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The transforming growth factor-β (TGF-β) signalling pathway is a key mediator of fibroblast 
activation that drives the aberrant synthesis of extracellular matrix in fibrotic diseases. Here 
we demonstrate a novel link between transforming growth factor-β and the canonical Wnt 
pathway. TGF-β stimulates canonical Wnt signalling in a p38-dependent manner by decreasing 
the expression of the Wnt antagonist Dickkopf-1. Tissue samples from human fibrotic diseases 
show enhanced expression of Wnt proteins and decreased expression of Dickkopf-1. Activation 
of the canonical Wnt pathway stimulates fibroblasts in vitro and induces fibrosis in vivo. 
Transgenic overexpression of Dickkopf-1 ameliorates skin fibrosis induced by constitutively 
active TGF-β receptor type I signalling and also prevents fibrosis in other TGF-β-dependent 
animal models. These findings demonstrate that canonical Wnt signalling is necessary for 
TGF-β-mediated fibrosis and highlight a key role for the interaction of both pathways in the 
pathogenesis of fibrotic diseases. 
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Activation of fibroblasts and their differentiation into myofi-
broblasts with increased release of extracellular matrix pro-
teins is a key feature of fibrotic diseases. The extracellular 

matrix accumulates and disrupts the physiological tissue archi-
tecture1. Tissue fibrosis may occur after defined stimuli, but in 
many cases, no initiating trigger can be identified. These idiopathic 
fibrotic diseases can affect virtually every organ system. Fibrosis 
may be restricted to single organs such as the lungs or the liver or 
manifest as systemic fibrotic disease involving multiple organ sys-
tems. Systemic sclerosis (SSc) is a prototypical idiopathic systemic 
fibrotic disease that affects the skin and several internal organs 
such as lungs, heart, gastrointestinal tract and kidneys2. Similar to 
other fibrotic diseases, failure of the affected organs is common and 
results in high morbidity and significantly increased mortality. The 
molecular mechanisms leading to aberrant activation of fibroblasts 
and persistently increased release of extracellular matrix compo-
nents are incompletely understood, and molecular therapies for the 
treatment of fibrosis are not yet available for clinical use3.

There is considerable evidence that transforming growth fac-
tor-β (TGF-β) is a key regulator of fibroblast activation in fibrotic 
diseases4,5. The levels of TGF-β are elevated in fibrotic diseases and 
fibroblasts display activation of TGF-β signalling with nuclear accu-
mulation of active Smad3 and increased transcription of TGF-β tar-
get genes6. Moreover, TGF-β induces a gene expression profile in 
resting fibroblasts that is reminiscent of activated fibroblasts7. The 
central role of TGF-β signalling is further highlighted by the devel-
opment of a systemic fibrotic disease in mice with fibroblast-specific 
overexpression of constitutively active TGF-β receptor type I (ref. 8). 
The effects of TGF-β are mediated by a complex network of intracel-
lular signalling events. Evolutionarily conserved Smad proteins are 
considered as major signalling intermediaries for the stimulatory 
effects of TGF-β in fibroblasts9. Smad-independent signal trans-
ducers such as mitogen-activated protein kinases, focal adhesion 
kinase, the tyrosine kinase c-ABL and early growth response 1 have 
also been implicated in the profibrotic effects of TGF-β5. However, 
inhibition of these downstream pathways does not completely abro-
gate the stimulatory effects of TGF-β on fibroblasts, indicating that 
additional pathways are important for transmission of the profi-
brotic effects of TGF-β. Identification of these novel downstream 
mediators of TGF-β might have direct translational implications.

Wnt signalling profoundly affects developmental processes dur-
ing embryogenesis and has an important role for tissue homeos-
tasis in adults10,11. Wnt proteins are secreted ligands that transmit 
their signal across the plasma membrane by interacting with Friz-
zled receptors and low-density lipoprotein receptor-related protein  
co-receptors (LRP5/6) (refs 12,13). Upon binding to their receptors, 
Wnt proteins induce a cascade of  intracellular signalling events, involv-
ing proteins such as Disheveled, Axin, Adenomatosis Polyposis Coli 
and Glycogen Synthase Kinase-3β, that culminates in the stabilization 
of β-catenin. β-catenin translocates to the nucleus, where it binds to 
T-cell factor/lymphoid enhancer-binding factor (Tcf/Lef) to induce 
the transcription of Wnt target genes14. In addition to this canoni-
cal pathway, certain Wnt proteins exert their effects by activation of  
the planar cell polarity pathway and the calcium/calmodulin-
dependent kinase pathway15. Aberrant activation of the canoni-
cal Wnt pathway either by mutations of intracellular regulators or 
by altered expression of Wnt proteins or endogenous inhibitors 
of Wnt signalling has been implicated in a variety of different dis-
eases16,17. Of particular interest, accumulating evidence indicates 
that increased activation of canonical Wnt signalling might have an 
important role in fibrogenesis. So far, pathologically activated canon-
ical Wnt has been implicated in the pathogenesis of pulmonary-,  
renal-, dermal- and liver fibrosis as well as in scarring after myo-
cardial fibrosis and fibrosis following muscular dystrophy18–27. To 
avoid uncontrolled activation, canonical Wnt signalling is tightly 
controlled by an array of negative regulators. Among those, Dickkopf  

proteins (Dkk-1–4) seem to have a key role. The best studied mem-
ber is Dkk-1, which functions as a natural secreted antagonist of 
Wnt signalling28,29. Two different mechanisms have been suggested 
by which Dkk-1 inhibits canonical Wnt signalling. The first model 
proposes that Dkk-1 binds to LPR5/6 and its co-receptor Kremen-
1/2, which promotes internalization of the receptor complex and 
degradation of LRPs. However, more recent studies suggest that the 
inhibitory effect of Dkk-1 is more likely mediated by disruption of 
the ternary complex between Wnt, LRP5/6 and Frizzled receptors, 
and that Kremen-1/2 are not universally required for Dkk-1 func-
tion, but rather have a modulatory function in certain tissues30,31.

In this study, we show that the canonical Wnt pathway is  
activated in fibrotic diseases and potently stimulates fibroblast  
activation and tissue fibrosis. TGF-β signalling decreases the  
expression of Dkk-1 and activates the Wnt pathway. Inhibition 
of canonical Wnt signalling by overexpression of Dkk-1 potently 
reduces the profibrotic effects of TGF-β, demonstrating that the 
interaction of the canonical Wnt pathway and TGF-β has a key role 
in the pathogenesis of fibrotic diseases.

Results
Activation of the canonical Wnt pathway in fibrosis. To investigate 
the activation of the canonical Wnt cascade, we first assessed  
the nuclear accumulation of β-catenin in human fibrotic tissue. 
Skin sections derived from patients with SSc were triple stained 
for β-catenin, the fibroblast marker prolyl-4-hydroxylase-β and  
4,6-diamidino-2-phenylindole (DAPI). Nuclear β-catenin was 
detected in more than 80% of fibroblasts as compared with 
25% of fibroblasts in the skin of healthy individuals (Fig. 1a and 
Supplementary Fig. S1). The results were additionally confirmed by 
triple staining for vimentin, another fibroblast marker, β-catenin 
and DAPI. A prominent activation of the canonical Wnt pathway in 
fibroblasts with nuclear accumulation of β-catenin was also observed 
in idiopathic pulmonary fibrosis and liver cirrhosis (Fig. 1a),  
suggesting that activation of the canonical Wnt pathway is a general 
feature of human fibrotic disease. The canonical Wnt pathway 
was also activated in different experimental models of fibrosis 
with increased nuclear accumulation of β-catenin in bleomycin-
induced dermal fibrosis and in tight-skin-1 (Tsk-1) mice (Fig. 1a). 
Consistent with the increased nuclear accumulation of β-catenin, 
the mRNA levels of axin-2, a classical target of the canonical Wnt 
pathway, were significantly increased in human fibrotic disease and 
in murine experimental fibrosis (Fig. 1b).

Searching for Wnt family members that might stimulate the acti-
vation of the canonical Wnt cascade, we found an overexpression of 
Wnt-1 and Wnt-10b in human fibrotic diseases. Wnt-1 and Wnt-10b 
were strongly expressed in fibrotic skin from patients with SSc (Fig. 2a  
and b). In contrast, in non-fibrotic skin, Wnt-1 was almost undetect-
able and the expression of Wnt-10b was reduced, in particular, in 
the dermal compartment (Fig. 2a). The overexpression of Wnt-1 and 
Wnt-10b was not restricted to fibrotic skin, but was also observed 
in pulmonary fibrosis and liver cirrhosis (Fig. 2a and b). Costain-
ing with the fibroblast markers prolyl-4-hydroxylase-β or vimentin 
demonstrated that fibroblasts were a major source of Wnt-1 and 
Wnt-10b. However, the expression of Wnt proteins is not restricted 
to fibroblasts, but is also found in other cell types (Fig. 2a and b). 
Wnt-2b-13, Wnt-3a, Wnt-6, Wnt-7a, Wnt-7b and Wnt-8a were not 
detectable in all samples by real-time PCR. mRNA for Wnt-2, Wnt-
9a, Wnt-9b and Wnt-16 was detected only in few samples without 
differences between SSc patients and controls. Wnt-4 mRNA was 
detected in the majority of fibrotic skin samples, no differences in the 
intensity or the expression pattern of Wnt-4 protein were observed 
between fibrotic skin and controls by immunohistochemistry.

In addition to the upregulation of Wnt-1 and Wnt-10b, the 
expression of the endogenous inhibitor Dkk-1 was strongly 
decreased in fibrotic diseases (Fig. 2c). Fibroblasts in non-fibrotic 
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skin expressed Dkk-1, whereas the expression of Dkk-1 was virtu-
ally absent in fibroblasts in fibrotic skin. The expression of Dkk-
1 was also decreased in pulmonary fibrosis and in liver cirrhosis 
compared with non-fibrotic lung and liver (Fig. 2c). We also ana-
lysed the levels of other inhibitors of Wnt signalling. sFRP3, sFRP4, 
sFRP5, Dkk-3, Dkk-4 and DkkL-1 were undetectable by real-time 
PCR. Expression of sFRP1, sFRP2 or Dkk-2 mRNA was detected 
in skin samples, but no differences were observed between fibrotic 
tissue and controls.

Canonical Wnt signalling induces fibrosis. To investigate the 
functional role of the canonical Wnt pathway in fibrosis, human 
dermal fibroblasts were incubated with Wnt-1, which we found 
upregulated in human fibrotic diseases. Wnt-1 stimulated the tran-
scriptional activity in Col1a2 reporter assays (Fig. 3a). The increase 
in promoter activity on simultaneous stimulation with TGF-β and 
Wnt-1 was only slightly higher than with single stimulation with 
TGF-β or Wnt-1. Consistently, a dose-dependent increase in col-
lagen release was observed in the supernatants of fibroblasts stim-
ulated with Wnt-1 (Fig. 3b). Of note, the stimulatory effects of 
Wnt-1 were comparable with those of TGF-β, which is considered 
to belong to the most potent profibrotic mediators. Next, we ana-
lysed whether the increased release of collagen on stimulation with 
Wnt-1 might result from increased differentiation of resting fibrob-
lasts into myofibroblasts. Myofibroblasts produce large amounts 
of extracellular matrix and have a key role in fibrotic diseases2. 
Incubation of resting fibroblasts with Wnt-1 increased the levels of  
α-smooth muscle actin (αSMA) protein and mRNA (Fig. 3c and d) 
and induced the formation of stress fibres (Fig. 3e), demonstrating 
increased differentiation of resting fibroblasts into myofibroblasts. 

In addition to Wnt-1, other Wnt proteins such as Wnt-3a also stim-
ulated the release of collagen and induced differentiation of resting 
fibroblasts into myofibroblasts.

We next investigated whether the stimulatory effects of Wnts 
on fibroblasts result from direct TCF binding to collagen and 
αSMA promoters or are mediated indirectly by other Wnt target 
genes. Maximal increases of col1a2 reporter activity, collagen and 
αSMA mRNA levels occurred as late as 24 h after stimulation with 
Wnt proteins. The corresponding increases on the protein level 
were maximal after 48 h. The delayed induction indicates an indi-
rect mechanism rather than a direct, TCF-mediated effect. Indeed,  
promoter analysis of 10,000 bp upstream of the col1a1 and col1a2 
gene did not identify TCF binding elements. To confirm these find-
ings, the effect of recombinant Wnt-1 on the synthesis of collagen 
was measured in the presence of cycloheximide, an inhibitor of 
translation. Cycloheximide completely blocked the induction of 
col1a1 mRNA, demonstrating that the stimulatory effects of Wnt-1 
on collagen synthesis are indirect and require protein neosynthesis 
(Supplementary Fig. S2).

Having demonstrated that the canonical Wnt cascade stimulates 
the release of collagen and myofibroblast differentiation in vitro, we 
next used Wnt-10b transgenic (tg) mice to investigate whether acti-
vation of the canonical Wnt pathway is sufficient to induce fibrosis 
in vivo. Activation of canonical Wnt signalling in dermal fibroblasts 
in Wnt-10b tg mice was confirmed by demonstration of nuclear 
accumulation of β-catenin (Supplementary Fig. S3) and increased 
mRNA levels of the target gene axin-2. Transgenic overexpression of 
Wnt-10b resulted in a massive generalized dermal fibrosis (Fig. 3f). 
First, fibrotic changes were already observed at an age of 3 weeks 
and steadily progressed over time. At the age of 12 weeks, the dermis  
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Figure 1 | Canonical Wnt signalling is activated in fibrotic diseases. (a) β-catenin, the central signalling component of the canonical Wnt pathway, 
accumulated in the nuclei of fibroblasts in samples from patients with SSc (n = 12 for SSc and n = 10 for normal skin), IPF (n = 8 for IPF and n = 6 for  
non-fibrotic lung) and liver cirrhosis (n = 6 for liver cirrhosis and n = 6 for non-fibrotic liver). Nuclear accumulation of β-catenin in dermal fibroblasts  
was also observed in the experimental models of bleomycin-induced dermal fibrosis and in Tsk-1 mice (n = 10 each). A minimum of 100 nuclei per sample 
was counted. (b) The mRNA levels of the Wnt target gene axin-2 were significantly increased in systemic sclerosis patients, bleomycin challenged mice 
and Tsk-1 mice (n = 8 each). * Indicates P-values of less than 0.05 (analysed using the Mann–Whitney U-test) as compared with healthy volunteers or 
with non-fibrotic control mice, respectively. All data are expressed as mean ± s.e.m.
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was almost sixfold thicker in Wnt-10b tg mice than in control 
mice (Fig. 3f). The hydroxyproline content of the skin progres-
sively increased in Wnt-10b tg mice and was tenfold higher in 12-
week-old mice. Myofibroblast counts were significantly increased in  
Wnt-10b tg mice (Fig. 3f).

To investigate whether pharmacological activation of the canoni-
cal Wnt pathway induces fibrosis, non-transgenic mice challenged 
with bleomycin were treated with R-spondin-1, a secreted protein 
that interacts with LRP6 and activates canonical Wnt signalling in 
the presence of Wnt ligands32–34. R-spondin-1 treatment augmented 
bleomycin-induced nuclear accumulation of β-catenin in fibrob-
lasts and enhanced bleomycin-induced dermal fibrosis as shown by 
more severe dermal thickening, higher hydroxyproline content and 
increased myofibroblast counts (Supplementary Fig. S4).

Overexpression of Dkk-1 prevents fibrosis. We next investigated 
whether inhibition of the canonical Wnt pathway blocks the devel-
opment of fibrosis. Overexpression of the endogenous inhibitor 
Dkk-1 was chosen to target the canonical Wnt pathway, because 
Dkk-1 is downregulated in human and in experimental murine 
fibrosis and Dkk-1 is currently evaluated as a potential therapeu-
tic target for other diseases35,36. We therefore interbred Wnt-10b 
tg mice with Dkk-1 tg mice to generate Wnt-10b/Dkk-1 double-
mutant mice. Overexpression of Dkk-1 prevented the profibrotic 
effects of Wnt-10b on dermal thickening and normalized both 
hydroxyproline content and myofibroblast counts at 12 weeks to the 
levels of wild-type control mice (Supplementary Fig. S5).

Moreover, overexpression of Dkk-1 also protected from bleomy-
cin-induced fibrosis. Bleomycin-induced dermal thickening, accu-
mulation of hydroxyproline and myofibroblast differentiation was 
not observed in Dkk-1 tg mice (Fig. 4a).

To further substantiate the antifibrotic effect of Wnt blockade, 
we analysed whether overexpression of Dkk-1 ameliorates fibrosis 

in Tsk-1 mice. We therefore generated Dkk-1/Tsk-1 double-tg mice 
(Dkk-1/Tsk-1 mice) and compared fibrotic changes with those of 
Tsk-1 littermates. Fibrosis was significantly reduced in Dkk-1/Tsk-1 
mice with reduced hypodermal thickening, hydroxyproline content 
and myofibroblast counts comparable with control mice not bearing 
the Tsk-1 mutation (Fig. 4b).

We also performed loss-of-function studies using neutralizing 
antibodies against Dkk-1. Consistent with the finding that the levels 
of Dkk-1 are strongly decreased and almost undetectable in fibrotic 
diseases, neutralizing antibodies against Dkk-1 resulted only in a 
slight increase in fibrosis scores with nonsignificant increases in 
dermal thickness, myofibroblast counts and hydroxyproline content. 
However, treatment of Dkk-1 tg mice with neutralizing antibodies 
against Dkk-1 resulted in a significant exacerbation of fibrosis. The 
protective effects of the tg overexpression of Dkk-1 were almost 
completely abrogated by treatment with neutralizing antibodies 
against Dkk-1 (Supplementary Fig. S6).

To evaluate the effect of the neutralization of Dkk-1 in the 
absence of additional profibrotic stimuli, healthy mice were treated 
with neutralizing antibodies against Dkk-1. Although there was 
some trend, treatment of mice with neutralizing antibodies against 
Dkk-1 did not result in statistically significant increases in dermal 
thickness, number of myofibroblasts or hydroxyproline content 
compared with sham-treated control mice. We hypothesized that 
this may result from a counter-regulation in healthy mice that lim-
its the activation of canonical Wnt signalling on neutralization of 
Dkk-1. Indeed, we observed only a slight increase in the number 
of fibroblasts with nuclear accumulation of β-catenin on treatment 
with neutralizing antibodies against Dkk-1 (24 ± 3 versus 19 ± 4 %).  
Consistently, the mRNA levels of axin-2 in the skin were also 
increased by only 26 ± 9%. We also observed an increase of 97 ± 12% 
in the mRNA levels of Dkk-2 in mice treated neutralizing anti-
bodies against Dkk-1 compared with sham-treated controls. This 
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Figure 2 | Wnt-1 and Wnt-10b are upregulated in fibrotic diseases and Dkk-1 is downregulated. (a) Confocal microscopy with double staining for 
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compensatory increase of Dkk-2 did not occur under fibrotic con-
ditions such as challenge with bleomycin or overexpression of TGF-
β receptor (TBR). Thus, a compensatory increase in other endog-
enous inhibitors such as Dkk-2 may limit the activation of canonical 
Wnt signalling and prevents fibrosis on neutralization of Dkk-1 in 
healthy mice, whereas this escape mechanism is not operative in 
fibrotic conditions.

TGF- activates canonical Wnt signalling. Because of the cru-
cial role of TGF-β in fibrotic disease, we speculated that TGF-β  
signalling might contribute to activation of the canonical Wnt 
pathway. Stimulation with TGF-β induced nuclear accumulation of 
β-catenin in cultured fibroblasts (Fig. 5a) and increased the activ-
ity of Tcf/Lef-responsive elements in reporter assays (Fig. 5b). 
Moreover, the canonical Wnt pathway was activated in adenovi-
ral overexpression of a constitutively active TGF-β receptor type I  
(Ad-TBRIact)-induced fibrosis with nuclear accumulation of  
β-catenin in fibroblasts and increased mRNA levels of axin-2  
(Fig. 5c and d).

On the basis of the decreased expression of Dkk-1, we hypoth-
esized that TGF-β signalling might regulate canonical Wnt signal-
ling via Dkk-1. Stimulation with TGF-β reduced the levels of Dkk-1 
mRNA and protein in dermal fibroblasts by 60 and 80%, respec-
tively (Fig. 5e and f). Of note, we observed a decrease in Dkk-1 and 
an increase in TOP-reporter activity upon stimulation with TGF-
β in human embryonic kidney 293 cells and in A549 pulmonary 
epithelial cells, indicating that the stimulatory effects of TGF-β on 
canonical Wnt signalling are not restricted to fibroblasts. Further-
more, overexpression of TBRIact in mice significantly reduced the 
expression of Dkk-1 (Fig. 5g). The TGF-β-mediated suppression of 
Dkk-1 was independent of the canonical Smad pathway, but was 
mediated by the mitogen-activated kinase p38. Short interfering 
RNA (siRNA) against Smad4 effectively reduced the levels of Smad4 
and also decreased the expression of the Smad target plasminogen-
activator inhibitor-1 in fibroblasts, but did not prevent the decrease 
of Dkk-1 mRNA and protein on incubation with TGF-β (Sup-
plementary Fig. S7a). siRNA against Smad3 also did not prevent 
the inhibitory effects of TGF-β on Dkk-1. Using pharmacological 
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inhibitors as well as siRNA, we demonstrated that p38 is crucial for 
the inhibitory effects of TGF-β on the expression of Dkk-1 (Supple-
mentary Fig. S7b and S7c). Inhibition of p38 completely prevented 
the downregulation of Dkk-1 by TGF-β. In contrast, inhibition of 
Rock, JNK and Rac, all of which have been implicated in TGF-β sig-
nalling as well, did not reduce the inhibitory effects of TGF-β on the 
expression of Dkk-1 (Supplementary Fig. S7b). When fibroblasts 
were stimulated with TGF-β in the presence of recombinant Dkk-1,  
activation of canonical Wnt signalling was significantly reduced  
as shown by impaired nuclear accumulation of β-catenin (Fig. 6a  
and b) and activation of Tcf/Lef-responsive elements (Fig. 6c). 
Consistent with these in vitro results, tg overexpression of Dkk-1 
prevented the Ad-TBRIact-induced activation of the canonical Wnt 
pathway in mice and reduced the nuclear accumulation of β-catenin 
in fibroblasts and mRNA levels of axin-2 to the levels of wild-type 
control mice (Fig. 6d and e).

To confirm the importance of TGF-β for the activation of the 
canonical Wnt pathway in fibrosis, we also evaluated the effects of 
the selective TBRI inhibitor SD-208 on canonical Wnt signalling. 
Treatment with SD-208 significantly reduced the nuclear accumula-
tion of β-catenin in activated fibroblasts and prevented the increase 
in axin-2 mRNA levels in bleomycin-induced fibrosis, Tsk-1 mice 
and Ad-TBRIact-induced fibrosis (Fig. 7a and b; Supplementary  
Fig. S8), highlighting that TGF-β has a key role for the activation of 
the canonical Wnt cascade in fibrosis.

Dkk-1 ameliorates Ad-TBRIact-induced fibrosis. To determine 
whether the downregulation of Dkk-1 is required for the profibrotic 
effects of TGF-β, we evaluated the extent of fibrosis in Dkk-1 tg mice 
infected with Ad-TBRIact. Overexpression of TBRIact in the skin 
induced dermal fibrosis in wild-type mice with dermal thickening, 
increased hydroxyproline content and myofibroblast differentiation 
as compared with control mice infected with Ad-LacZ. In contrast, 
Dkk-1 tg mice were protected from Ad-TBRIact-induced fibrosis. 
Dermal thickening, hydroxyproline content and myofibroblast 
counts on infection with Ad-TBRIact were significantly reduced 
in Dkk-1 tg mice as compared with wild-type littermates (Fig. 8). 
These findings indicate that the regulation of Dkk-1 by TGF-β has 
an important role in the pathogenesis of fibrosis.

Discussion
Activation of the canonical Wnt pathway seems to be a general fea-
ture of fibrotic diseases that occurs in systemic fibrotic diseases such 
as SSc, but also in isolated organ fibrosis such as pulmonary, renal 
or liver fibrosis. Indeed, pathologically activated canonical Wnt 
signalling has been implicated in various fibrotic diseases18–27. We 
observed an overexpression of the Wnt proteins Wnt-1 and Wnt-
10b in human samples from different fibrotic diseases and also a 
significantly decreased expression of the endogenous inhibitor 
Dkk-1. These changes resulted in an activation of the canonical 
Wnt pathway with nuclear accumulation of β-catenin and increased 
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transcription of target genes in SSc, idiopathic pulmonary fibrosis 
and liver cirrhosis.

The activation of the canonical Wnt pathway has a key role for 
fibroblast activation and collagen release in fibrosis. Wnt signal-
ling stimulated the differentiation of resting fibroblasts into myofi-
broblasts, increased the release of extracellular matrix components  
and induced fibrosis. Of note, fibrotic disease induced by Wnt  
activation was more pronounced than the effects of other fibrotic 
pathways37. The activation of the canonical Wnt pathway and its 
potent profibrotic effects suggest that the Wnt pathway might be 
a potential target for novel antifibrotic approaches. We have cho-
sen overexpression of the endogenous inhibitor Dkk-1 to inhibit 
the canonical Wnt pathway, because, first, decreased levels of  
Dkk-1 contributed to the activation of the canonical Wnt pathway  
in human fibrosis, second, Dkk-1 is currently investigated as a 
potential therapeutic target in other diseases35,36 and third, this 
approach allows broader inhibition of the canonical Wnt pathway 
than targeting single Wnt proteins. Overexpression of Dkk-1 pre-
vented fibrosis in inflammation-driven models such as the bleomy-
cin model as well as in inflammation-independent models such as 
fibrosis in Tsk-1 mice, indicating that inhibition of the canonical 
Wnt pathway might be effective in acute as well as in chronic stages 
of fibrotic disease.

Of particular interest, our data highlight the crosstalk between 
TGF-β signalling and the canonical Wnt pathway. Activated TGF-
β signalling is a common denominator of fibrotic diseases5. We 
demonstrate on multiple experimental levels that TGF-β activates 
the canonical Wnt pathway. TGF-β seems to be the major stimulus 

for the activation of the canonical Wnt pathway in fibrotic diseases, 
because inhibition of TGF-β signalling by a selective TBRI inhibi-
tor strongly reduced the activation of the canonical Wnt pathway 
in experimental fibrosis. We identified TGF-β-mediated decrease of 
Dkk-1 via p38 as major molecular mechanism for the activation of 
the canonical Wnt pathway. Furthermore, addition of recombinant 
Dkk-1 abrogated the stimulatory effects of TGF-β on the canoni-
cal Wnt pathway in fibroblasts. However, in other cell types, TGF-β  
might also stimulate Wnt signalling by other mechanisms such 
as inhibition of Glycogen Synthase Kinase-3β aside decreasing  
Dkk-1 (refs 38,39). Although the TGF-β-induced repression of 
Dkk-1 was independent of Smad3 and Smad4, our findings do not 
exclude a role of Smad proteins in the regulation of canonical Wnt 
signalling, as overexpression of Smad3 stimulated TOPflash reporter 
activity independent of TGF-β40.

TGF-β activates a plethora of intracellular signalling cascades41. 
However, the molecular mediators of the profibrotic effects of TGF-
β are only partially understood and the best targets for antifibrotic 
therapies have not yet been identified. Although the key role of  
TGF-β signalling for fibrosis is undoubted, first attempts to target 
TGF-β signalling in humans failed. CAT-192, a neutralizing anti-
body against TGF-β1, was ineffective due to low-affinity binding 
of TGF-β1 (ref. 42). Targeting the downstream mediator c-Abl in 
combination with platelet-derived growth factor receptor also did 
not yield major benefits43. Inhibition of the canonical Wnt pathway 
might be a novel approach to prevent the profibrotic effects of  TGF-β  
signalling. Our data implicate that interaction of the canonical 
Wnt pathway and TGF-β is an important mechanism for fibrotic 
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diseases. Inhibition of this pathway by Dkk-1 significantly reduced 
the stimulatory effects of TGF-β on fibroblasts and prevented Ad- 
TBRIact-induced fibrosis. Notably, TGF-β also has a major role in 
bleomycin-induced fibrosis and particularly Tsk-1 mice, which 
showed reduced fibrosis in Dkk-1 tg animals. Together, these data 
indicate that inhibition of the canonical Wnt pathway might be an 
effective approach to target TGF-β signalling in fibrotic diseases.

Methods
Patients. Skin biopsies were obtained from 12 SSc patients and ten age- and  
sex-matched healthy volunteers. All patients fulfilled the criteria for SSc, as  
suggested by LeRoy and Medsger44. Ten patients were women, and two were  
men. The age ranged from 30 to 51 years (median 38 years). All patients had  
diffuse cutaneous SSc.

Lung tissue was obtained from eight patients with IPF and six matched non-
fibrotic controls obtained from patients who died from head trauma (3) and from 
patients who had biopsy for suspected lung metastasis of different tumours (3).  
Of the patients with IPF, five were women and three were men. The age ranged 
from 42 to 72 years (median 54 years).

Liver samples were obtained from five patients with alcoholic liver cirrhosis 
and five controls who died from head trauma (3) and from patients who had 
biopsy for suspected liver metastasis (2). Two of the patients with liver cirrhosis 
were women and three were men. The age ranged from 38 to 68 years (median  
50 years).

All samples from trauma patients were obtained within 3 h after the diagnosis 
of death. All biopsies taken for suspected metastasis were judged to be tumour-free 
by two independent pathologists. The human studies were approved by the Ethical 
committee of the Medical faculty of the University of Erlangen-Nuremberg.

Cell culture. Human fibroblasts were prepared as outgrowth cultures from eight 
skin biopsies and cultured as described45. In selected experiments, fibroblasts were 
stimulated with recombinant TGF-β (10 ng ml − 1; R&D Systems, Ambington, UK) 
and recombinant human Wnt-1 (0.3–3 ng ml − 1; PeproTech, Hamburg, Germany). 
Stimulation experiments were performed in DMEM/0.1% FCS. Fibroblasts from 
passages four to eight were used for the experiments. All patients and controls 
signed a consent form approved by the local institutional review board.

Animals and treatments. Mice overexpressing Wnt-10b under the FABP4 pro-
moter (Wnt-10b tg mice) and Dkk-1 under the Col1a1 2.3-kb promoter (DKK1 tg 
mice) have previously been described46,47. The role of the Wnt cascade for fibrosis 
was investigated in three different models. (i) In the bleomycin-induced fibrosis 
model, dermal fibrosis was induced in six-week-old mice by repeated subcutaneous 
injections of 100 µl of bleomycin at a concentration of 0.5 mg ml − 1 into defined  
areas of 1 cm2 at the upper back every other day for 4 weeks48. Mice challenged 
with 0.9% NaCl served as controls. (ii) In the Tsk-1 model, a dominant mutation of 
the fibrillin-1 gene activates profibrotic signalling cascades and induces a SSc-like 
phenotype in fibroblasts with endogenous activation, and persistently increased 
release of collagen49. Tsk-1 mice are characterized by progressive accumulation  
of collagen and hypodermal thickening. (iii) Ad-TBRIact (refs 50,51) served as  
a model of TGF-β signalling-mediated fibrosis. Replication-deficient type 5  
adenoviruses encoding for TBRIact or LacZ were injected at concentrations of 
6.7×107 p.f.u. per mouse into defined areas of 1 cm2 at the upper back. The first 
injection was performed at an age of 4 weeks and repeated 4 weeks later. The mice 
were killed 4 weeks after the last injection.

To maximally activate the Wnt cascade in vivo, mice were treated with the  
Wnt-agonist R-spondin (kindly provided by A. Arbo). Recombinant R-spondin 
was injected subcutaneously at a concentration of 8 mg per kg per day for 4 weeks.

Neutralizing antibodies against murine Dkk-1 were kindly provided by  
W. Richards. Rat anti-Dkk-1 antibodies were administered by intraperitoneal  
injections three times per week at a dose of 50 mg kg − 1 as described52.

For selective inhibition of TGF-β signalling, mice were treated with SD-208 at 
doses of 20 mg kg − 1 orally. SD-208 is an active ATP-competitive inhibitor of TBRI 
with an IC50 of 49 nM, which displays a  > 100-fold and a  > 17-fold selectivity over 
TGF-βRII and other common kinases, respectively53. All mouse experiments were 
approved by the government of Mittelfranken.

Reporter assays. A Col1a2 promoter–luciferase construct containing the  
fragment between  − 353 and  + 58 nucleotides of Col1a2 was kindly provided by 
M. Trojanowska54. TOP Flash plasmids and FOP Flash plasmids containing three 
wild-type or three mutated copies of Tcf consensus binding sites upstream of 
firefly luciferase complementary DNA were purchased from Millipore Corporation 
(Billerica, MA, USA). A common β-galactosidase reporter vector (Sigma-Aldrich, 
Steinheim, Germany) was used as control. Luciferase and β-galactosidase activities 
were determined using a microplate luminometer (Berthold Technologies,  
Bad Herrenalb, Germany) and a MRX ELISA reader (Dynex Technologies,  
Chantilly, USA).
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Figures 7 | Inhibition of TGF- signalling reduces the activation of canonical Wnt in experimental fibrosis. (a) Treatment with SD-208, a selective 
inhibitor of TBRI, significantly decreased the nuclear accumulation of β-catenin in fibroblasts in bleomycin-induced dermal fibrosis, in Tsk-1 mice and in 
TBRIact induced fibrosis (n ≥ 5 for all groups in all models). (b) SD-208 completely prevented the increase in the mRNA levels of axin-2 in these mouse 
models (n ≥ 5 for all groups in all models). * Indicates P-values of less than 0.05 (as analysed with the Mann–Whitney U-test) compared with bleomycin 
treated-, Tsk-1, or TBRIact mice without SD-208. All data are expressed as mean ± s.e.m.
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Quantitative real-time PCR. Gene expression was quantified by TaqMan and 
SYBR Green real-time PCR using the ABI Prism 7300 Sequence Detection System 
(Applied Biosystems, Foster City, CA, USA)55. Specific primer pairs for each gene 
were designed with the Primer 3 software. The following primer pairs were used: 
human axin-2: 5′-CATGACGGACAGCAGTGTAGA-3′ (forward), 5′-TACTGCC 
CACACGATAAGGAG-3′ (reverse); murine axin-2: 5′-GCCACCAAGACCTA 
CATACGA-3′ (forward), 5′-GAGCCGATCTGTTGCTTCTT-3′ (reverse); human 
Dkk-1: 5′-GACTGTGCCTCAGGATTGTGT-3′ (forward), 5′-CAGATCTTGGAC 
CAGAAGTGTCT-3′ (reverse); human α1(I) procollagen: 5′-TCAAGAGAAG 
GCTCACGATGG-3′ (forward), 5′-TCACGGTCACGAACCACATT-3′ (reverse); 
human αSMA: 5′-AAGAGGAATCCTGACCCTGAA-3′ (forward), 5′-TGGTGAT 
GATGCCATGTTCT-3′ (reverse); murine αSMA: 5′-ATGCCTCTGGACGTA 
CAACTG-3′ (forward), 5′-CACACCATCTCCAGAGTCCA-3′ (reverse). Samples 
without enzyme in the reverse transcription reaction (Non-RT controls) were  
used as negative controls. Unspecific signals caused by primer dimers were  
excluded by no template controls and by dissociation curve analysis. A predevel-
oped β-actin assay (Applied Biosystems) was used to normalize for the amounts  
of cDNA within each sample.

Quantification of collagen protein. The amount of soluble collagen in cell culture 
supernatants was quantified using the SirCol collagen assay (Biocolor, Belfast, 
Northern Ireland)56. The total collagen content in skin samples including insoluble 
collagen was determined by hydroxyproline assays57.

Visualization of stress fibres. Actin stress fibres were visualized with rhodamine-
conjugated phalloidin (Molecular Probes, Eugene, OR, USA)56 and analysed using 
a Nikon Eclipse 80i microscope (Nikon, Badhoevedorp, The Netherlands).

Western blot analysis. Western blotting was performed using monoclonal 
antibodies against αSMA (Sigma-Aldrich), polyclonal anti-Dkk-1 antibodies (R&D 
Systems), anti-β-catenin (R&D Systems), anti-Smad3 and anti-Smad4 (Santa Cruz 
Biotechnology, Heidelberg, Germany) and anti-p38 (Cell Signaling Technology, 
Danvers, MA, USA). Equal loading of proteins was confirmed by visualization 
of α-tubulin (Invitrogen, Darmstadt, Germany) or β-actin (Sigma-Aldrich). The 
western blot bands were quantified using ImageJ Software (version 1.41).

siRNA-mediated gene silencing. Fibroblasts were transfected with 1.5-µg 
siRNA reagent (ON-TARGET plus smart pool) for human Smad3 and Smad4 or 
prevalidated siRNAs against p38α, p38β, p38γ and p38δ (all Dharmacon, Lafayette, 
CO, USA) using the human fibroblast Nucleofector kit (Amaxa GmbH, Cologne, 

Germany). Fibroblasts transfected with non-targeting control siRNAs (Ambion, 
Darmstadt, Germany) were used as controls. Medium was changed after 6 h to 
remove the nucleofector solution. Cells were collected for further analyses after 36 h.

Pharmacologic inhibition of TGF--dependent pathways. To inhibit non- 
canonical, Smad-independent intracellular TGF-β pathways, fibroblasts were  
incubated with the Rock inhibitor Y27632 (1 µM, Calbiochem, Darmstadt,  
Germany), the p38 inhibitor SB202190 (10 µM, Tocris Bioscience, Bristol, UK),  
the JNK inhibitor SP600125 (1 µM, Tocris Bioscience) and the Rac inhibitor 
NSC23766 (300 µM, Tocris Bioscience).

Histology. Paraffin-embedded tissue sections were stained with haematoxylin and 
eosin, with trichrome or with Sirius Red, according to common protocols58. The 
dermal thickness was analysed with a Nikon Eclipse 80i microscope (Nikon) by 
measuring the maximal distance between the epidermal–dermal junction and the 
dermal–subcutaneous fat junction at four different skin sections of each mouse as 
described48. The hypodermal thickness was determined by measuring the thick-
ness of the subcutaneous connective tissue beneath the panniculus carnosus at four 
different sites at the upper back in each mouse. The evaluation was performed by 
two independent, blinded examiners.

Immunohistochemistry and confocal microscopy. Formalin-fixed, paraffin- 
embedded skin sections were stained with anti-β-catenin antibodies (R&D 
Systems), anti-αSMA antibodies (Sigma-Aldrich), anti-Wnt-1 antibodies (Abcam, 
Cambridge, UK), anti-Wnt-10b antibodies (ProSci Incorporated, Poway, CA, USA),  
anti-murine Dkk-1 (R&D Systems) and anti-human Dkk-1 (R&D Systems). 
Concentration-matched species-specific immunoglobulins (Vector, Burlingame, 
CA, USA) were used as control antibodies. Biotinylated secondary antibodies and 
fluorescence-labelled streptavidin complexes (CF488A or CF594) (all Vector) were 
used for visualization. To identify nuclear accumulation of β-catenin in fibroblasts, 
skin sections were triple stained for β-catenin, DAPI and either the fibroblast 
markers prolyl-4-hydroxylase-β (Acris Antibodies, Herford, Germany) or vimentin 
(Sigma-Aldrich) or the myofibroblast marker αSMA. In addition, costainings for 
β-catenin, the epithelial marker E-cadherin (Dako, Glostrup, Denmark) and DAPI 
were performed. Confocal images were obtained by using a LSM 700 microscope 
(Carl Zeiss, Jena, Germany) at 594 and 488 nm.

For quantification of myofibroblasts, single, spindle-shaped cells in the dermis 
positive for αSMA were counted in six randomly chosen high-power fields at 
200-fold magnification by two experienced researchers in a blinded manner as 
described48,56,58.

Figure 8 | Inhibition of canonical Wnt signalling by Dkk-1 prevents Ad-TBRIact-induced fibrosis. Intradermal infection with adenoviruses encoding 
for TBRIact (Ad-TBRI) induced dermal fibrosis in wild-type mice, but not in Dkk-1 transgenic (Dkk-1 tg) littermates. Representative histological sections 
stained with haematoxylin and eosin, Sirius Red and trichrome are shown (horizontal scale bar, 100 µm). The dermal thickening observed in wild-type 
mice on infection with Ad-TBRI was significantly ameliorated in Dkk-1 transgenic (Dkk-1 tg) mice. The Ad-TBRI-mediated increases in hydroxyproline 
content and in the number of myofibroblasts were also reduced in Dkk-1 tg mice (n ≥ 5 for all groups). * Indicates P-values of less than 0.05 (as analysed 
using the Mann–Whitney U-test) compared with wild-type mice infected with Ad-TBRI. All data are expressed as mean ± s.e.m.
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Statistical analysis. Data are expressed as mean ± s.e.m. The Wilcoxon signed-
rank tests for related samples and the Mann–Whitney U-test for non-related 
samples were used for statistical analyses. In a subset of experiments, the mean 
values of the control groups were set to 1. All other values were expressed as x-fold 
changes compared with the respective controls used as ‘comparison mean values’. 
P-values  < 0.05 were considered statistically significant. 
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