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Analysis of glycoprotein processing in the endoplasmic reticulum
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Abstract: Protein quality control (QC) in the endoplasmic reticulum (ER) comprises many
steps, including folding and transport of nascent proteins as well as degradation of misfolded
proteins. Recent studies have revealed that high-mannose-type glycans play a pivotal role in the QC
process. To gain knowledge about the molecular basis of this process with well-defined homogeneous
compounds, we achieved a convergent synthesis of high-mannose-type glycans and their
functionalized derivatives. We focused on analyses of UDP-Glc: glycoprotein glucosyltransferase
(UGGT) and ER Glucosidase II, which play crucial roles in glycoprotein QC; however, their
specificities remain unclear. In addition, we established an in vitro assay system mimicking the
in vivo condition which is highly crowded because of the presence of various biomacromolecules.
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Introduction

Oligosaccharides or glycan chains are important
constituents of intra- and extracellularly distributing
glycoconjugates such as glycoproteins, glycolipids,
and proteoglycans. Their roles are numerous, and
mostly essential for normal cellular activities. The
most prominent among them are cell development,
immune response,1),2) infection,3),4) and malignant
transformation.5),6) However, all in all, detailed
understanding on molecular basis of their functions
has been limited.

In order to advance the study of biological
roles of glycan chains, chemical synthesis has been
expected to play a pivotal role. Compared to
other classes of biooligomers, such as peptides
(proteins)7),8) and oligonucleotides (DNA and
RNA),9),10) synthesis of glycan chain is less straight-
forward due to several reasons. Firstly, formation
of glycosidic linkages that connect sugar residues
generates two isomers, namely ,- and O-glycosides.
Additionally, biologically interesting glycan chains

often comprise branching structure, instead of being
linear oligomers. By contrast, since peptide and
nucleotide chains are linear and their structures are
solely defined by sequence or alignment of respective
components, synthesis of these oligomers is not
associated with isomer formation.

In order for proteins to function normally,
structural modifications are often indispensable.
Among numerous types of post- or co-translational
modifications of proteins, introduction of asparagines
(Asn)-linked (or N-linked) glycan chains is one of the
most prominent. Introduction of N-linked glycans
takes place in the endoplasmic reticulum (ER) of the
cells in a co-translational manner.11),12) This type of
glycans is added to Asn residues embedded in the
“consensus” triad Asn-X-Ser/Thr (Ser: serine, Thr:
threonine, X: any amino acid except proline).13)

Glycan chains are characterized by their steric
bulkiness as well as the presence of a large number
of hydroxyl groups which makes them highly
hydrophilic. Consequently, they are able to give a
significant impact to physicochemical properties of
proteins, conferring stability, water solubility, and
resistance to protease cleavage.14)–17)

Glycoconjugates, including N-glycosylated pro-
teins, mostly exist on the cell-surface and play pivotal
roles in intercellular recognition such as signal
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transduction, cell adhesion and immune response.
More recent studies have provided convincing evi-
dence on their roles in protein quality control (QC) in
the ER.18)–20) It is a wide-ranging process, including
folding and transport of nascent proteins as well as
degradation of incurably misfolded proteins. In this
context, pivotal roles of N-linked glycans as key
signals in glycoprotein QC have attracted growing
attention. To gain molecular basis of this process,
establishment of reliable in vitro experimental sys-
tems is essential. However, in many cases, complexity
originating from structural heterogeneity of naturally
occurring glycoproteins has been difficult to be
removed and hampered unambiguous interpretation
of experimental results.

Our study summarized in this article has aimed
to reduce aforementioned ambiguity by using chemi-
cally synthesized glycans and their protein conju-
gates, and gain clear understanding of glycan-protein
interplays in the ER.

1. Biosynthesis and processing of N-glycosylated
proteins and their functions in the ER

Modification of N-glycosylated proteins occurs
co-translationally in the ER. This reaction is
catalyzed by a multisubunit enzyme, oligosaccharyl-
transferase (OST).11),12) Amazingly, a lipid-linked
oligosaccharide consisting of as many as 14 sugar
residues is transferred en bloc by this enzyme.21),22)

Studies have indicated that oligosaccharides
attached to proteins are key signals in glycoprotein
QC system. It ensures that only glycoproteins that
have attained correct 3D structure are transported to
Golgi apparatus for further processing and eventual
secretion. On the other hand, those that have failed
to achieve proper folding are transported to cytosol
for ubiquitination followed by degradation by 26S
proteasomes.

In most eukaryotes such as mammals, oligo-
saccharide consists of 14 sugar residues of three
D-glucose (Glc), nine D-mannose (Man), and two
N-acetyl-D-glucosamine (GlcNAc) residues (Glc3-
Man9GlcNAc2; G3M9). It is firstly assembled on a
lipid carrier, dolichylphosphate (Dol-P), by succes-
sive action of glycosyltransferases in the lumen of
the ER. Subsequently, the tetradecasaccharide
G3M9 is transferred by the action of OST, as a
block to Asn residues in the consensus of nascent
polypeptides.

Thus introduced G3M9 is firstly processed by
glucosidase I (G-I), which removes the outermost Glc
residues to produce diglucosylated tridecasaccharide

(Glc2Man9GlcNAc2; G2M9). The latter in turn is
digested by glucosidase II (G-II), a dual activity
enzyme, which is able to cleave Glc residues linked
to Glc (Glc,1!3Glc) and Man (Glc,1!3Man)
residues and generate dodeca- (Glc1Man9GlcNAc2;
G1M9) and undecasaccharide (Man9GlcNAc2; M9),
successively. The dodecasaccharide G1M9 formed by
the first activity of G-II enters the glycoprotein-
specific folding process, called calnexin/calreticulin
(CNX/CRT) cycle.18),19),23) (Fig. 1)

In this cycle, CNX and CRT function as
chaperones. They also possess a nearly identical
property as lectin, and specifically bind Glc,1!
3Man containing glycans such as G1M9. Both of
them are proposed to exist as complexes with
ERp57,24),25) a member of peptide disulfide isomerase
superfamily. By virtue of their lectin activity, these
chaperons are able to capture G1M9 containing
glycoproteins and facilitate their folding. Subsequent
trimming by G-II completely removes the Glc
residue, leading guest glycoproteins into the non-
glucosylated glycoform M9, which will be liberated
from CNX/CRT.

Intriguingly, there is a proof-reading system in
the CNX/CRT cycle, which is conducted by UDP-
Glc: glycoprotein glucosyltransferase (UGGT). This
enzyme functions as a “folding sensor” in the ER.
Namely, only when protein folding is incomplete,
glycoproteins processed to M9 are re-glucosylated
to G1M9 by UGGT. By regenerating G1M9, this
enzyme enables repeated interaction of glycoproteins
with CNX/CRT and maximizes their folding. Sub-
strate recognizing mode of UGGT is highly subtle. In
addition to glycan structures, it discriminates folding
state of protein backbones.26)–28) Previous study29)

has shown that its reactivity toward glycopeptides
clearly correlates with the proportion of hydrophobic
amino acids, suggesting that exposed hydrophobic
patch of misfolded protein is the key element in
UGGT recognition.

As for glycan specificity, our study clarified that
M9 was the most reactive, while depletion of Man
residue resulted in marked reduction of reactivity. T
of Man8GlcNAc2 (M8) and Man7GlcNAc2 (M7) being
ca. 1/2 and 1/5 of G9, respectively (vide infra).

An isoform of UGGT (HUGT2) has been
identified in human.30),31) HUGT2 shares 55% iden-
tity with human UGGT (HUGT1). HUGT2 and
HUGT1 mRNA are broadly expressed ubiquitously
in every tissue. However, no glucose transfer activity
has been identified for this protein and, consequently,
its physiological role has yet to be identified.
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UGGT is a widely conserved protein. Studies
with mouse embryonic stem cells have shown that its
deficiency is lethal in most cases.32) On the other
hand, it has been shown to be an activation factor of
BiP (GRP78), a molecular chaperone in the ER, and
overexpression of UGGT was reported to enhance the
expression level of medicinally important recombi-
nant proteins including erythropoietin and interferon
..33) Glycoproteins that have not achieved correct
folding are slowly processed by ER mannosidase I,
and partially demannosylated glycoproteins are
transported to cytosol for degradation, while a
possibility that they are partially rescued by BiP
has been put forward, suggesting that an intricate
fail-safe mechanism is provided in the quality control
system.34)

2. Functional analysis of glycoprotein glycans
using chemically synthesized probes

2.1. Synthesis of ER-related high-mannose-
type glycans. Despite the wealth of information
provided by recent studies, fine picture of glycopro-
tein QC has been unclear. Because most of previous
studies have employed substrates derived from

naturally occurring glycoproteins, results have been
complicated by heterogeneity of glycans.

Primary aim of our study was to systematically
synthesize N-linked glycans, which were expected to
be powerful in removing such difficulty.

However, fully chemical synthesis of biologically
relevant glycans consisting of more than ten sugar
residues is not a trivial task. Among several problems
associated with stereochemical control, certain type
of so-called 1,2-cis glycosides such as O-linked
mannose (O-Man) are difficult to construct selec-
tively.35) Our study established a strategy which
realized completely selective and efficient synthesis of
O-Man glycosides, by using a concept dubbed “intra-
molecular aglycon delivery” (IAD).36) (Fig. 2A) Our
approach employed a p-methoxybenzyl (PMB) group
introduced to 2-position of mannose. Under oxidative
conditions, the PMB group was converted to mixed
acetal-type tethered intermediate, from which ex-
clusive formation of 1,2-cis glycoside was realized in
high yield (>80%).37) More recent studies have shown
that efficiency as well as generality of the IAD was
further enhanced by using 2-naphthylmethyl (NAP)
group in place of PMB.38)

Fig. 1. (A) N-glycan processing in ER. (B) Glycoprotein folding and quality control machineries in the ER.
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Systematic synthesis of high-mannose-type gly-
cans was achieved in a convergent manner. (Fig. 2B)
Combination of fragments corresponding to core
trisaccharide (ManGlcNAc2; A), trimannose (Man3;
B), branched mannose (Man5-3; C1,2,3,4) and
glucose (Glc3-1; D1,2,3) components allowed us to
prepare all possible high-mannose-type glycans.39)

Furthermore, standardized protocol to functionalize
these glycans with a variety of aglycons has been
established. For instance, our study was directed to
modification of glycans with methotrexate (MTX),
which turned out to be highly versatile. Namely,
MTX conjugated glycans (CHO-MTX) were easily
detectable because of intense UV absorbance of
MTX. In addition, they can be easily grafted to
dihydrofolate reductase (DHFR), providing glyco-
protein mimetic (CHO-MTX-DHFR), by virtue
of a strong affinity between MTX and DHFR.40)

(Fig. 3)
2.2. Analysis of UGGT, a folding sensor in

the ER. As was discussed in Chapter 1, UGGT
recognizes glycoproteins that have not achieved
correct folding as substrates and incorporates Glc
residue to the terminal Man of the A-arm. As a
matter of fact, denatured thyroglobulin (Tg) has

been employed as a benchmark substrate of this
enzyme, while native Tg is a poor substrate.41),42)

However, precise specificity of UGGT has been
unclear. Fortuitously, our experiments revealed that
UGGT smoothly glucosylates MTX-modified glycan
(CHO-MTX; CHOFM9), which became a well-
defined non-peptidic synthetic substrate of UGGT.43)

(Fig. 4A)
Subsequently, specificity of UGGT in terms of

glycan structure was revealed to be M9>M8>M7.
Intriguingly, although the reactivity of M7-MTX was
low, its affinity to UGGT was the highest (Km),
indicating that UGGT strongly recognizes the inner
region of high-mannose-type glycans. In support of
this notion, a glycan lacking the innermost GlcNAc
was completely devoid of activity. (Fig. 4B)

Further study has shown that other types of
glycan modification with fluorescently active sub-
stituents, such as BODIPY, or Fmoc, a widely used
amino protecting group, were fruitful providing high
reactivity substrates of UGGT.44) In particular,
BODIPY modified glycans were preferable to high-
sensitivity detection of the enzymatic activity,
because of their high reactivity and strongly fluo-
rescent activity of BODIPY.

Fig. 2. Systematic synthesis of high-mannose-type oligosaccharide. (A) Stereoselective construction of O-mannoside linkage with
intramolecular aglycon delivery (IAD). (B) Convergent synthesis of high-mannose-type oligosaccharide.
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A common feature of misfolded proteins is
speculated to be the presence of hydrophobic patch
exposed on their surface, which is likely to be an
element recognized by UGGT. This speculation has
been supported by several lines of evidence, such as
1) unmodified glycans are poorly glucosylated by
UGGT, 2) M9 containing n-propyl, a modestly

hydrophobic aglycon, was marginally reactive, and
3) the reactivity of M9-MTX was markedly attenu-
ated when it was conjugated with DHFR. (Fig. 4A)

2.3. Analysis of glucosidase II (G-II). G-II
successively cleaves Glc,1-3Glc (cleavage-1) and
Glc,1-3Man (cleavage-2) linkages. (Fig. 1A) In order
to evaluate the magnitude of these activities, we

Fig. 3. Synthetic N-glycan molecular probes by introducing various aglycons. The term “CHO” means carbohydrate. MTX bind tightly
with DHFR to form glycan-attached proteins (CHO-MTX-DHFR).

Fig. 4. Analysis of UGGT. (A) UGGT activity against protein substrate and synthetic M9-derivatives. (B) Glycan specificity analysis of
UGGT and kinetics of CHO-MTX.
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monitored the Glc trimming of G2M9-MTX. Our
analysis unambiguously confirmed that the cleavage-
1 is by far faster than the cleavage-2.45) In addition,
the observation that the cleavage-2 was strongly
suppressed by the addition of CRT provided an
implication that glycoproteins enter the CNX/CRT
cycle immediately after they are converted to G1M9
by cleavage-1 of G-II.

In the ER, combined action of UGGT and G-II
(cleavage-2) interconverts M9 and G1M9 glycoforms.
Simultaneously, trimming by mannosidase(s) occurs,
giving G0 and G1 glycans that have less than 9 Man
residues. Studies in 1980s concluded that G-II cleaves
G1M9 exceedingly faster than other monoglucosy-
lated glycoforms.21),46),47) However, our study using
structurally defined substrates (CHO-MTX; CHO F

G1M9-7) revealed that the difference of reactivity
was not as large as has been believed. Most notice-
ably, the reactivity of G1M8B-MTX which lacks a
Man residue of the B-arm, was nearly identical with
G1M9-MTX, while reaction rate of its regioisomer

(G1M8C-MTX) was reduced to ca. 50%. (Fig. 5A)
Interestingly, when conjugated to DHFR, the activ-
ity of G1M8B was markedly higher than G1M9.
These results implicate that the specificity of G-II is
sensitive to nature of aglycon, and possibly, to folding
state of proteins.

Furthermore, inhibition experiments using sev-
eral glycans indicated that G-II strongly recognizes
the terminal Man of the C-arm. Among M9, M8(B),
M8(C) and M7, inhibitory activity of M7 was the
strongest.48) Since, in the ER, misfolded glycopro-
teins may be major targets of mannosidase(s), it
would be tempting to speculate that accumulation of
demannosylated glycoforms would suppress the G-II
activity and decelerate the entry of newly generated
glycoproteins into CNX/CRT. (Fig. 5B)

Interestingly, non-natural dodecasaccharides
that had D-galactose, D-glucuronic acid, or 3-, 4-, 6-
deoxy-D-glucose residue in place of Glc were all
smoothly converted to M9.49) Taken together, G-II,
while stringently recognizing mannose residues of

Fig. 5. Substrate specificity of G-II. (A) G-II (cleavage-2) activity against various glycoprobes having different oligosaccharide or
aglycone structure. (B) Inhibitory activity of various glycoprobes toward Glc trimming from G2M9. (C) Cleavage of various G1M9
analogues by G-II. Gal, Galactose; GlcA, Glucuronic acid; G3d, 3-Deoxyglucose; G4d, 4-Deoxyglucose; G6d, 6-Deoxyglucose.
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the B- and C-arms, is quite tolerant to structure
perturbation of departing sugar residues. (Fig. 5C)

G-II is a heterodimeric protein, consisting of
,- and O-subunit. While the ,-subunit comprises a
catalytic domain, precise function of the other
subunit has been obscure.50) To clarify the issue, we
prepared strains of Aspergillus oryzae in which either
,- or O-subunit was disrupted, and G-II activity of
their microsomal fraction was tested, by using G2M9-
and G1M9-MTX. Our analysis showed 1) not only
the ,-subunit disruptant, but the O-subunit disrup-
tant was inactive toward all of these glycans,
although the former (but not the latter) was fully
active toward a small molecule substrate pNP-Glc,
and 2) mixed microsomal fractions of both disruptans
exhibited the activity to digest both G2M9 and
G1M9.51) Together, these results provide a clear
indication that the presence of the O-subunit is
essential in order for G-II to exhibit hydrolytic
activity in the ER, possibly by virtue of its ability
to recognize high-mannose-type glycans. (Fig. 6)

2.4. Macromolecular crowding conditions
as pseudo-intracellular environments. While
in vitro biochemical assays are typically performed
in dilute buffer solutions containing less than 1% of
proteins, intracellular environments are known to be
highly congested. They consist of various macro-
molecules whose total concentration may reach 30–
40%, creating “macromolecular crowding” condi-
tions.52) Under such conditions, diffusion of bulky
molecules such as proteins will be retarded, while
their association may be enhanced and proteins tend
to have more compact conformation. These consid-
erations raise the possibility that intracellular behav-
ior of proteins may not be estimated directly from
conventional in vitro experiments. Accordingly, we
became interested in re-investigating ER related
glycan processing reactions under crowded condi-

tions.53) Interestingly, we observed that the cleavage-
2 of G-II was dramatically enhanced in high
concentrations of bovine serum albumin (BSA),
while the cleavage-1 was not affected. Similar effects
were observed in the presence of other macro-
molecules such as polyethylene glycol or RNase A.
On the other hand, the effect of macromolecular
crowding on glucosylation by UGGT was negligible,
and trimming by ,-mannosidase was markedly
retarded.

Although biological relevance of the effects
exerted by macromolecular crowding must be ad-
dressed carefully, these results implicate that kinetics
as well as specificities of glycoprotein processing
enzymes may be quite different between intracellular
and dilute buffer conditions. Previous studies have
lead researchers to believe that the cleavage-1 of G-II
trimming is overwhelmingly faster than the cleavage-
2. However, the observation that the cleavage-2, but
not cleavage-1, of G-II trimming was accelerated
under macromolecular crowding conditions suggests
that, in the ER, difference of velocities between them
may be much smaller. In fact, recent study that
analyzed in vivo trimming of glycoproteins in S.
cerevisiae supports this prediction.

3. Conclusion

In glycobiology, researches have been challenged
by the difficulty in obtaining well-defined homoge-
neous compounds, especially due to microhetero-
geneity of glycoprotein glycans. Furthermore, the
glycoprotein quality control system discriminates
guest proteins according to their folding state in
addition to their glycoforms. In spite of quite
extensive studies conducted using substrates of
biological origin, more precise and quantitative
studies, particularly in terms of specificity to
discriminate subtly different glycans, have been
limited. Our study stemmed from systematic syn-
thesis of high-mannose-type glycans proven to be
powerful in revealing specificities of key players in
glycoprotein quality control such as CRT, UGGT,
and G-II.

The research filed called “chemical biology” aims
to clarify various biological events by exploitating
chemical means, such as organic synthesis. Obvi-
ously, glycobiolgy is not an exception. Because of
glycoconjugate glycans’ structural complexity and
diversity, it will provide exciting research opportu-
nities for synthetic chemists. We predict the impor-
tance of organic synthesis will be more firmly
established in this area.

Fig. 6. G-II activity toward G2M9-MTX using the membranous
fraction of gene disruptants lacking either the G-II ,-subunit or
O-subunit. The membranous fraction lacking the O-subunit was
inactive against high mannose-type oligosaccharide.

Analysis of glycoprotein quality controlNo. 2] 37



Acknowledgement

We thank Drs Kiichiro Totani, Ichiro Matsuo,
Atsushi Tatami, Taisuke Watanabe, Atsushi
Miyagawa, and Takashi Tsujimoto for their contri-
butions to the works conducted in our laboratory.
We also thank Dr. Yoshito Ihara for G-II and UGGT,
and Ms. Akemi Takahashi and Ms. Satoko Shirahata
for technical assistance. Financial supports from
Ministry of Education, Culture, Sports, Science,
and Technology [Grant-in-Aid for Creative Scientific
Research (No. 17GS0420)] and Human Frontier
Science Program (RGP0031/2005-C), and RIKEN
Chemical Genomics Program are acknowledged.

References

1) Rabinovich, G.A. and Toscano, M.A. (2009) Turning
‘sweet’ on immunity: galectin-glycan interactions
in immune tolerance and inflammation. Nat. Rev.
Immunol. 9, 338–352.

2) van Kooyk, Y. and Rabinovich, G.A. (2008) Protein-
glycan interactions in the control of innate and
adaptive immune responses. Nat. Immunol. 9,
593–601.

3) Guerry, P. and Szymanski, C.M. (2008) Campylo-
bacter sugars sticking out. Trends Microbiol. 16,
428–435.

4) Vigerust, D.J. and Shepherd, V.L. (2007) Virus
glycosylation: role in virulence and immune inter-
actions. Trends Microbiol. 15, 211–218.

5) Kirmiz, C., Li, B., An, H.J., Clowers, B.H., Chew,
H.K., Lam, K.S., Ferrige, A., Alecio, R., Borowsky,
A.D., Sulaimon, S., Lebrilla, C.B. and Miyamoto,
S. (2007) A serum glycomics approach to breast
cancer biomarkers. Mol. Cell. Proteomics 6, 43–55.

6) Yin, J., Miyazaki, K., Shaner, R.L., Merrill, A.H. Jr.
and Kannagi, R. (2010) Altered sphingolipid
metabolism induced by tumor hypoxia—new
vistas in glycolipid tumor markers. FEBS Lett.
584, 1872–1878.

7) Atherton, E. and Sheppard, R.C. (1989) Solid phase
peptide synthesis: a practical approach. IRL Press
at Oxford University Press, New York.

8) Wellings, D.A. and Atherton, E. (1997) Standard
Fmoc protocols. Methods Enzymol. 289, 44–67.

9) Caruthers, M.H. (1985) Gene synthesis machines:
DNA chemistry and its uses. Science 230, 281–285.

10) Caruthers, M.H. (1991) Chemical synthesis of DNA
and DNA analogs. Acc. Chem. Res. 24, 278–284.

11) Daniels, R., Kurowski, B., Johnson, A.E. and Hebert,
D.N. (2003) N-linked glycans direct the cotransla-
tional folding pathway of influenza hemagglutinin.
Mol. Cell 11, 79–90.

12) Whitley, P., Nilsson, I.M. and von Heijne, G. (1996)
A nascent secretory protein may traverse the
ribosome/endoplasmic reticulum translocase com-
plex as an extended chain. J. Biol. Chem. 271,
6241–6244.

13) Bause, E. (1983) Structural requirements of N-
glycosylation of proteins. Studies with proline
peptides as conformational probes. Biochem. J.
209, 331–336.

14) Schulke, N. and Schmid, F.X. (1988) Effect of
glycosylation on the mechanism of renaturation
of invertase from yeast. J. Biol. Chem. 263, 8832–
8837.

15) Wang, C., Eufemi, M., Turano, C. and Giartosio, A.
(1996) Influence of the carbohydrate moiety on the
stability of glycoproteins. Biochemistry 35, 7299–
7307.

16) Falgout, B. and Markoff, L. (1995) Evidence that
flavivirus Ns1-Ns2a cleavage is mediated by a
membrane-bound host protease in the endoplas-
mic-reticulum. J. Virol. 69, 7232–7243.

17) Olden, K., Bernard, B.A., Humphries, M.J., Yeo,
T.K., Yeo, K.T., White, S.L., Newton, S.A., Bauer,
H.C. and Parent, J.B. (1985) Function of glyco-
protein glycans. Trends Biochem. Sci. 10, 78–82.

18) Helenius, A. and Aebi, M. (2004) Roles of N-linked
glycans in the endoplasmic reticulum. Annu. Rev.
Biochem. 73, 1019–1049.

19) Ruddock, L.W. and Molinari, M. (2006) N-glycan
processing in ER quality control. J. Cell Sci. 119,
4373–4380.

20) Lederkremer, G.Z. (2009) Glycoprotein folding,
quality control and ER-associated degradation.
Curr. Opin. Struct. Biol. 19, 515–523.

21) Hubbard, S.C. and Robbins, P.W. (1979) Synthesis
and processing of protein-linked oligosaccharides
in vivo. J. Biol. Chem. 254, 4568–4576.

22) Kornfeld, R. and Kornfeld, S. (1985) Assembly of
asparagine-linked oligosaccharides. Annu. Rev.
Biochem. 54, 631–664.

23) Caramelo, J.J. and Parodi, A.J. (2008) Getting in
and out from calnexin/calreticulin cycles. J. Biol.
Chem. 283, 10221–10225.

24) Russell, S.J., Ruddock, L.W., Salo, K.E., Oliver,
J.D., Roebuck, Q.P., Llewellyn, D.H., Roderick,
H.L., Koivunen, P., Myllyharju, J. and High, S.
(2004) The primary substrate binding site in the b’
domain of ERp57 is adapted for endoplasmic
reticulum lectin association. J. Biol. Chem. 279,
18861–18869.

25) Kozlov, G., Maattanen, P., Schrag, J.D., Pollock, S.,
Cygler, M., Nagar, B., Thomas, D.Y. and Gehring,
K. (2006) Crystal structure of the bb’ domains of
the protein disulfide isomerase ERp57. Structure
14, 1331–1339.

26) Caramelo, J.J., Castro, O.A., Alonso, L.G., de Prat-
Gay, G. and Parodi, A.J. (2003) UDP-Glc:glyco-
protein glucosyltransferase recognizes structured
and solvent accessible hydrophobic patches in
molten globule-like folding intermediates. Proc.
Natl. Acad. Sci. U.S.A. 100, 86–91.

27) Caramelo, J.J., Castro, O.A., de Prat-Gay, G. and
Parodi, A.J. (2004) The endoplasmic reticulum
glucosyltransferase recognizes nearly native glyco-
protein folding intermediates. J. Biol. Chem. 279,
46280–46285.

28) Taylor, S.C., Ferguson, A.D., Bergeron, J.J. and

Y. ITO and Y. TAKEDA [Vol. 88,38



Thomas, D.Y. (2004) The ER protein folding
sensor UDP-glucose glycoprotein-glucosyltransfer-
ase modifies substrates distant to local changes in
glycoprotein conformation. Nat. Struct. Mol. Biol.
11, 128–134.

29) Taylor, S.C., Thibault, P., Tessier, D.C., Bergeron,
J.J. and Thomas, D.Y. (2003) Glycopeptide
specificity of the secretory protein folding sensor
UDP-glucose glycoprotein:glucosyltransferase.
EMBO Rep. 4, 405–411.

30) Arnold, S.M., Fessler, L.I., Fessler, J.H. and
Kaufman, R.J. (2000) Two homologues encoding
human UDP-glucose:glycoprotein glucosyltransfer-
ase differ in mRNA expression and enzymatic
activity. Biochemistry 39, 2149–2163.

31) Arnold, S.M. and Kaufman, R.J. (2003) The non-
catalytic portion of human UDP-glucose: glyco-
protein glucosyltransferase I confers UDP-glucose
binding and transferase function to the catalytic
domain. J. Biol. Chem. 278, 43320–43328.

32) Molinari, M., Galli, C., Vanoni, O., Arnold, S.M. and
Kaufman, R.J. (2005) Persistent glycoprotein
misfolding activates the glucosidase II/UGT1-
driven calnexin cycle to delay aggregation and loss
of folding competence. Mol. Cell 20, 503–512.

33) Ku, S.C., Lwa, T.R., Giam, M., Yap, M.G. and
Chao, S.H. (2009) Identification of HUGT1 as a
potential BiP activator and a cellular target for
improvement of recombinant protein production
using a cDNA screening system. Mol. Cells 27,
577–582.

34) Moremen, K.W. and Molinari, M. (2006) N-linked
glycan recognition and processing: the molecular
basis of endoplasmic reticulum quality control.
Curr. Opin. Struct. Biol. 16, 592–599.

35) Gridley, J. and Osborn, H. (2000) Recent advances
in the construction of O-D-mannose and O-
D-mannosamine linkages. J. Chem. Soc., Perkin
Trans. 1, 1471–1491.

36) Barresi, F. and Hindsgaul, O. (1991) Synthesis of
O-mannopyranosides by intramolecular aglycon
delivery. J. Am. Chem. Soc. 113, 9376–9377.

37) Ito, Y., Ohnishi, Y., Ogawa, T. and Nakahara, Y.
(1998) Highly optimized O-mannosylation via p-
methoxybenzyl assisted intramolecular aglycon
delivery. Synlett, 1102–1104.

38) Ishiwata, A., Munemura, Y. and Ito, Y. (2008) NAP
ether mediated intramolecular aglycon delivery:
A unified strategy for 1,2-cis-glycosylation. Eur. J.
Org. Chem., 4250–4263.

39) Matsuo, I., Totani, K., Tatami, A. and Ito, Y. (2006)
Comprehensive synthesis of ER related high-
mannose-type sugar chains by convergent strategy.
Tetrahedron 62, 8262–8277.

40) Totani, K., Matsuo, I. and Ito, Y. (2004) Tight
binding ligand approach to oligosaccharide-grafted
protein. Bioorg. Med. Chem. Lett. 14, 2285–2289.

41) Banerjee, S., Vishwanath, P., Cui, J., Kelleher, D.J.,
Gilmore, R., Robbins, P.W. and Samuelson, J.

(2007) The evolution of N-glycan-dependent endo-
plasmic reticulum quality control factors for
glycoprotein folding and degradation. Proc. Natl.
Acad. Sci. U.S.A. 104, 11676–11681.

42) Trombetta, S.E., Bosch, M. and Parodi, A.J. (1989)
Glucosylation of glycoproteins by mammalian,
plant, fungal, and trypanosomatid protozoa micro-
somal membranes. Biochemistry 28, 8108–8116.

43) Totani, K., Ihara, Y., Matsuo, I., Koshino, H. and
Ito, Y. (2005) Synthetic substrates for an endo-
plasmic reticulum protein-folding sensor, UDP-
glucose: glycoprotein glucosyltransferase. Angew.
Chem. Int. Ed. Engl. 44, 7950–7954.

44) Totani, K., Ihara, Y., Matsuo, I., Tsujimoto, T. and
Ito, Y. (2009) The recognition motif of the
glycoprotein-folding sensor enzyme, UDP-Glc:
glycoprotein glucosyltransferase. Biochemistry
48, 2933–2940.

45) Totani, K., Ihara, Y., Matsuo, I. and Ito, Y. (2006)
Substrate specificity analysis of endoplasmic retic-
ulum glucosidase II using synthetic high mannose-
type glycans. J. Biol. Chem. 281, 31502–31508.

46) Burns, D.M. and Touster, O. (1982) Purification and
characterization of glucosidase II, an endoplasmic
reticulum hydrolase involved in glycoprotein bio-
synthesis. J. Biol. Chem. 257, 9990–10000.

47) Michael, J.M. and Kornfeld, S. (1980) Partial
purification and characterization of the glucosi-
dases involved in the processing of asparagine-
linked oligosaccharides. Arch. Biochem. Biophys.
199, 249–258.

48) Bosis, E., Nachliel, E., Cohen, T., Takeda, Y., Ito,
Y., Bar-Nun, S. and Gutman, M. (2008) Endo-
plasmic reticulum glucosidase II is inhibited by its
end products. Biochemistry 47, 10970–10980.

49) Miyagawa, A., Totani, K., Matsuo, I. and Ito, Y.
(2010) Promiscuous activity of ER glucosidase II
discovered through donor specificity analysis of
UGGT. Biochem. Biophys. Res. Commun. 403,
322–328.

50) Trombetta, E.S., Simons, J.F. and Helenius, A.
(1996) Endoplasmic reticulum glucosidase II is
composed of a catalytic subunit, conserved from
yeast to mammals, and a tightly bound non-
catalytic HDEL-containing subunit. J. Biol. Chem.
271, 27509–27516.

51) Watanabe, T., Totani, K., Matsuo, I., Maruyama, J.,
Kitamoto, K. and Ito, Y. (2009) Genetic analysis of
glucosidase II beta-subunit in trimming of high-
mannose-type glycans. Glycobiology 19, 834–840.

52) Ellis, R.J. and Minton, A.P. (2003) Cell biology: join
the crowd. Nature 425, 27–28.

53) Totani, K., Ihara, Y., Matsuo, I. and Ito, Y. (2008)
Effects of macromolecular crowding on glycopro-
tein processing enzymes. J. Am. Chem. Soc. 130,
2101–2107.

(Received Oct. 17, 2011; accepted Dec. 19, 2011)

Analysis of glycoprotein quality controlNo. 2] 39



Profile

Yukishige Ito graduated the University of Tokyo in 1977 and obtained Ph.D. degree
in Pharmaceutical Sciences (Research Advisor: Prof. Masaji Ohno) from the same
university in 1982. After two years postdoctoral work at Department of Chemistry,
Massachusetts Institute of Technology (Research Advisor: Prof. Satoru Masamune), he
joined the laboratory of Dr. Tomoya Ogawa at RIKEN. He was promoted to Senior
Scientist (Associated Chief Scientist) in 1996 and then to Chief Scientist in 1998. From
1991 to 1993, he was a Visiting Scientist in James C. Paulson’s laboratory at the Scripps
Research Institute and CYTLE Corporation in San Diego, California. Currently, he is
directing Synthetic Cellular Chemistry Laboratory at RIKEN Advanced Science
Institute. Since 2009, he has also been the Research Director of JST ERATO
Glycotrilogy Project. He received Japan Society for Bioscience, Biotechnology, and Agrochemistry Award for
the Encouragement of Young Scientists (1993), Roy L. Whistler International Award in Carbohydrate Chemistry
(2008), RIKEN Significant Achievement Award (S) (2010), and Takeda Award for International Achievement
(2010). His research interest covers development of methodologies for oligosaccharide synthesis, synthesis of
glycoconjugate related compounds, and analysis of glycoprotein processing in intracellular compartments.

Profile

Yoichi Takeda received his Ph.D. degree in Engineering from Tokyo University of
Science in 2005 under the supervision of Professor Shigeomi Horito. After working as a
postdoctoral fellow from 2005 to 2006 in the JST SORST Project involving sugar-based
gene manipulators and as a NEDO fellow from 2006 to 2007 at the University of
Kitakyushu with Professor Kazuo Sakurai, he joined the laboratory of Dr. Yukishige Ito
at RIKEN as a contract researcher. Since 2009, he has worked as a group leader in the
JST ERATO Glycotrilogy Project (Research Director: Dr. Yukishige Ito). His research
interests include analysis of glycoprotein folding and processing in the endoplasmic
reticulum by chemical approaches.

Y. ITO and Y. TAKEDA [Vol. 88,40


