were plated on
6-well dishes at 250,000 cells per well. Cells were either mock
treated, or treated with 100 �g/ml cycloheximide (Sigma) for 0.5, 1,
4, 7, and 24 h. HeLa cells were transfected using Effectene Trans-
fection Reagent (Qiagen, Dorking, Surrey, UK) as per the manufac-
turer’s protocol.

Antibodies and Western Blotting—For protein blot analysis cells
were lysed by mixing with loading sample buffer (Invitrogen), then
boiled for 10 min and separated by one-dimensional SDS-PAGE
(4–12% Bis-Tris Novex mini-gel, Invitrogen) and transferred to nitro-
cellulose (iBlot, Invitrogen) prior to Western blotting. Antibodies from

the Human Protein Atlas (34), HBS1L (HPA02729), CTSD
(HPA003001), and RPRD1A (HPA040602) were used at a 1:1000
dilution for Western blotting. The anti-GFP mouse monoclonal anti-
body (Roche Diagnostics) was used at a dilution of 1:3000.

Plasmid Construction and Stable Cell Lines—For the creation of the
GFP-NudCD1 isoform expressing HeLa cell lines, each isoform of
NudCD1 was PCR amplified from pENTRY plasmids (Open Biosys-
tems, Thermo Scientific) and inserted into pDONR221 vector using
BP Clonase II (Invitrogen) and subsequently transferred into pG-LAP1
(N-terminal GFP-Lap tag) using LR Clonase II (Invitrogen) and inte-
grated into HeLa Flp-In cells (Invitrogen) (35). Cells were selected for
Hygromycin and Blasticidine resistance and expression of the GFP-
fusion proteins was induced by adding Doxycycline at a concentra-
tion of 2 �g/ml for 48 h.

Immunofluorescence—HeLa cells were grown on glass coverslips
and fixed with 1% paraformaldehyde in PBS for 10 min. Cells were
then permeabilized in phosphate-buffered saline (PBS) containing
0.5% Triton X-100 for 10 min, and then labeled with antibodies
recognizing GFP (Roche Diagnostic). After washing with PBS con-
taining 0.1% Triton X-100 and PBS, cells were then labeled with a
secondary antibody coupled to Alexa 546 (Molecular Probes, Eugene,
OR) and mounted on slides with Vectashield (Vector Laboratories Inc.,
Burlingame, CA) containing DAPI. Fluorescence imaging was per-
formed on a DeltaVision Spectris widefield deconvolution microscope
(Applied Precision) (Washington, United States) equipped with a
CoolMax charge-coupled device camera (Roper Scientific, Trenton,
NJ). Cells were imaged using a 60x NA 1.4 Plan-Apochromat objec-
tive (Olympus) and the appropriate filter sets (Chroma Technology
Corp., Brattleboro, VT), with 20 optical sections of 0.5 �M each
acquired. SoftWorX software (Applied Precision) was used for both
acquisition and deconvolution.

Quantification and Bioinformatic Analysis—The methods used for
preparation of SILAC labeled HeLa proteins from nuclear, nucleolar,
and cytoplasmic fractions, protein chromatography by SDS-PAGE,
trypsin digestion, and mass spectrometry were described previously
(33). Peptide identification, quantitation, and phosphopeptide analy-
sis was performed using MaxQuant version 1.1.1.14 (36, 37). The
derived peak list was searched using the in-built Andromeda data-
base search engine in MaxQuant for peptide identifications against
the International Protein Index (IPI) human protein database version
3.68 containing 89,422 proteins, to which 175 commonly observed
contaminants and all the reversed sequences had been added. The
initial mass tolerance was set to 7 p.p.m. and MS/MS mass tolerance
was 0.5 Da. Enzyme was set to trypsin/p with two missed cleavages.
Carbamidomethylation of cysteine was searched as a fixed modifica-
tion, whereas N-acetyl protein, oxidation of methionine, and phos-
phorylation of serine, threonine, and tyrosine were searched as vari-
able modifications. Identification was set to a false discovery rate of
1%. To achieve reliable identifications, all proteins were accepted
based on the criteria that the number of forward hits in the database
was at least 100-fold higher than the number of reverse database hits,
thus resulting in a false discovery rate of less than 1%. A minimum of
two peptides were quantified for each protein. Data analysis was
performed using the PepTracker™ software environment. Clustering
analysis was performed using the software Cluster with complete
linkage clustering and visualized using Treeview (http://rana.lbl.gov/
EisenSoftware.htm) (38).

To maximize the identification of potential novel protein isoforms,
prior annotation of known proteins was removed to ensure the analysis
was carried out as unbiased as possible. Hence, the predicted protein
groups generated by MaxQuant were discarded and instead the evi-
dences of individual peptides were used to build protein profiles based
on data corresponding to our empirical measurements of protein prop-
erties. Using these measured behavioral properties it was then possible
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to identify novel pools of proteins that were functionally distinct. By
performing the analysis in this way, it was possible to link the existence
of predicted isoforms with changes in their measured properties.

RESULTS

Protein Isoform Analysis at the Peptide Level: Candidate
Approach—We have analyzed HeLa cell SILAC data describ-
ing global protein abundance, localization, and turnover (33),
using three approaches to detect protein isoforms that have
differential properties (Fig. 1). First, a candidate approach was
used. For genes encoding known isoforms, average intensity
values were compared for peptides shared between all iso-
forms with candidate, isoform-specific peptides (Fig. 2). This
is illustrated for the NudCD1 protein, which has three reported
isoforms (39). Using average values for all peptides detected
that are common to the three isoforms (blue), there is similar

average peptide intensity in the cytoplasm and nucleus, with
little signal in the nucleolus. However, although analysis of a
peptide predicted to be specific to isoform 3 showed intensity in
both cytoplasmic and nuclear compartments (green, �3:2 cy-
toplasmic/nuclear), a peptide predicted to be specific for iso-
form 2 (red), instead showed exclusively cytoplasmic signal (Fig.
2A). We were unable to detect reliably any peptides that were
unique to isoform 1. However, as there is strong overall peptide
signal in the nucleus that cannot be accounted for by the
intensities of either the isoform 2, or isoform 3-specific peptides,
we infer that isoform 1 is likely to be enriched in the nucleus.

As no suitable isoform-specific antibodies for NudCD1
were available, the localization patterns of the three NudCD1
isoforms were next compared by immunofluorescence mi-
croscopy analysis of HeLa cells expressing GFP fused at the

FIG. 1. Alternative splicing leading to protein isoforms. A, A single gene can encode multiple proteins because of alternative splicing. After
transcription of a gene, exons of the resultant RNA can be reconnected in multiple ways during RNA splicing, resulting in the translation of
protein isoforms, with red and green areas signifying differences between the isoforms. B, Protein isoforms represent several different forms
of a protein and have a largely shared sequence, however small differences occur. Mass spectrometery can be used to identify both common
peptides shared by all isoforms and specific peptides (shown in red and green) that are unique to each isoform. C, Using these identified
peptides it is possible to extract abundance, localization, and turnover information for a protein by using either shared peptides or isoform
specific peptides.
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FIG. 2. NUDCD1 protein isoform identification and localization from peptide intensities. Identification of NudCD1, NudC domain-
containing protein 1. A, Chart showing intensity (y axis) in different cellular compartments (x axis) for three peptides. The blue series provides
average intensity of common peptides shared between isoforms of NudCD1. Remaining series show intensity of MLYLQGWSMPAVAEVK
(isoform 2 peptide - red) and YNQDTALGKPR (isoform 3 peptide - green). The isoform 3 specific peptide has intensity in both cytoplasmic and
nuclear compartments (�3:2 cytoplasmic/nuclear), and the isoform 2 peptide shows exclusively cytoplasmic signal. B, HeLa cells expressing
GFP used to detect isoforms of NudCD1. Upper bands on the Western blot (orange arrow) show three protein isoforms recognized, migrating
at the predicted molecular weights of NudCD1 isoforms. Fluorescence microscopy analysis of the HeLa cells expressing the respective
GFP-fusion proteins was performed using both antibody to GFP (panels D, G, and J), and direct GFP fluorescence (panels E, H, and K).
NudCD1 Isoform 1 shows nuclear accumulation in panels D and E, NudCD1 isoform 2 shows predominantly cytoplasmic accumulation in
panels G and H and both cytoplasmic and nuclear accumulation is shown of NudCD1 isoform 3 in panels J and K.
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N terminus to isoform-specific cDNAs (Figs. 2B–2K). All three
GFP-NudCD1 isoform fusions were used to establish stable
HeLa cell lines where expression of the fusion protein is under
the control of a tetracycline-regulated promoter (see Experi-
mental Procedures). All three stable HeLa cell lines produced
proteins of the expected sizes when induced by addition of
tetracycline and analyzed by protein blotting, detected using
an anti-GFP antibody (Fig. 2B). Fluorescence microscopy
analysis of HeLa cells expressing the respective GFP-fusion
proteins was performed, using both an antibody to GFP (Figs.
2D, 2G, and 2J), and direct GFP fluorescence (Figs. 2E, 2H,
and 2K), to determine their localization patterns. In agreement
with the spatial proteomics data, this showed predominantly
nuclear accumulation of NudCD1 isoform 1 (panels 2D and
2E), predominantly cytoplasmic accumulation of NudCD1 iso-
form 2 (panels 2G and 2H) and both cytoplasmic and nuclear
accumulation of NudCD1 isoform 3 (panels 2J and 2K). None
of the three GFP-NudCD1 isoform fusions accumulated in
nucleoli.

These data analyzing NudCD1 isoforms illustrate the valid-
ity of the candidate approach but also highlight its limitations.
It relies upon prior annotation to predict the existence of
isoforms and the detection of unique peptides that are iso-
form-specific. As seen for isoform 1, it is not always possible
to detect isoform-specific peptides. Even when isoform-spe-
cific peptides can be detected, as with isoforms 2 and 3, they
are usually few in number (often only one) and this reduces the
accuracy of the overall quantitation. Nonetheless, the
NudCD1 data show clearly that analysis of a key protein
property, such as subcellular localization, can be misleading
when values for all peptides are averaged without taking into
account the existence of distinct pools of protein with differ-
ential localization phenotypes.

Rule of Thirds Approach—Next, we used two methods to
systematically evaluate whether the mean value of all pep-
tides quantitated for a given protein included clusters of
adjacent peptides with significantly different mean values.
First, a “rule of thirds” approach was used to search the
data for examples in which the mean values of peptides
from the amino-terminal (S1, blue), central (S2, red), or
carboxyl terminal (S3, green) segments of the protein dif-
fered by at least one standard deviation from an adjacent
segment (supplemental Table S1). This was evaluated for over
6000 HeLa proteins, where at least two peptides had been
quantitated within each segment of the protein sequence. The
mean turnover rate for each segmented third of every protein
was plotted on the y axis against total proteins, ranked on the
x axis by the mean turnover value derived from all peptides
assigned to that protein (Fig. 3A). Examples where the turn-
over value of any one third segment of a given protein differed
by more than 70% from the overall turnover value for the
same protein, i.e. the mean of all the peptides assigned to that
protein, are highlighted and color coded in blue, red, and
green for segments S1–S3, respectively (Fig. 3A).

The validity of the rule of thirds approach was confirmed by
its unbiased identification of RPS27A as one of the proteins
with a segment showing differential turnover to the mean
value for the whole protein (Fig. 3B). In this case the mean
turnover value of peptides from the carboxyl terminal segment
(green, �31 h), was �threefold higher than the mean turnover
values for the peptides in either of the other two segments
(blue �11 h and red �14 h) and �twofold higher than the
mean of all the peptides in this protein (�15 h). Interestingly,
the full length RPS27A protein is expressed as a precursor
that is subsequently processed to yield ubiquitin, which ac-
counts for �70% of the sequence, and a carboxyl terminal
segment of �30% that corresponds to the mature ribosomal
small subunit protein S27A (40). As ubiquitin is subsequently
conjugated to proteins as a post-translational modification
that can promote proteasome-mediated degradation,
whereas ribosomal proteins are typically stable after incorpo-
ration into ribosome subunits, it is not surprising that these
two products of the original RPS27A polypeptide exhibit dif-
ferent turnover values.

We selected two other examples from the group of high-
lighted proteins for further analysis, for which antibodies were
available, corresponding to Cathepsin D (CTSD) and Regula-
tion of nuclear pre-mRNA domain-containing protein 1A
(RPRD1A) (Fig. 3C). A cycloheximide inhibition experiment
was performed on HeLa cells to block protein synthesis and
thus measure the rate of protein degradation. Both CTSD
(lanes 1–6) and RPRD1A (lanes 7–12) were detected by im-
munoblotting, using specific antibodies generated by the Hu-
man Protein Atlas Project (see Experimental Procedures). In
both cases the blotting experiments revealed two bands for
each protein that decay at different rates following cyclohex-
imide treatment (Fig. 3C, arrows). These data support the
prediction from the rule of thirds analysis that the CTSD and
RPRD1A proteins are expressed as distinct polypeptides with
different turnover values.

Three in a Row Approach—A limitation with the rule of
thirds approach is that not all isoforms will have structures
that are separable based on analysis of equal third regions of
the protein. The available peptide coverage is also often not
evenly distributed between each of these three equal seg-
ments. To provide a more general approach for predicting
isoform expression, based on local clusters of peptide values,
we therefore turned to a “three in a row” method. Here, mean
turnover values were calculated for each set of three consec-
utive peptides within the total set of peptides assigned to a
given protein, moving along one peptide at a time from the
amino to carboxyl terminus (Fig. 4A). The resulting mean
turnover values for every group of three consecutive peptides
were then plotted on the y axis, against the corresponding
mean turnover value on the x axis calculated using all pep-
tides mapped to each protein (Fig. 4B). In this plot each triple
peptide mean value is shown either in light blue (default), or in
dark blue if two conditions are met. Thus, dark blue indicates
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FIG. 3. Protein isoform identification from protein sequence segmentation. A, Graph showing all proteins (x axis) (ordered by average
protein turnover) plotted against turnover in hours (y axis). Gray series shows average turnover for each protein. Blue, red, and green series
highlight segments of proteins that have a variance of 70% or more compared with average protein turnover. B, Chart shows the three equal
segments of RPS27A, Ubiquitin-40S ribosomal protein S27a, plotted on x axis against average turnover on y axis. Peptides for each segment
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that both the turnover value for that group of three consecu-
tive peptides differs by 20% or more, (either higher or lower),
than the mean value of all of the peptides assigned to that
protein and that all three peptides in the group have similar
values, i.e. all three are either higher, or lower, than the protein
mean (see Supp. Table S2).

For the whole cell protein turnover data set, analysis of
178,509 groups of three consecutive peptides identified 1790
groups (�1%) that met these criteria and hence are shaded
dark blue (Fig. 4B). To validate this approach we selected one
of the highlighted proteins for which specific antibodies were
available, i.e. HBS1L (red diamond in Fig. 4B). A cyclohexi-
mide experiment was carried out to measure independently
the degradation rate of HBS1L (Figs. 4C and 4D). An antibody
from the Human Protein Atlas Project specific for HBS1L
detected two bands on an immunoblot, consistent with ex-
pression of two isoforms (Fig. 4C). Quantitation of the two
bands at multiple time points from 0.5–24 h following cyclo-
heximide treatment showed that the two putative isoforms of
HBS1L differed in their degradation rates (Fig. 4D). We con-
clude that the three in a row approach can help to detect
proteins expressed as isoforms with differential properties.

Isoform Analysis by Combined Protein Fractionation and
Peptide MS—Protein isoforms that differ in size can be sep-
arated by chromatography prior to enzyme cleavage and MS
identification of peptides. We have therefore incorporated into
our analysis information derived from fractionation of HeLa
cell proteins by one-dimensional SDS-PAGE (Fig. 5). HeLa
cell extracts were separated on a 4–12% SDS-PAGE gel,
which was then cut into 16 slices, numbered from the top
(slice 1, largest proteins) to the bottom (slice 16, smallest
proteins) of the gel (Fig. 5A). Proteins in each gel slice were
digested with trypsin and the resulting peptides eluted and
analyzed by MS (33), with the resulting data plotted on a
graph showing gel slice on the y axis and Log predicted
molecular weight of each identified protein, based on genome
sequence annotation, on the x axis (Fig. 5B). These empirical
data demonstrate that, as expected, the position of protein
migration on SDS-PAGE is positively correlated with pre-
dicted molecular weight, (Pearson correlation coefficient
0.73). In this gel system, that correlation holds true at least
within the size range from �10–180 kDa. Using the MS iden-
tification information the approximate size range of proteins
migrating in each gel slice can thus be estimated. Based upon

a best linear fit within the 10–180 kDa size range, the majority
of proteins (�78%), migrate at their predicted molecular
weight �40% (Fig. 5B, blue dots). Nonetheless, a substantial
number of proteins identified by MS (�20%), migrate anom-
alously with respect to predicted molecular weight (Fig. 5B,
red dots). Reasons for apparently anomalous migration is
likely to include the expression of novel protein isoforms and
processed polypeptides, as well as effects of post-transla-
tional modifications on migration behavior.

Examination of the number of unique peptide identifications
assigned to a given protein in each gel slice reveals the
migration profile of that protein in SDS-PAGE (Figs. 5C–5E).
For representative large (Fig. 5C, GCN1L1, 293 kDa), medium
(Fig. 5D, USP14, 60 kDa), and small (Fig. 5E, CCDC58, 17
kDa) proteins, the number of unique peptides identified shows
a clear single peak across the respective gel slices. The
breadth of the unique peptide abundance peak is positively
correlated with protein abundance (supplemental Fig. S1),
such that the most abundant proteins show broad horizontal
lines in the heat map (Fig. 5A). The unique peptide count per
gel slice also helps to identify distinct protein isoforms. As
shown for the protein Glomulin (GLMN), which has two known
isoforms of 48 kDa and 68 kDa, respectively. Two peaks of
GLMN peptides are detected, centered on different gel slices
(Fig. 5F). Thus, combined protein chromatography on SDS-
PAGE, together with peptide MS analysis, can detect the
presence of protein isoforms and combined with ion intensity
values provide information concerning protein expression lev-
els (see Supp. Tables S3–S6). Importantly, this approach can
aid detection of previously unknown isoforms and/or processed
and modified pools of proteins, which may have different bio-
logical properties, without prior knowledge of isoform-specific
peptides or the availability of specific antibodies.

Next, correlation analyses were performed to examine po-
tential differences in subcellular localization and protein turn-
over properties for examples of protein isoforms predicted
from the combined SDS-PAGE and peptide MS data (Fig. 6).
By independently evaluating the SILAC data reflecting sub-
cellular protein localization and turnover (33) for the separate
sets of unique peptides found in different gel slices, we can
thus predict whether the different protein isoforms/processed
forms differ in their properties. This is illustrated for proteins
Elongator complex protein 3 (ELP3) and 2-oxoglutarate and
iron-dependent oxygenase domain-containing protein 1

(examples shown underneath) have significantly different turnover in carboxyl terminal segment 3 compared with segments 1 and 2. RPS27A
protein is expressed as a precursor that is processed to yield ubiquitin. C, Further proteins tested were, CTSD - Cathepsin D- (shown in orange
square in A) and RPRD1A - Regulation of nuclear pre-mRNA domain-containing protein 1A (shown in orange circle in A). Cycloheximide
inhibition experiments were performed on HeLa cells to block protein synthesis and thus measure the rate of protein degradation. The Western
blot for CTSD shows a band at predicted molecular weight of 44.55 kDa (white arrow). Another, higher, band is visible (black arrow), which
shows a faster turnover across the five timepoints (lanes 2–6). The second protein tested, RPRD1A, shows two bands on the Western blot,
which correlate with the expected molecular weight of the known isoforms of RPRD1A (isoform 1 at 35.72kDa, isoform 2 at 32.92kDa and
31.63kDa). The upper band (black arrow, isoform 1) shows slower degradation over the timecourse (lanes 8–12) compared with the lower band
(white arrow) (isoforms 2 and 3).
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FIG. 4. Protein isoform identification from consecutive peptide analysis. A, Groups of three consecutive peptides were identified and
average turnover value of each group calculated. A linear representation of protein is shown, with highlighted regions indicating identified
peptides. Any group showing a 20% variance in turnover from the average protein turnover is labeled as interesting (Group 3). B, Graph
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(OGFOD1), both of which are detected in two peaks of unique
peptide abundance in SDS-PAGE (Fig. 6B). In the case of
ELP3, the larger (A) isoform has a turnover value of �5 h and
is detected specifically in the nucleus. In contrast, the smaller
(A�) isoform has an apparent turnover more than fivefold
slower (�27 h) and is detected equally in the nucleus and
cytoplasm. In the case of protein OGFOD1, the two isoforms
detected also differ in both turnover and in subcellular distri-
bution. The larger (A) OGFOD1 isoform has a �50% faster
turnover than the smaller (A�) isoform, (�18 h and �37 h,
respectively). The two isoforms are differentially distributed,
with the larger A isoform detected in both the cytoplasm and
nucleus, and the smaller A� isoform concentrated specifically
in the cytoplasm. We conclude that this prechromatography
approach can reveal the presence of protein isoforms with
differential properties.

Correlating Post-translational Modification with Protein
Properties—Finally, we investigated the potential relationship
between post-translational modifications and the properties
of subcellular localization, turnover and abundance we have
measured for HeLa proteins using SILAC. In this study we
analyzed the effect of phosphorylation on either serine, thre-
onine or tyrosine residues on rates of protein turnover in each
of the cytoplasmic, nuclear, and nucleolar compartments (Fig.
7) (see Supp. Table S7). Phosphopeptides were detected and
quantitated for the HeLa protein localization and turnover
SILAC data set using MaxQuant (see Experimental Proce-
dures). Overall, 2444 phosphopeptides were detected and
quantitated in this analysis, identifying phosphorylated resi-
dues in �46% of the HeLa proteins (supplemental Fig. S2). A
comparison of protein abundance levels with the detection of
phosphorylated peptides showed only a weak positive corre-
lation. This indicates that the phosphopeptides studied are
not reflecting the properties of only the most abundant pro-
teins. The majority (53%) of phosphoproteins were identified
with a single phosphorylated residue, although 23% had two
phosphorylated peptides and 24% had three or more
(supplemental Fig. S2).

For proteins identified in the respective cytoplasmic, nu-
clear and nucleolar fractions, the mean turnover value for all
peptides assigned to each protein, including all phospho-
peptides detected, was plotted on the y axis against the
corresponding mean turnover value for all peptides as-
signed to the same protein, but excluding phosphopep-
tides, plotted on the x axis (Figs. 7A–7C). In the graphs any
protein where the presence of phosphopeptides either in-

creases, or decreases, the mean turnover value by 1.5-fold,
or greater, is colored dark blue. The data show that for the
phosphosites detected, in most HeLa proteins the presence
of one or more phosphorylated residues has little or no
effect on mean turnover rate. However, a subset of proteins
showed changes in turnover rate when phosphopeptides
are present. Interestingly, a larger fraction of nucleolar pro-
teins showed effects of phosphorylation on turnover rates
(Fig. 7C), as opposed to either cytoplasmic, or nuclear
proteins (Fig. 7A and 7B). This is not correlated with the
subset of highest abundance nucleolar proteins, such as
ribosomal proteins and nucleophosmin, suggesting that
there is a broader effect of phosphorylation on modulating
nucleolar protein turnover rates.

Gene ontology analysis was carried out to categorize the
phosphorylated proteins showing the greatest increase
(Figs. 7D, 7F, and 7H) and greatest decrease in turnover
(Figs. 7E, 7G, and 7I), for the cytoplasmic (Fig. 7D and 7E),
nuclear (Fig. 7F and 7G) and nucleolar (Fig. 7H and 7I)
compartments, respectively. This shows specific groups of
proteins whose turnover rates are most affected by phos-
phorylation at the sites identified. This includes ATP and
nucleotide binding proteins, multiple cell cycle regulated
proteins, and proteins involved in apoptosis and cell death
response mechanisms.

DISCUSSION

This study has investigated multiple data analysis ap-
proaches that can be used to identify the expression of pro-
tein isoforms that exhibit differential localization and/or turn-
over properties. We have also identified examples of protein
phosphorylation correlating with altered turnover rates in dif-
ferent subcellular compartments. These analyses are per-
formed on SILAC-based quantitative mass spectrometry data
from fractionated HeLa cells, where changes in isotope ratios
are used to measure turnover rates in the separate cytoplas-
mic, nuclear and nucleolar compartments (33). We have
shown that combining cell fractionation and the separation of
intact proteins by chromatography, prior to enzyme digestion
and peptide identification by mass spectrometry, can be ef-
fectively coupled with SILAC analysis of changes in peptide
isotope ratios to identify distinct protein pools and isoforms
and assess whether they have different properties. Collec-
tively, these experimental procedures and data analysis ap-
proaches provide a new framework for the systematic detec-
tion and analysis of protein pools and isoforms that can be

showing average protein turnover from all peptides (x axis) versus average turnover of three consecutive peptides from the protein (y-axis). Data
points highlighted in blue indicate three consecutive peptides that all have a turnover that varies by 20% greater or less than the average protein
turnover. Highlighted in red, is protein HBS1L, HBS1-like protein. C, Cycloheximide experiment was carried out to measure the degradation
rate of HBS1L. Antibody for HBS1L detected two bands, consistent with expression of two isoforms (blue and red arrows). These bands
correlate to the known isoforms of HBS1L (isoform 1 at 75.5 kDa (blue arrow), isoforms 2 and 3 at 70.13 kDa and 70.63 kDa (red arrow)).
D, Quantitation of the two bands at multiple time points from 0.5–24 h (lanes 2–6) is shown on the graph. The percentage intensity is plotted
on the y axis, across the timecourse on the x axis. Graph shows that the two putative isoforms of HBS1L differ in their degradation rates.

Protein Pools, Isoforms, Localization, and Turnover Analysis

10.1074/mcp.M111.013680–10 Molecular & Cellular Proteomics 11.3

http://www.mcponline.org/cgi/content/full/M111.013680/DC1
http://www.mcponline.org/cgi/content/full/M111.013680/DC1
http://www.mcponline.org/cgi/content/full/M111.013680/DC1


Protein Pools, Isoforms, Localization, and Turnover Analysis

Molecular & Cellular Proteomics 11.3 10.1074/mcp.M111.013680–11



correlated with biological properties and hence used to ex-
pand the functional annotation of the genome.

Differential proteomic analysis using SILAC involves mea-
suring differences in the ratio of separate isotopic forms of the
same peptide, which in turn is related to a specific biological
property according to the experimental design. Thus, differ-
ences in isotope ratios can be used, inter alia, to measure
changes in protein expression levels following drug treatment,
to discriminate between specific and nonspecific protein in-
teraction partners or to compare subcellular protein localiza-
tion. Typically, mean values are calculated for the different
isotopic forms of all of the peptides detected that map to a
given protein, as deduced from genomic sequence informa-
tion. A potential limitation with this strategy however is that it
usually does not discriminate between peptides arising from
functionally distinct pools of protein encoded by the same
gene. Thus, ensemble measurements are generated that can

average the separate properties, or responses, either of two
or more protein isoforms, or of distinct pools of the same
protein. We show here that, at least in part, it is possible to
circumvent these limitations and to identify protein isoforms
and pools and compare their properties, both using informa-
tion provided by detailed analysis of isotope ratios for sepa-
rate peptides assigned to the same protein group and by
incorporating information from cell fractionation and protein
chromatography prior to enzyme digestion and MS analysis.

For each approach presented here, we have indepen-
dently validated the results by examining randomly selected
examples of proteins highlighted to be functionally distinct
by MS using alternative methods such as fluorescence mi-
croscopy and cycloheximide-SDS-PAGE analyses. The
candidates were chosen primarily because specific antibod-
ies were available to assist the follow-up validation experi-
ments. In each case the analysis of the selected proteins

FIG. 5. Protein migration study on gel fractionation. A, Heat map of the 16 gel slices (horizontally) is shown with every protein identified
(vertically) ordered by the average gel slice the protein was found in. B, Graph showing predicted log protein molecular weight (x axis) against
gel slice (y axis), indicating that proteins predictably migrated across the gel based on their molecular weights (Pearson Correlation: 0.73).
Graphs C, D, and E highlight three examples of proteins, GCN1L1 (Translational activator GCN1), USP14 (Ubiquitin carboxyl-terminal hydrolase
14) and CCDC58 (Coiled-coil domain-containing protein 58) respectively, where the peptide count (y axis) is plotted against gel slice (x axis).
These graphs show that the proteins migrate at different gel slices consistent with their molecular weight. F, Graph showing peptide count (y
axis) plotted versus gel slice and molecular weight (x axis) for protein GLMN (Glomulin). The gel fractionation data indicate that this protein
migrates at two gel slices, 6 and 8. GLMN, has in fact two known isoforms, isoform 1 at 68.21 kDa and isoform 2 at 48.17 kDa.

FIG. 6. Protein isoform identification from gel fractionation. A, Heat map showing the 16 gel slices and their corresponding molecular
weights (horizontally) for every protein identified (vertically) ordered by the average gel slice the protein was found in. This heat map was filtered
to show only proteins that migrate at multiple gel slices. B, Two example proteins are shown, ELP3 (Elongator complex protein 3) and OGFOD1
(2-oxoglutarate and iron-dependent oxygenase domain-containing protein 1). The graphs on the left show peptide count (y axis) versus gel slice
(x axis) as an aggregate for the whole cell, indicating that both ELP3 and OGFOD1 migrate at two separate gel slices. The cytoplasmic graph
(top-middle-right) and nuclear graph (top-right) for ELP3 indicate that only one isoform is present in the Cytoplasm (A�), whereas both isoforms
are detected in the Nucleus (A and A�). The turnover graph (top-middle-left), showing the turnover values detected (y axis), in each gel slice
(x axis), indicates that both isoforms of ELP3 have a different turnover, i.e. 6 h (A) and 28 h (A�) respectively. In relation to OGFOD, the
cytoplasmic graph (bottom-middle-right) and nuclear graph (bottom-right) show the isoform A is found in both the cytoplasm and nucleus,
however isoform A� is only found in the cytoplasm. The turnover graph (bottom-middle-left), showing the turnover values detected (y axis) in
each gel slice (x axis), indicates that the two forms of the OGFOD1 protein at the different gel slices have different turnovers, i.e. 18.18 h
(A) and 37.49 h (A�).
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successfully confirmed that the MS techniques described
here are valid. However, it is accepted that there could also
be false positives and/or negatives with these techniques,
and it has not been possible because of issues of scale to
systematically test all of the many proteins identified as
showing differential properties. We anticipate that the reli-
ability of the analysis techniques will also improve in future
as more detailed MS analysis provides higher sequence
coverage and more accurate measurement of ion intensities
and SILAC ratios.

The candidate peptide approach is conceptually simple and
can be effective, as demonstrated here for the protein
NudCD1 (Fig. 2). However, it is often not possible either to
identify, or to reliably quantitate, isoform-specific peptides.
This restricts the use of the candidate peptide approach to the

analysis of protein isoforms whose structures are already
characterized and where one or more isoform-specific pep-
tides have been identified. Even in these cases, quantitation
of the isoform response is often derived from analysis of only
one or two specific peptides, which can reduce the overall
reliability of the measurements. We show that instead the
systematic evaluation of mean isotope ratio values for groups
of peptides within the total set of peptides mapped to a
specific gene provide promising general approaches for de-
tecting isoforms and comparing their properties. Importantly,
with both the rule of thirds and three peptides in a row
approaches, analysis of the SILAC data can predict the po-
tential existence of either isoforms, or processed forms of
proteins, as well as compare their properties, without prior
knowledge of either isoform structures, or expression. In each

FIG. 7. Correlation analysis of phosphopeptides with turnover. Graphs A, B, and C show the average protein turnover using nonphos-
phorylated peptides (x axis) against average protein turnover using both phosphorylated and nonphosphorylated peptides in each of the
cytoplasmic, nuclear, and nucleolar compartments. Highlighted in blue are phosphorylated proteins that show a 1.5-fold change compared
with the nonphosphorylated form of the protein. Comparison of graphs A (cytoplasm), B (nucleus), and C (nucleolus) show that the nucleolus
has the greatest number of phosphorylated proteins compared with the cytoplasm and nucleus. The pie charts D, E, and F show the gene
ontology analysis of the phosphorylate proteins that have a slower turnover in comparison with phosphorylated from and, similarly, pie charts
G, H, and I show the gene ontology analysis of the phosphorylated proteins that have a faster turnover in comparison with the nonphosphor-
ylated form.
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case, the mean isotope ratio values of subgroups of peptides
can be evaluated with respect to the mean value, either for all
the peptides in the protein, or for values for neighboring
groups of peptides, or both. Objective statistical criteria can
be applied to these comparisons that will aid the reliable
detection of isoforms and thereby help to annotate the func-
tional expression of the genome.

This study has validated the effectiveness of data analysis
strategies involving statistical comparisons of isotope ratio
values for local clusters of peptides within a protein. When
comparing the strategies described, 131 proteins were iden-
tified using all three approaches (7% of total proteins identi-
fied by the three methods, see supplemental Fig. S3). This
highlights an interesting group of proteins for future analysis
but also indicates that each approach has strengths and
weaknesses. With the degree of peptide coverage currently
available we argue for the use of multiple approaches, rather
than relying entirely on one method. We also envisage several
ways in which these approaches can be enhanced further in
future. For example, using filters that compare more closely
variations in values between peptides in a group and by
defining peptide groups with reference to 3-D crystal struc-
ture information on proteins.

Whatever future improvements are made to the data anal-
ysis procedures, it is clear that a critical point is having a high
quality data set for the proteome under study and in particular
having as wide a peptide coverage as possible for each
protein. The HeLa SILAC data set studied here included over
80,000 peptides from �8000 proteins, with an average cov-
erage of �10 peptides per protein identified. Our recent anal-
yses indicate that this is already a large enough sample of the
expressed HeLa proteome to be highly representative of the
general behavior of cell proteins (33). In future, therefore, we
will seek to expand the number of peptides analyzed, not
primarily to increase the total number of proteins identified,
but rather seeking to enhance the peptide coverage for each
protein. We anticipate this will aid the unbiased detection of
protein isoforms and their properties that can in turn be re-
lated to biological mechanisms and responses.

In most cases, differences in structure between protein
isoforms alters their size and/or charge, which in turn provides
an opportunity to separate them by chromatography, as dem-
onstrated here using one-dimensional SDS-PAGE. Our results
show that independently evaluating the differences in peptide
isotope ratios for the same peptides migrating in different
chromatographic fractions (in the present case different gel
slices), provides a powerful approach for detecting protein
isoforms and assessing differences in their properties. Com-
bining fractionation of protein extracts with downstream en-
zyme cleavage and MS analysis thus provides important in-
formation that is lost in procedures in which entire extracts are
digested without pre-fractionation and peptides analyzed en
masse. The isoform information is similarly lost if extract frac-
tionation is performed at the peptide, rather than protein level.

To provide higher resolution separation of isoforms, therefore,
we plan in future to increase the degree of protein fraction-
ation prior to MS analysis. For example, using two-dimen-
sional fractionation of extracts, combining ion exchange and
gel filtration chromatography. We anticipate that such two-
dimensional protein fractionation strategies, combined with
increased peptide coverage, will further enhance the effi-
ciency of detecting isoforms and characterizing their
properties.

We have shown previously that the subcellular distribution
of the proteome can be measured using a SILAC strategy
where different cell compartments and organelles are iso-
tope-encoded (26, 27, 33). We showed also that system-wide
changes in protein localization could be measured in re-
sponse to drug treatment and in cells with different geno-
types. Here we have extended this “spatial proteomics” ap-
proach to detect protein isoforms that are differentially
localized within the cell and to analyze differential effects of
protein phosphorylation on turnover in different subcellular
compartments. This can be developed further in future in
several ways. First, a higher resolution map of proteome
localization can be derived by more extensive cell fraction-
ation prior to protein chromatography and MS analysis. For
example, the cytoplasmic compartment can be further sub-
fractionated into cytosol and organelle fractions and work is
underway to implement this. Second, many other post-trans-
lational modifications in addition to phosphorylation can be
analyzed and their potential effects on the properties of spe-
cific protein families and protein isoforms evaluated and com-
pared in different cellular compartments. Enrichment strate-
gies can also be used to increase the efficiency of detecting
phosphorylation sites and other modified residues on pep-
tides. Third, our analyses to date have analyzed mixtures of
cells at different cell cycle stages. However, it is already
known for specific proteins that their expression levels and
properties, including localization and PTMs, can change dur-
ing different stages of interphase and mitosis. We therefore
plan to expand our future studies to encompass system-wide,
quantitative analysis of the properties of protein isoforms both
in multiple subcellular locations and at different cell cycle
stages. The resulting data are likely to provide a useful source
of information that can reveal unexpected and novel molecu-
lar relationships and potential regulatory mechanisms for fu-
ture investigation.
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speciation of the proteome. Chem. Cent. J 2, 16

21. Fagerberg, L., Stadler, C., Skogs, M., Hjelmare, M., Jonasson, K., Wiking,
M., Abergh, A., Uhlén, M., and Lundberg, E. (2011) Mapping the Sub-
cellular Protein Distribution in Three Human Cell Lines. J. Proteome Res.
10, 3766–3777

22. Walther, T. C., and Mann, M. (2010) Mass spectrometry-based proteomics
in cell biology. J. Cell Biol. 190, 491–500

23. Mann, M. (2006) Functional and quantitative proteomics using SILAC. Nat.
Rev. Mol. Cell. Biol. 7, 952–958

24. Ong, S. E., Kratchmarova, I., and Mann, M. (2003) Properties of 13C-
substituted arginine in stable isotope labeling by amino acids in cell
culture (SILAC). J. Proteome Res. 2, 173–181

25. Ohta, S., Bukowski-Wills, J. C., Sanchez-Pulido, L., Alves Fde, L., Wood, L.,
Chen, Z. A., Platani, M., Fischer, L., Hudson, D. F., Ponting, C. P.,
Fukagawa, T., Earnshaw, W. C., and Rappsilber, J. (2010) The protein
composition of mitotic chromosomes determined using multiclassifier
combinatorial proteomics. Cell 142, 810–821

26. Boisvert, F. M., Lam, Y. W., Lamont, D., and Lamond, A. I. (2010) A
quantitative proteomics analysis of subcellular proteome localization and
changes induced by DNA damage. Mol. Cell. Proteomics 9, 457–470

27. Boisvert, F. M., and Lamond, A. I. (2010) p53-Dependent subcellular pro-
teome localization following DNA damage. Proteomics 10, 4087–4097

28. Doherty, M. K., Whitehead, C., McCormack, H., Gaskell, S. J., and Beynon,
R. J. (2005) Proteome dynamics in complex organisms: using stable
isotopes to monitor individual protein turnover rates. Proteomics 5,
522–533

29. Doherty, M. K., Hammond, D. E., Clague, M. J., Gaskell, S. J., and Beynon,
R. J. (2009) Turnover of the human proteome: determination of protein
intracellular stability by dynamic SILAC. J. Proteome Res. 8, 104–112

30. Lam, Y. W., Lamond, A. I., Mann, M., and Andersen, J. S. (2007) Analysis of
nucleolar protein dynamics reveals the nuclear degradation of ribosomal
proteins. Curr. Biol. 17, 749–760
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