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Biological materials are often based on simple constituents and grown by the principle of self-
assembly under ambient conditions. In particular, biomineralization approaches exploit efficient 
pathways of inorganic material synthesis. There is still a large gap between the complexity 
of natural systems and the practical utilization of bioinspired formation mechanisms. Here 
we describe a simple self-assembly route leading to a CaCO3 microlens array, somewhat 
reminiscent of the brittlestars’ microlenses, with uniform size and focal length, by using 
a minimum number of components and equipment at ambient conditions. The formation 
mechanism of the amorphous CaCO3 microlens arrays was elucidated by confocal Raman 
spectroscopic imaging to be a two-step growth process mediated by the organic surfactant. 
CaCO3 microlens arrays are easy to fabricate, biocompatible and functional in amorphous or 
more stable crystalline forms. This shows that advanced optical materials can be generated by 
a simple mineral precipitation. 
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Natural materials often grow by biologically controlled self-
assembly processes under ambient conditions1,2. Despite 
using easily accessible materials only, they often show 

remarkable functional properties. For example, biominerals in 
many skeletons are strong and have a crucial role in supporting 
and/or protecting the bodies of living organisms. Some biomin-
erals also function as optical devices in organisms. This is seen in 
glass sponges and brittlestars3,4, for example, where optical fibres 
and microlenses show exceptional optical performances originating 
from optimized biomineral shape or crystal orientation.

Biomineralization has been widely studied to first understand 
how inorganic materials are produced under the control of organic 
molecules in nature and second to apply this knowledge in synthetic 
systems5–9. There have been reports on the synthetic fabrication of 
CaCO3 structures, which mimic biominerals via templating; such 
as the replica of the sea urchin skeletal plate10,11, the micropat-
terned single calcite crystal12 and periodic optical nanostructures 
of inverse opal13. These studies have demonstrated that biom-
ineral structures could be reconstructed by using a biomimetic  
mineralization approach and showed how to utilize the most repre-
sentative characteristics of biomineralization, namely, amorphous  
precursor pathways and templates14–16. These synthetic procedures 
remain restricted to small sample sizes, are still very complex and 
also require further steps for preparing or removing biological or  
artificial templates.

Various fabrication methods combined with lithographic tech-
niques have been demonstrated to be practical for the synthesis of 
microlens arrays17–22. However, these techniques are limited to the 
fabrication of microlens arrays on flat substrates and require mul-
tiple steps, such as baking, developing and etching. Furthermore, 
the aforementioned approaches yield to microlens arrays made of 
organic materials with comparatively low refractive indices. How-
ever, it is often desirable to have a high refractive index and short 
focal lengths. This can be achieved using inorganic materials.

Here we show how these microlens arrays can be synthesized by 
a simple mineral precipitation process without any template and 
at ambient conditions. In this work, we prepared arrays of CaCO3 

microlenses with uniform size and focal length by using a saturated 
calcium solution and CO2 in air, together with a widely used sur-
factant as the base materials. To understand the formation mecha-
nism of the microlens structures, confocal Raman spectroscopic 
imaging was carried out to characterize the three main components: 
carbonate, water and organic. The role of the organic molecules, act-
ing as a surface-active and structure-directing agent, is discussed 
and we draw conclusions on how the uniformity of the structures 
is achieved. Furthermore, this article reports on the biocompatibil-
ity as well as the optical properties of the microlens arrays at the  
micro- and macroscopic scale.

Results
Synthesis and formation of the CaCO3 microlens arrays. CaCO3 
precipitates start to form and agglomerate at the interface of air 
and saturated Ca(OH)2 solution right after the solution reacts 
with CO2 in air. The synthesis process is schematically described 
in Fig. 1a. This surface aggregation goes on for 15–20 min with 
Brownian motion (Supplementary Movie 1). The scanning electron 
microscopy (SEM) images in Fig. 1b,c clearly show the nanometre-
sized CaCO3 precipitates adhered to the agglomerates, as indicated 
by white arrows. The agglomerates attain a quasi-hemispherical 
shape and diameter of up to 2.7 µm within 2 min (Fig. 1b,c). The 
CaCO3 agglomerates are also formed in the absence of surfactant 
or monolayers, although the morphology is not uniform in this case 
(Supplementary Fig. S1a). The role of the surfactant, polysorbate 
20 (non-ionic, or Tween 20, PS 20), composed of fatty acid esters 
of polyoxyethylene sorbitan, is to regulate the growth of CaCO3 
agglomerates into a uniform size and shape (Supplementary Fig. S1).  
PS 20 molecules have adsorbed onto the CaCO3 precipitates 
and agglomerates at the early stage of growth based on a time-
dependent surface tension measurement, as depicted in Fig. 1a. In 
these measurements, the surface tension of water containing 10 µM 
of PS 20 ranged from 40 to 55 mN m − 1 (Supplementary Fig. S2), 
demonstrating that the surfactant was located at the air–water 
interface. However, the surface tension of Ca(OH)2 solution with 
the same concentration of the surfactant was close to that of pure 
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Figure 1 | Formation of CaCO3 microlens array. (a) Schematic illustration for the formation of CaCO3 microlens array. (b,c) SEM images of CaCO3 
agglomerates after 1–2 min of reaction. The scale bars are 1 µm. The inset of c is a magnified image of the white dotted box. The scale bar is 200 nm. 
White arrows indicate the nanometre-sized CaCO3 precipitates. (d) In situ optical microscopy images observed on the surface of Ca(OH)2 solution versus 
reaction time. The scale bar is 10 µm. (e) The changes of both pH (red dot) in Ca(OH)2 solution and averaged size (green rectangle) of CaCO3 microlens 
with standard deviation plotted versus time (statistics from size measurement of 150 microlenses for each time point, 50 microlenses from each of three 
different samples).
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water, 70 mN m − 1, indicating that only a few surfactant molecules 
were located at the air–solution interface. This clearly demonstrates 
that most of the surfactant must adsorb onto the precipitates and 
the quasi-hemispherical agglomerates. Indeed, considering the 
critical micelle concentration of PS 20 (80 µM at 21 °C), hydrophilic 
groups of the non-ionic surfactant are likely to be adsorbed on the 
hydrophilic surface of CaCO3 (ref. 23).

As the CaCO3 agglomerates grow, the floating agglomerates self-
assemble to form a close packed two-dimensional array and are 
linked together by further growth. The growth of these agglomerates 
was monitored in real time by optical microscopy in transmission 
mode for 1 h, and the images obtained at different reaction times are 
shown in Fig. 1d. The size of the CaCO3 agglomerates and pH change 
of the solution plotted versus the reaction time is shown in Fig. 1e. 
The growth speed, estimated from the slope of the agglomerate size 
as a function of time (Fig. 1e), fits to the corresponding decrease 
in pH. As shown below, the proton concentration increases when 
carbonate ions are combined with Ca ions to form precipitates24: 
Ca2+  + CO2 + H2O→Ca2+  + H2CO3→Ca2+  + H +  + HCO3

 − →
Ca2+  + 2H +  + CO3

 − →2H +  + CaCO3.
The morphology of CaCO3 microlens arrays after 60 min of 

growth is represented by a hexagonally packed array of hemispheri-
cal structures of homogeneous size and shape (Fig. 2a,b). The mic-
rolenses are connected to each other forming a film, as shown by the 
SEM image of sectionally cut CaCO3 microlens arrays by focused 
ion beam milling (Fig. 2b).

Optical properties. The microlenses are consistent in shape and 
exhibit homogenous optical properties across an entire array.  
Figure 2c is the optical transmission image of a microlens array.  
Figure 2d shows the multiple image of a single ‘A’ projected through 
the array of microlenses25. The projected ‘A’ image is 3.2 µm, which 
is 620 times smaller than the 2 mm object ‘A’. The projected images 
of ‘A’ are uniform in size and shape, which indicates the uniform-
ity of the structures and focal lengths of the microlenses. This 
was further confirmed by a Fourier transformation of the images  
Fig. 2c,d into Fig. 2e,f, respectively. The discrete dot patterns indicate 
that the repeating units in Fig. 2e,f are uniform and well ordered. 
The projected image of the ‘A’ array in Fig. 2d is not observed by 
optical microscopy under crossed polarization. In addition, the 
microlens array does not show any peaks in X-ray diffraction (Sup-
plementary Fig. S3), which means that it is composed of amorphous 
CaCO3 (ACC). The ACC microlens array was crystallized into cal-
cite by thermal heating over 300 °C (Supplementary Fig. S3). The 
cross-polarized light microscopy image of the calcite microlens 
array shows birefringency (Supplementary Fig. S4). The microlenses 
keep their shape after crystallization and the array still shows the 
projected images of ‘A’ even under cross-polarized light because  
of birefringence. The optical image obtained with the ACC lenses 
(Fig. 2d) is clearer than the optical image with crystalline lenses 
(Supplementary Fig. S4b), probably because of the birefringence 
of the calcite microlenses. This characteristic is not observed with 
biomineralized single calcite microlens arrays in the brittlestar, 
Ophiocoma wendtii4,22. This is because, in the case of brittlestar, 
the non-birefringent optical axis is perpendicular to the microlens 
arrays.

The light path through an ACC microlens array and the focal 
length are characterized by confocal microscopy as shown in Fig. 3 
(ref. 26). Figure 3c shows 11 spots corresponding to the light of a col-
limated laser beam focused at the back focal plane of the microlens 
array as shown in Fig. 3a. The beam waists at the focal plane of the 
microlenses were uniform in size and smaller than 1.2 µm (meas-
ured at full width at 1/e2). The x–z plane images in Fig. 3b,d show 
the position of the chitosan coating at the surface of the microlenses 
in contact with the microscope coverslip and the converging light 
path at the back plane of the microlenses, respectively. To calculate 

the focal length of the microlenses, we measured their thickness by 
atomic force microscopy line scans and the distance from the back 
plane of the microlenses and the focused point (Supplementary  
Fig. S5). We measured a focal length of 7.2 ± 0.3 µm. The focal length 
of the microlenses focusing in the glass coverslip was calculated 
using the relation, 

f n R n= −glass ACC/( )1

where R = 3.1 ± 0.2 µm is the radius of curvature calculated based on 
the geometry of 11 microlenses measured by atomic force micros-
copy line scans, and nglass and nACC are refractive indices of glass 
(1.50) and ACC (1.58, taken from the measured value of 1.5791–
1.5830 by Merten and group27), respectively. Entering these param-
eters into equation (1), we find f = 8.0 ± 0.5 µm.

Structural characterization by Raman spectroscopy. The CaCO3 
microlenses show structural complexity as found by depth scans 
with confocal Raman spectroscopic imaging (Fig. 4), revealing  
the distribution of carbonate, water and organic components.  
A schematic illustration of a depth scan is shown in Fig. 4a.  

(1)(1)

Figure 2 | Morphology and optical properties of the CaCO3 microlens 
array. (a) SEM image of the homogeneous and well-ordered CaCO3 
microlens array from top view. (b) SEM image of cross-sectioned microlens 
array from 52° tilted view. The microlens array was etched by using 
focused ion beam with Ga ion beam. The bright layer on the surface of the 
microlens is the Pt coating, the surface without Pt coating was damaged by 
the ion beam and shows roughness as a result. The microlens structures 
were connected with each other. (c,d) Optical microscopy images of 
CaCO3 microlens array and inversely projected ‘A’ array, respectively. The 
magnified images are shown in each inset. (e,f) The Fourier transformed 
images from c and d, respectively. All the scale bars are 5 µm.
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Figure 4b shows confocal Raman images of carbonate (spectral 
region 1,040–1,125 cm − 1) at different depths. The Raman spectra 
in this band show the characteristics of ACC (Supplementary Fig. 
S6). In the ACC, the band slightly shifts to lower wavenumbers 
and is characterized by a significant broadening (full-width at half-
maximum 28 cm − 1 in our experimental results), compared with 
that found in calcite28,29. However, the intensity of carbonate varies  
strongly through different z-section planes. In addition, at the 
depth positions from 0 to 0.5 µm, the Raman scattering of carbon-
ate is higher at the edge than in the inner parts of the microlenses 
(Fig. 4b). This could be due to the preferential orientation of the 
carbonate units in the near-edge region of each microlens, as dem-
onstrated by polarized Raman imaging with different polarization 
direction (Fig. 4e)30. The direction of the incident laser polarization 
was found to have no influence on the intensity of spectra in the 
inner part of the microlenses (Supplementary Fig. S6). However, the 
upper/lower edges of the microlenses shows higher intensity with  
90° polarization with respect to 0° and vice versa for the left/right 
edges (Fig. 4e and Supplementary Fig. S6).

Confocal Raman imaging furthermore shows the molecular dis-
tribution of water and organic components in the microlens arrays 
(Fig. 4c,d). Thermogravimetric analysis gives the quantitative infor-
mation that 1.46 wt% of organic is included in the hydrated ACC, 
which also contains about 1 mol of water (Supplementary Fig. S7). 

The organic component is mainly distributed inside the microlenses 
at a depth of 1 µm (Fig. 4d). The water peak reduces in intensity at 
exactly the same position (Fig. 4c). It is noticeable that the organic 
rings are located inside the microlens structures with diameters of 
2–3 µm, which means they were formed during the early stages of 
microlens formation (within 2 min, Fig. 1e). This is consistent with 
the result of the surface tension measurement that most of the sur-
factant must be adsorbed on CaCO3 precipitates and agglomerates 
right after the reaction starts (Supplementary Fig. S2).

Discussion
We deduce a two-step growth of the ACC microlenses based on the 
observations of microlens-sizes as a function of time and on molecu-
lar detection by Raman imaging. The width of the anisotropic edge 
in Fig. 4e is 1–2 µm, which is similar to the grown size during the last 
40–50 min in Fig. 1e. This is a very slow growth in comparison with 
the 4–5 µm of growth that occurs in the first 10–20 min. The slow 
growth at the edges of the microlenses could be explained by the for-
mation from ion constituents or equivalent small molecules after the 
fast growth is obtained by aggregation of ACC nanometre-sized pre-
cipitates by Brownian collision. The distribution of organic matter, 
visible by the green ring in Fig. 4d, reflects the fact that the early pre-
cipitates agglomerate together with surfactant molecules to form the 
first nucleus of a microlens at the initial stage of growth at 1–2 min. 
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Figure 3 | Characterization of the focal length of the microlens array. (a,b) Fluorescence and brightfield confocal images of the microlens array and  
(c,d) characterization of the focal length of the microlenses. (a) x–y plane image of the microlens array resulting from the overlay of the brightfield image 
(grey scale) showing the microlenses, and the fluorescence image (green) showing the fluorescently labelled chitosan coating of the microscope coverslip. 
The brightfield and fluorescence images were recorded simultaneously by illumination/excitation at 488 nm and collection at 488 and 530 nm ( ±  25 nm), 
respectively. The circular dashed line shows the localization of a microlens in the array. (b) x–z plane image that represents a cross-section through a stack 
of images taken at different depths in the sample. The plane shown corresponds to the position indicated by a solid white line on image a. The thick dashed 
line is aligned with the fluorescence from the chitosan coating and corresponds to the glass surface. The thin dashed line (semicircle) indicates the microlens 
curved surface. (c) x–y plane image of the light from a collimated laser beam (650 ± 10 nm) focused by the microlenses, at a depth in the sample equal to 
their focal length. Image c corresponds to the depth at which a dashed line on image d has been drawn. (d) x–z plane image of the light from a collimated 
laser beam (650 ± 10 nm) focused by the microlenses. The image results from a cross-section taken through a stack of images recorded at different depth 
in the sample. The plane shown corresponds to the position indicated by a solid white line on image a. The thin dashed vertical lines in a and b (c and 
d, respectively) are a guide to the eye to match the images in the x-direction. The diagram in the middle of the figure shows a schematic of the confocal 
microscope with one microlens (grey filled semicircle) on a chitosan-coated (green line) cover glass (white box) and the beam path (red dotted lines).
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The adsorbed surfactant is thought to have an essential role in the 
formation of the final CaCO3 structures with uniform shape and size. 
Further growth of the microlenses occurs by the accretion of precipi-
tates without organic components, which—at this stage—are already 
exhausted in the solution. It is notable that the complex inner struc-
ture of the microlenses (visible in Fig. 4) does not affect the optical 
images of the ‘A’s, as shown in Fig. 2d. Therefore, we deduce that the 
inclusion of the organic phase (1.46 wt% as determined by thermo-
gravimetric analysis) does not distort the optical light path signifi-
cantly. Moreover, the focal distance of the microlenses does not seem 
to be considerably influenced by the organic inclusions (Fig. 3).

The visualization of the complex structure in which organic com-
ponents, amorphous and/or crystalline CaCO3 phases coexist is not 
an easy task8,14,31–33. Aizenberg et al.31,32 have shown the combina-
tion of the two CaCO3 phases separated by an organic membrane in 
an ascidian skeleton by selective etching. In addition, several studies 
have reported how to visualize the distribution of organic compo-
nents in synthetic or biogenic CaCO3 matrices8,33. In the present 
work, Raman spectroscopic imaging successfully shows how the 
amorphous phase of CaCO3 with preferential orientation of car-
bonates and organic matrix is distributed without destroying the 
mineral matrix. However, the organic–mineral interface and their 

interaction—in general being the hallmark of biomineralization or 
biomimetic mineralization6,34—remain to be further investigated 
in our system. One possible interpretation would be that the lip-
ids of surfactant molecules stabilize the amorphous structure in the 
centre of the microlenses16,32. The carbonate groups are being more 
oriented in the outer parts of the microlenses, which might also be 
related with a directional guidance by the organic molecules form-
ing a ring pattern. Indeed, the alkyl chain of self-assembly monol-
ayers has been reported to be involved in the oriented growth of 
calcite35,36.

The size of CaCO3 microlens array films only depends on the 
area of the interface between precursor solution and air, which 
means there is basically no limitation for the fabrication of large film 
areas. Figure 5 shows that CaCO3 microlens arrays can be attached 
to gently curved surfaces as well as to flat ones on the centimetre-
scale by using chitosan as glue. When the film of the CaCO3 mic-
rolens array is coated on a cover glass, the repeated micron-sized 
convex structures prevent incident light from reflecting and keep 
the transparency as shown in Fig. 5a,b. This method can be used to 
coat microlens structures onto curved surfaces similar to that found 
on the moth eye (Fig. 5c)37, which is not possible with lithographic 
techniques17–21. These are effective antireflective lenses over the 
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Figure 4 | Confocal Raman spectroscopic imaging of the CaCO3 microlens array. (a) Schematic illustration of the depth scan. (b–d) Depth scanned 
Raman imaging obtained by integrating over the wavenumber ranges of (b) carbonate (1,040–1,125 cm − 1), (c) water (3,000–3,500 cm − 1) and (d) organic 
components (2,800–3,000 cm − 1), respectively. The images in the same column indicate the same depth. (e) Raman imaging of carbonate at 0° and 90° 
polarization of incident laser light. All the scale bars are 5 µm. CCD cts, charge-coupled device counts.



ARTICLE

��

nature communications | DOI: 10.1038/ncomms1720

nature communications | 3:725 | DOI: 10.1038/ncomms1720 | www.nature.com/naturecommunications

© 2012 Macmillan Publishers Limited. All rights reserved.

spectrum of visible light. Moreover, microlens arrays are compat-
ible for cell attachment and growth as shown in Fig. 5d. Higher 
magnification on one individual cell, covering several tens of mic-
rolenses, shows the actin organization within the cell in response to 
the arrangement of the microlens array (Fig. 5e,f). Actin fibres are 
observed along the cell boundary and also around the microlens 
structures as the cell can feel the topography and adapt its cytoskel-
eton to the geometry of the microlens array38. This biocompatibility 
of the CaCO3 material enables the presented microlens arrays to 
interact with a biological environment in a similar way as its arche-
type—the brittlestar.

In conclusion, we were able to show that highly ordered CaCO3 
microlens arrays with a specific focal length can be grown syntheti-
cally under ambient conditions by organic molecule controlled self-
assembly of ACC precipitates. The formation mechanism is based on 
a two-step growth process, starting with a fast self-assembly of nano-
metre-sized precipitates followed by a retarded growth with oriented 
carbonate groups at the edge of the microlenses. The amphiphilic 
molecules have a crucial role at the very early stage of self-assembly 
and their arrangement is one of the prerequisites for the uniform 
hemispherical shape of the microlenses. In addition, the biocompat-
ibility of the composite films consisting of biomineral microlenses 
and biopolymer will potentially enable the application for cell biol-
ogy research combined with optics. In general, our findings further 
improve current capabilities to fabricate micrometre-scaled optical 
devices by using easily available materials and simple but efficient 
processing, and demonstrate that it is highly useful to consider 
biominerals as archetypes for the synthesis of advanced materials.

Methods
Synthesis of CaCO3 microlens arrays. Ca(OH)2 clear solution was prepared by 
dissolving 1 g of Ca(OH)2 powder (Aldrich) in 100 ml millipore water, followed by 
complete sedimentation of a white substance after 3 days in a sealed media bottle. 
Calculated amounts of PS 20 (Aldrich) were added into the clear Ca(OH)2 solution 
and stirred vigorously. A volume of 350 µl of precursor solution was dropped into 
each well of a 96 microplate, whose cover was left open in the atmosphere. After 1 h 
of reaction, a thin film of CaCO3 microlens array was formed on the surface of the 
solution in each well. The film was skimmed off by using a microscope cover glass 
after adding 50–80 µl of water in each well and thereby the surface of solution with 
the film was raised over the top of the plate. The residual solution on the cover glass 
was soaked up by using lint-free tissue paper and dried in air. The convex side of 
the CaCO3 microlens array was arranged towards the cover glass at this stage and 
the Raman characterization and the ‘A’ projection experiments were carried out 
as deposited. For SEM images, the CaCO3 microlens arrays on a cover glass were 
transferred to a carbon tape allowing the curved surfaces to be investigated. The films 
of a CaCO3 microlens array shown in Figs 3 and 5 were grown for 3 h in each well of 
12-well plates filled with 5 ml of precursor solution. After the films were transferred 
to a cover glass and dried, they were attached on another cover glass or convex 
quartz glass lens (15 mm of focal length) coated with 2 wt% of chitosan solution in 
the same way described above, which was followed by drying under nitrogen. For the 
characterization of the light path through the microlens array and its focal length, the 
fluorescently labelled chitosan solution was used to detect the position of the cover 
glass–microlens junction in the z-direction (Fig. 3). Once the CaCO3 microlens 
arrays are transferred from the solution within 1–3 h and dried, the amorphous 
phase is kept up to several months in ambient atmosphere depending on the humid-
ity. Indeed, ACC synthesized in high pH precursor solution (in this study pH 12.5) 
has been reported to be more stable than that formed at a lower pH39. When the 
growth of the CaCO3 microlens array proceeds for more than 4 h at the air–Ca(OH)2 
solution interface, some structures are protruded on the convex surface of micro-
lenses, which further grow into (104) faceted crystals (Supplementary Fig. S8)40.

Cell culture on microlens array. The microlens array–coated cover slides were 
sterilized under ultraviolet light for 1 h, and NIH3T3 fibroblasts were seeded and 
cultured overnight in DMEM medium (Sigma) with 10% calf serum at 37 °C inside 
an incubator under humidified atmosphere. Later, microlens arrays were washed 
a few times in PBS, and the cells were fixed in 4% paraformaldehyde (Fluka) for 
5 min at room temperature. Unbound paraformaldehyde was removed by gentle 
washing in PBS several times. Cells were permeabilized with 0.1% Triton X-100 
(Sigma) for 5 min and stained with 1:200 diluted Alexa Fluor 488 (Invitrogen) 
for 60 min. Nucleus staining was performed with 1:300 diluted TOPRO-3 Iodide 
(Invitrogen) for 5 min and the microlens array cover slides were washed in PBS, 
mounted with Vectashield mounting medium and observed under confocal laser 
scanning microscope (Leica TCS SP5, Leica).

Characterization of the focal length. The experiment has been performed on 
a laser scanning confocal microscope (Leica DM IRBE, Leica) in two steps, as 
depicted in Supplementary Fig. S9. First, 488-nm laser light was focused on the 
sample using a microscope objective (oil ×100, 1.4 NA, Leica) and scanned across 
the field of view. The fluorescence was collected by the objective (epifluorescence 
mode) and detected by a photomultiplier tube (PMT) through a dichroic mirror 
(RSP 500, Leica). The signal was spectrally selected by a monochromator set to col-
lect wavelengths between 505 and 560 nm. One image contained 1,024×1,024 pixels 
and a final image was created by an average of four recorded images. The sample 
was scanned at decreasing height by steps of 0.2 µm. A total of 80 images was 
recorded and used to generate a stack of 16 µm in depth. Second, a laser pointer 
(640–660 nm, Hama laserpointer LP-18, Hama) was secured above the microscope 
stage using a laboratory buret stand and an extension clamp. The collimated light 

Figure 5 | CaCO3 microlens arrays fixed on chitosan-coated substrates. 
(a,b) The pictures of the same CaCO3 microlens array-chitosan composite 
film coated on a cover glass were taken at different angles, which shows 
the antireflecting effect of the composite film. (a) Blue dashed line and 
red solid line indicate the locations of the cover glass and the CaCO3 
microlens array, respectively. (b) The picture was taken at the right angle 
when the cover glass reflects incident light. Only the area where the 
CaCO3 microlens array was coated keeps transparency. (c) The picture 
of the composite film coated on a convex quartz glass lens in the form of 
compound eye. The red arrow indicates the uncoated part, which reflects 
light. Scale bars in a–c are 1 cm. (d) Overview of NIH3T3 fibroblast cell 
growth on the microlens array. Cells were stained with actin (green), and 
nucleus (red) with fluorescent dyes (overlay of fluorescent and phase 
contrast images). The scale bar is 100 µm. (e,f) Actin organization within 
the cell at higher magnification (e, overlay; f, green fluorescence). The 
scale bars are 20 µm.
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was directed perpendicular to the coverslip slide supporting the microlens array 
and collected by the microscope objective. Alignment of the laser beam was ad-
justed by reflection of part of the light by the microscope slide surface supporting 
the sample. The monochromator was set to select light between 630 and 670 nm, 
and an image stack was generated as described above.

Characterization methods. The surface tension measurement was carried out us-
ing a DuNouy Tensionmeter (KRÜSS Tensionmeter K12). The projected images of 
‘A’ through the CaCO3 microlens arrays were obtained by using optical microscopy 
(Leica DM RXA2, Leica; fitted with a digital colour camera, Leica DFC 480, Leica) 
set with microlens array and screen ‘A’ on the object stage in transmission mode. 
For confocal Raman microspectroscopy (WITec alpha300R, WITec), the selected 
area of the sample was scanned with a continuous green laser beam with lateral 
and depth resolutions of 250 and 500 nm, respectively. Raman images have been 
generated by integrating the intensity of the signal for the wavenumber ranges 
of carbonate (1,040~1,125 cm − 1, Fig. 3a), water (3,000~3,500 cm − 1, Fig. 3b) and 
organic (2,800~3,000 cm − 1, Fig. 3c). 
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