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ABSTRACT

In our previous publication, a framework for information flow in interaction networks based
on random walks with damping was formulated with two fundamental modes: emitting and
absorbing. While many other network analysis methods based on random walks or equiv-
alent notions have been developed before and after our earlier work, one can show that they
can all be mapped to one of the two modes. In addition to these two fundamental modes, a
major strength of our earlier formalism was its accommodation of context-specific directed
information flow that yielded plausible and meaningful biological interpretation of protein
functions and pathways. However, the directed flow from origins to destinations was in-
duced via a potential function that was heuristic. Here, with a theoretically sound approach
called the channel mode, we extend our earlier work for directed information flow. This is
achieved by constructing a potential function facilitating a purely probabilistic interpreta-
tion of the channel mode. For each network node, the channel mode combines the solutions
of emitting and absorbing modes in the same context, producing what we call a channel
tensor. The entries of the channel tensor at each node can be interpreted as the amount of
flow passing through that node from an origin to a destination. Similarly to our earlier
model, the channel mode encompasses damping as a free parameter that controls the locality
of information flow. Through examples involving the yeast pheromone response pathway,
we illustrate the versatility and stability of our new framework.

Key words: Markov chains, random walks, matrices, proteins, networks, information theory,

pathways, channels.

1. INTRODUCTION

B iological pathways in protein interaction networks have been modeled (Tu et al., 2006;

Stojmirović and Yu, 2007; Suthram et al., 2008) as information flows or equivalently random walks

between pathway origins and destinations. Ideally, the nodes visited by the flow should suggest a mechanism

for the pathway being investigated. For biological specificity of the results, it is important that the flow is

directed and localized, that is, the random walks should follow more direct paths from origins to destinations,

as opposed to wandering around the whole network. Otherwise, if pathway origins and destinations are

distant, many proteins (particularly large network hubs) unrelated to the pathway’s biological function may
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appear as significant. It is therefore necessary to construct a model that is able to controllably pull the

information flow towards the pathway destinations.

In an earlier article (Stojmirović and Yu, 2007), we developed a mathematical framework that is capable

of directing information flow in interaction networks based on random walks. Via information damping/

aging, this framework naturally accommodates information loss/leakage that always occurs in all networks.

It requires no prior restriction to the sub-network of interest nor it uses additional (and possibly noisy)

information. The framework consisted of two modes absorbing and emitting. Given a set of information

sinks, the absorbing mode returns for any network node the likelihood of a random walk starting at that

node to terminate at sinks. The emitting mode returns for each network node the expected number of visits

to that node by a random walk starting at information sources. The emitting mode can also be used to

model biological pathways: given sources and selected destinations (pseudosinks), we introduced heuristic

potential functions that adjust the weights of network links to guide the information flow towards

pseudosinks (Stojmirović and Yu, 2007).

Although the introduction of potential to direct information flow is novel, the concepts of diffusion and

random walks have been extensively used for analysis of protein interaction networks. Nabieva et al. (2005)

introduced an algorithm that used truncated diffusion from nodes in interactomes to predict protein

function. Tu et al. (2006) used simulations of random walks to infer gene regulatory pathways, while

Suthram et al. (2008) modeled the interactome as an electrical network to interpret expression quantitative

loci (eQTLs). The latter two approaches are conceptually similar due to the correspondence between

random walks on (undirected) graphs and electrical networks (Doyle and Snell, 1984). Missiuro et al.

(2009) used the electrical network approach to measure network centrality of each node in several inter-

actomes. Voevodski et al. (2009) proposed a spectral measure of closeness between two proteins based on

PageRank to discover functionally related proteins. Most efforts in this direction—for example, the

methods proposed by Suthram et al. (2008), Missiuro et al. (2009), and Voevodski et al. (2009)—can be

mapped to our absorbing and emitting modes, without potentials (see Section 2.3 for details).

While our earlier model provides very reasonable results on many examples from yeast protein-protein

interaction networks (Stojmirović and Yu, 2007), it also has room for improvement. Absent a theory, the

potential functions were empirically chosen and the optimal potentials became example-dependent. That is,

different potentials might be needed for different networks, sources and pseudosinks. Consequently, the

model values (visits) for each node can not be directly interpreted but only in relation to each other.

Furthermore, since each choice of the origins and destinations results in a different network graph, rapid

computation at large-scale is hindered.

In this sequel, we present a major extension of our previous framework. By appropriately combining the

emitting and absorbing modes, we have devised a new, channel, mode that permits directed information

flow with probabilistic interpretation. The manuscript is structured as follows. Section 2 presents a succinct

review of our previous work and shows how other proposed methods can be mapped to its absorbing or

emitting mode. Section 3 details our extension. Section 4 discusses applications of the channel mode to

protein interaction networks using the yeast pheromone response pathway as an example. A discussion

appears in Section 5, with more technical details provided in the Appendices.

2. TECHNICAL BACKGROUND

2.1. Preliminaries

We will closely follow the notation of Stojmirović and Yu (2007). We represent an interaction network as a

weighted directed graphG = (V, E, w), where V is a finite set of vertices of size n, E 4 V · V is a set of edges, and

w is a non-negative real-valued function on V · V that is positive on E, giving the weight of each edge (the weight

of non-existing edge is defined to be 0). Assuming an ordering of vertices in V, we represent a real-valued function

on V as a state (column) vector u 2 Rn and the connectivity of G by the weight matrix W where Wij = w(i, j) (the

weight of an edge from i to j). We do not make distinction between a vertex v 2 V and its corresponding state

given by a particular ordering of vertices. Denote by P the n · n matrix such that for all i‚ j 2 V ,

Pij =
aiWijP

k Wik

‚ (1)

when
P

k2V Wik > 0 and Pij = 0 otherwise. Here, ai 2 (0‚ 1] for all i.
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When ai = 1 for all i, the matrix P is a transition matrix for a random walk or a Markov chain on G: for

any pair of vertices i and j, Pij gives the transition probability from vertex i to vertex j in one time step. In

the general case, the node-specific damping factors ai model dissipation of information: at each step of the

random walk there is some probability that the walk leaves the graph. The value ai measures the likelihood

for the random walk leaving the vertex i to remain in the graph, or equivalently, the likelihood of

dissipation at i is 1 - ai.

For this paper, it will be convenient to express dissipation in terms of the uniform damping coefficient l,

where

l = max
i

ai: (2)

Let ai = ai /l and define the matrix Q by P = lQ, that is,

Qij =
aiWijP

k Wik

‚ (3)

for i‚ j 2 V by and 0 < ai £ 1. We will consider l as a free parameter in (0, 1] and the matrix P as

dependent on l.

2.2. Emitting and absorbing modes

We extract the properties of information flow through a given network by examining the paths of discrete

random walks. A random walker starts at an originating node, chosen according to the application domain,

and traverses the network, visiting a node at each step. Each walk terminates at an explicit boundary vertex

or due to dissipation, which is modeled as reaching an implicit (out-of-network) boundary node.

We distinguish two types of boundary nodes: sources and sinks. Sources emit information, that is, serve

as the origins of random walks. All information entering a source from inside the network is dissipated, so a

walker is not allowed to visit the source more than once. Sinks absorb information, serving as destinations

of walks; information leaving each sink is completely dissipated. The network graph together with a set of

boundary nodes and a vector of damping factors a provides the context for the information flow investi-

gated.

The main variable of interest is the (averaged) number of times a vertex is visited by a random walk

given the context. Let D denote the set of selected boundary nodes, let T = VyD and let m = jTj.
Assuming that the first n - m states correspond to vertices in D, we write the matrix P in the canonical

block form:

P = PDD PDT

PTD PTT

� �
: (4)

Here PAB denotes a matrix giving probabilities of moving from the nodes in A to the nodes in B, where A, B

stand for either D or T. The states (vertices) belonging to the set T are called transient.

2.2.1. Absorbing mode. Suppose that the boundary set D consists only of sinks. Let F denote an

m · (n - m) matrix such that Fij is the total probability that the information originating at i 2 T is absorbed

at j 2 D. The matrix F is found by solving the discrete Laplace equation

(I - PTT )F = PTD‚ (5)

where I denotes the identity matrix. The matrix D(PTT ) = I - PTT is known as the discrete Laplace operator

of the matrix PTT. If I - PTT is invertible, Equation (5) has a unique solution

F = GPTD‚ (6)

where G = (I - PTT ) - 1:

2.2.2. Emitting mode. Now consider the dual problem where D is a set of sources. Let H denote an

(n - m) · m matrix such that Hij is the total expected number of times the transient vertex j is visited by a

random walk emitted from source i (for all times). Again, H is found by solving the discrete Laplace equation
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H(I - PTT ) = PDT : (7)

which, if I - PTT is invertible, has a unique solution

H = PDT G: (8)

It is easy to show (Stojmirović and Yu, 2007) that the matrix G = (I - PTT ) - 1, also known as the Green’s

function or the fundamental matrix of an absorbing Markov chain (Kemeny and Snell, 1976), exists if every

node can be connected to a boundary node or if ai < 1 for all i. The entry Gij represents the mean number of

times the random walk reaches vertex j 2 T having started in state i 2 T (Kemeny and Snell, 1976). For

any transient state i, the value

Ti =
X
j2T

Gij (9)

gives the average length of a path traversed by a random walker starting at i before terminating (Kemeny

and Snell, 1976). In this case, the walker is allowed to revisit i after leaving i. In the Markov chain theory,

Ti is also known as the average absorption time from i. For the emitting mode, where the walker starts at

s 2 S and cannot revisit it, it can be shown that the average path length is

Ts = 1 +
X
j2T

Hsj (10)

2.3. Interpretations

If we assume that a random walk deposits a fixed amount of information content each time it visits a

node, we can interpret Hij is the overall amount of information content originating from the source s

deposited at the transient vertex j. Furthermore, we can interpret Fij as the sum of probabilities (weights) of

the paths originating at the vertex i 2 T and terminating at the vertex j 2 D while avoiding all other

boundary nodes in the set D, and Hij as the sum of probabilities (weights) of the paths originating at the

vertex i 2 D and terminating at the vertex j 2 T , also avoiding all other nodes in the set D. Each such path

has a finite but unbounded length. However, unlike Fij, Hij does not represent a probability because the

events of the information being located at j at the times t and t0 are not mutually exclusive (a random walk

can be at j at time t and revisit it at time t0). For Fij, the absorbing events at different times are mutually

exclusive.

The entry Hij can alternatively be interpreted as equilibrium information content at j for information flow

originating from i. In this case we imagine the flow entering the network at node i and leaving the network

at i and any other node due to dissipation. The amount of inflow at i is set to 1 and Hij denotes the steady

state content at j. Hence, the equilibrium flow rate through an edge (i, j) by the flow entering at s 2 D,

denoted ws(i, j), is

ws(i‚ j) = HsiPij: (11)

2.3.1. Electrical networks and heat conduction. A weighted undirected graph G = (V, E, w) can

be considered as an electrical network with each edge weight (i, j) being associated with resistance Rij =
1/Wij. Doyle and Snell (1984) have shown that voltages and currents through nodes and edges can be

interpreted in terms of random walks with transition matrix P (where ai = 1 for all i 2 V) and absorbing

boundary. Let f denote the voltage vector over all nodes and suppose that a unit voltage is applied between

two nodes a and b, so that fa = 1 and fb = 0. Then, the solution for f over T = vy{a, b} according to

Kirchhoff’s laws is equivalent to the a-th column of the absorbing mode matrix F, that is, fi = Fia. The

current flowing through an edge (i, j), which we denote Iij, is then given by

Iij =
fi - fj

Rij

= (Fia - Fja)Wij: (12)

Therefore, modeling protein interaction networks as resistor networks is equivalent to applying our ab-

sorbing mode without dissipation.
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However, electrical network paradigm is only applicable to interaction networks where all links can

be modeled as undirected edges. This is the case in Missiuro et al., (2009), where the authors only take

physical interactions between proteins as links in their networks. On the other hand, the network

constructed by Suthram et al. (2008) contained, in addition to physical interactions, the transcription

factor-to-gene interactions. These interactions were modeled as directed edges, and Suthram et al.

(2008) applied a heuristic approach to model the current flowing through them. In contrast, our

absorbing mode can be directly applied to directed networks, although the columns of the matrix F

cannot be interpreted as voltages (Fig. 1). We will show in Section 3.5 that, even when edges are

directed, F gives rise to potentials.

Zhang et al. (2007) applied the same formalism without damping to social networks as a recom-

mendation model. They consider a graph G corresponding to a social network, where items under

consideration are mapped to nodes, as a heat conduction medium and interpret f as temperature. For each

recomendee, by setting his/her favorite items to ‘‘high-temperature’’ and disliked items to ‘‘low-tem-

perature’’ and solving for f over the remaining nodes, they obtain the heat distribution over the entire G.

(a)

(b)

B

A

(c)

B

A

FIG. 1. Absorbing mode formalism can be ex-

tended beyond resistor networks. Consider, for

example, the directed graph shown in (a), where

all edges, directed and undirected have weight 1.

This graph can be modeled as a resistor network

by treating all edges as undirected (b). Applying a

unit voltage at node A and grounding at node B

leads to the current flowing from A to B. The

voltage at each node is indicated by shading (dark

means high voltage) while the current at each

edge is indicated by the thickness and the direc-

tion of the arrow corresponding to that edge. The

equivalents of voltage and current can be ob-

tained for the original graph using the absorbing

mode with the same boundary (c). Note the

qualitative difference between the results in (b)

and (c): the node shaped as square conducts sig-

nificant current in (b) but is totally isolated in (c).
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The values of f can be used to recommend potential interesting items (other high temperature nodes) to

individuals.

2.3.2. Topic-sensitive PageRank. Topic-sensitive PageRank was introduced by Haveliwala (2003)

as a context-sensitive algorithm for web search and has been recently applied to protein interaction

networks by Voevodski et al. (2009). The PageRank vector P is defined as the unique solution of the

equation

p = bs + (1 - b)pM‚ (13)

where M is the transition matrix for a graph (i.e.
P

j2V Mij = 1), 0 < b < 1 and s is a probability vector

(
P

j sj = 1). The vector P is interpreted as the steady state for the random walk governed by M, which at

each step has probability b of restarting at a different node. The probability of restarting at the node j is sj.

Clearly, P can be written as

p = bs(I - (1 - b)M) - 1: (14)

PageRank can be considered a special case of the emitting mode in the following way. Add an additional

vertex v to the graph with no incoming edges and with the weight of each outgoing edge v / i pro-

portional to si. Construct a matrix P using ai = 1 - b for all i in the original graph and av = b. Let

D = {v} be the boundary set. Clearly, (1 - b)M = PTT and bs = PDT, and hence Equation (14) reduces to

Equation (7).

2.3.3. Other methods based on random walks. Beyond the analysis of protein interaction net-

works, approaches based on diffusion and random walks have received attention for a number of appli-

cations. We will only mention here a few examples from machine learning to illustrate the point.

A kernel on a space X is a symmetric positive (semi)definite map j : X · X ! R, which can be used to

measure similarity between two points in X. A kernel can naturally be treated as an inner product on some

feature space. Among other approaches, kernels are the foundation of Support Vector Machines (SVMs),

machine learning methods widely used for classification and pattern recognition of data (Schoelkopf and

Smola, 2002; Schölkopf et al., 2004).

A variety of kernels were proposed to compare nodes in undirected graphs (Fouss et al., 2006), mostly

derived from discrete Laplacians. Recall that we called the matrix D(PTT ) = I - PTT the discrete Laplace

operator of the matrix PTT. One can similarly define the matrices D(W) = I - W and D(P) = I - P, where W is

the adjacency matrix and P is the transition matrix for a weighted undirected graph G. Both D(W) and D(P)

were sometimes called the graph Laplacians for G.

Generally, the matrix D(W) need not be invertible (in particular, D(P) is not invertible [Zhang et al.,

2007]). Fouss et al. (2007) proposed using the Moore-Penrose pseudoinverse, which generalizes a matrix

inverse to matrices of less than full rank, of D(W) as a kernel, with applications to collaborative recom-

mendation. The approach and the application domain of Fouss et al. (2007) are similar to that of Zhang

et al. (2007).

The von Neumann diffusion kernel (Schoelkopf and Smola, 2002), proposed by Katz (1953), has the

form

j =
X1
n = 1

bn[Wn] = (I - bW) - 1 - I‚ (15)

where b is a damping factor chosen so that (I - bW) - 1 exists. This approach is roughly similar to ours

where we compute G = (I - lQTT ) - 1 in that both jij and Gij include the sums of the weights for all paths

from i to j. The main difference between the two approaches is that the weight of each path of length n

included in j is the product of weights of each link followed, while in our case it is the product of

probabilities and therefore has a probabilistic interpretation.

Exponential diffusion kernels, introduced by Kondor and Lafferty (2002), are defined by

j =
X1
n = 0

bk( -D(W))k

k!
= exp( - bD(W))‚ (16)

384 STOJMIROVIĆ AND YU



with a real parameter b. Diffusion kernels can be interpreted to model continuous diffusion through graph,

with infinitesimal time steps in contrast to discrete-time diffusion implied by von Neumann diffusion kernel

and other similar random-walk based methods. Note that, since every kernel is required to be symmetric,

the above formalizations do not extend directly to directed graphs.

3. THEORY

Assume V = S k T k K, where the set S denotes the sources, K denotes the sinks and T the transient

nodes and write the matrix P in the block form as

P =
PSS PST PSK

PTS PTT PTK

PKS PKT PKK

2
4

3
5: (17)

Let us modify (add context to) the underlying graph G so that the random walk can only leave the sources

and only enter the sinks. Furthermore, no communication is allowed among sources or among sinks without

going through transient nodes. The modified transition matrix, denoted P̃ has the form

P̃ =
0 PST PSK

0 PTT PTK

0 0 0

2
4

3
5: (18)

Treating the vertices in S and T as transient for the absorbing mode in Section 2.2.1, we first derive the

matrix F (of size jS W Tj · jKj):

F = I -
0 PST

0 PTT

� �� �- 1 PSK

PTK

� �
=

I PSTG

0 G

� �
PSK

PTK

� �
= PSK + PSTGPTK GPTK½ �T ‚

where, as before, G = (I - PTT ) - 1. Similarly, treating the vertices in T and K as transient for the emitting

mode in Section 2.2.2, we derive the matrix H (of size jSj · jT W Kj):

H = PST PSK½ � I -
PTT PTK

0 0

� �� �- 1

= PST PSK½ �
G GPTK

0 I

� �
= PSTG PSTGPTK + PSK½ �:

The entries of F and H are, as before, interpreted as probabilities of absorption at sinks and average

numbers of visits of walks emitted from sources, respectively. Note that the same Green’s function,

G = (I - PTT ) - 1, needs to be computed for both solutions. Also note that the ‘‘S’’ rows of F form the

transpose of the ‘‘K’’ columns of H, that is, for all s 2 S and k 2 K‚ Fsk = Hsk.

The matrices F and H can be extended over the whole graph into the matrices �F and �H, of sizes n · jKj
and jSj · n respectively, by setting �Fkk0 = dkk0 for k‚ k0 2 K and �Hss0 = dss0 for s‚ s0 2 S. This is equivalent to

setting the K portion of �F and S portion of �H to appropriately sized identity matrices:

�F = PSK + PST GPTK‚ GPTK‚ I½ �T (19)

�H = I‚ PST G‚ PST GPTK + PSK½ � (20)

The matrices �F and �H contain explicit boundary conditions with interpretations straightforwardly extended

from F and H. Specifically, �Fkk0 = dkk0 means that a random walk originating from a sink cannot move

anywhere else, while �Hss0 = dss0 implies that a random walk starting at a source will visit it exactly once and

cannot return to it nor to any other source.

Remark 3.1. We explicitly assumed that a boundary node can either be a source or a sink. Sometimes, it

is desirable to examine flows that both start and terminate at the same point. This case can be reduced to our

assumption by introducing for each source that is also a sink an additional node with all the edges of the

original node. The new enlarged graph will contain two ‘‘logical’’ nodes for each ‘‘physical’’ source/sink
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node that plays a dual role and hence it will be possible to have disjoint sets of sources and sinks on the

boundary.

3.1. Channel tensor

Define the channel tensor F 2 V � K � S� by

Fs
ik = �Hsi

�Fik: (21)

The entry Fs
i‚ k gives the expected number of times a random walk emerging from the source s and

terminating at the sink k visits the vertex i (Lemma A.1). In particular, s 2 S and k 2 K,

Fs
s‚ k =Fs

k‚ k = Fsk = Psk + [PSTGPTK ]sk: (22)

Hence, the entries of F can be interpreted similarly to the entries of �H: as expected numbers of visits to

nodes in network by random walkers starting at a source node. While �Hsi gives the total number of visits to

i by a random walker starting at s, Fs
i‚ k measures only those walkers that ultimately reach the sink k. All

other walkers, which either terminate due to dissipation before reaching k, reach other sinks or reach any of

the sources, are not considered. Alternatively, Fs
i‚ k measures the amount of equilibrium flow through the

node i by a stream of particles entering through s and leaving from k. The corresponding equilibrium flow

through an edge (i, j), denoted ws,k(i, j) is given by ws‚ k(i‚ j) =Fs
i‚ kPij:.

Suppose s and k are connected through a directed path (equivalently Fsk > 0) and let Tsk denote the

expected length of the path traversed by a walker starting at s and terminating at k. Then, it can be shown

(Lemma C.1) that,

Tsk = 1 +
X
i2T

Fs
i‚ k

Fsk

=
l

Fsk

qFsk

ql
: (23)

Other moments and cumulants of the distribution of lengths of paths traversed by walkers starting at s and

terminating at k can similarly be expressed in terms of the Green’s function G or the derivatives of Fsk with

respect to l (see Appendix C).

3.2. Normalized channel tensor

For brevity we will use a convention that when a set symbol replaces an ordinary index, it means to sum

over that entity index of the set in question. For example, for any i 2 S [ T‚ FiK �
P

k2K Fik and for all

s 2 S‚ i 2 V‚Fs
i‚ K �

P
k2K Fs

i‚ k.

For s 2 S‚ FsK , FsK gives the probability (or expectation) of a random walk emerging from the source s

reaching any of the sinks in K. Assuming FsK > 0 for all s 2 S, define the normalized channel tensor,

F 2 V � K � S� by

F̂
s

i‚ k =
Fs

i‚ k

FsK

: (24)

The normalized channel tensor F̂
s

i‚ k gives the normalized expectation of the number of visits of i by a

random walk from s to k. Even though Fs
i;k in (21) does not consider any of the random walk paths that

return to sources or terminate due to dissipation at transient nodes, the number of visits to any specific node

it records is reduced as the dissipation strength increases. The normalization by FsK in (24) takes out the

global effect of damping and makes it possible to compare the channel tensors obtained at different

dissipation strengths.

3.3. Interpretations

Generally, the entries of F and F̂ can be interpreted in the same way as the entries of H from the emitting

mode. For practical applications, it is sometimes desirable to reduce the amount of available information to

a single vector over V, which can be tabulated and graphically visualized using color maps.

For a source s 2 S, the source specific content of a node i 2 V is F̂
s

i‚ k, the (normalized) total number of

visits to i by a random walker starting from s and terminating at any of the sinks in K. Equations (22–24)

imply that for all s 2 S,

386 STOJMIROVIĆ AND YU



F̂
s

s‚ K =
X
k2K

F̂
s

k‚ k = 1‚ (25)

that is, the entire flow starting at s and reaching one of the sinks is normalized to unity. The total content

vector of F̂, denoted by ŝ, sums all (normalized) visits for each node:

ŝi = F̂
S

i‚ K : (26)

The concept of destructive interference measures the overlap between visits from different sources for each

node. We define the interference vector r̂ over V by

r̂i = jSjmin
s2S

F̂s
i‚ K : (27)

Hence, r̂i gives the (normalized) total number of times the random walks from all sources co-occur at each

node (scaled by the number of sources). The above formulas assume that each source emits the same

amount of information. If needed, F̂s
i‚ K can be weighted by source strength before evaluating total content

or interference.

With damping factors less than unity, the random walks from sources to sinks effectively visit a small

portion of the entire network. Information Transduction Module (ITM) is a notion that we coined to

describe the set of nodes most influenced by the flow. The nodes are ranked using their values for the total

content or interference and the most significant nodes are selected. The number of selected nodes depends

on the application-specific considerations but we found that the participation ratio p (Stojmirović and Yu,

2007) of the total content vector ŝ gives a good estimate of the number of nodes whose relative amount of

content is significant. It is given by the formula

p(ŝ) =
P

i2V ŝi

� �2P
j2V ŝ2

j

: (28)

For undirected graphs, with a context consisting of a single source and a single sink, the values of F̂ are

invariant under interchange of sources and sinks (see Appendix B). In general, however, reversing sources

and sinks gives a different result, both due to asymmetry of the weight matrix in directed graphs and

because sources and sinks have different roles if more than one of each are present: random walkers

originating from different sources can simultaneously visit a transient node while a walk can terminate only

at a single sink. Thus, the sinks split the total information flow, that is, compete for it, while sources

interfere, either constructively or destructively.

3.4. Path lengths

Damping influences the normalized channel tensor differently from the non-normalized one or the

absorbing and emitting solutions. For the non-normalized versions, damping factors control the amount of

information reaching the boundary and any intermediate points. In the normalized case, all ‘‘normalized’’

information emitted from the sources reaches sinks (Equation (25)) and damping controls a random

walker’s average path length, which is always bounded below by the length of the shortest path. Provided

each source is connected to at least one sink through a directed path, we have (Corollary C.3)

TsK = 1 +
X
i2T

F̂
s

i‚ K =
l

FsK

qFsK

ql
: (29)

Small values of l strongly favor the nodes on the shortest paths, while large values allow random

walks to take longer excursions and hence favor the vertices with many connections. As l Y 0, only the

nodes at the shortest path receive any flow and TsK / q(s, K), the smallest distance between s and any

sinks in K. Appendix C contains a more detailed analysis of the role of damping with full statements

and proofs.

Note that the l dependence of TsK allows one to determine the appropriate damping factor for a specified

average path length. From the results in Appendix C, it follows that TsK is a smooth function of l, which is

strictly increasing on [0, 1] (qTsK

ql is positive). Therefore, the equation TsK(l) = x has a unique simple root for

q(s, K) £ x £ TsK(1) and any root-finding method can be used to find l from TsK. When a context contains
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multiple sources, a desired weighted average of TsK over all s 2 S can be set to obtain a global uniform

damping factor l.

3.5. Potentials and normalized evolution operators

In Stojmirović and Yu (2007), we used a concept of a potential to redirect the flow towards desired

destinations in the emitting mode. To each node j 2 V , we associated the value of the total potential Y(j)

such that

Y(j) =
X
k2R

hk(q(j‚ k))‚ (30)

where R � T is the set of potential centers, q(j, k) is the length of the shortest path from j to k, and hk is an

increasing function with a minimum at k. The exponential of the total potential was then used to re-weight

the edges incoming to j and form a new matrix Ŵ:

Ŵij = Wijexp( -Y(j)): (31)

The matrix Ŵ was then normalized to construct the transition matrix to be used (after applying damping)

for the emitting mode. It is possible to express the application of the potential Y as a direct transformation

of the transition matrix P (without dissipation included). Let fj � exp( -Y(j)) and let P̂ denote the new

transition matrix derived from Ŵ. Then, P̂ can be written as

P̂ij =
ŴijP

k2V Ŵik

= ci

Pijfj

fi
‚ (32)

where

ci =
fi
P

k2V WikP
k2V Wikfk

: (33)

If ci = 1 for all i, we can express P̂ as a similarity transformation of P, where P̂ =L - 1PL, where Lij = dijfi.

In general, this is not the case with the heuristic potentials proposed in Stojmirović and Yu (2007).

However, we will now show (with proofs in Appendix D) that there exist a potential derived from the

matrix F that transforms the context specific matrix ~P into a stochastic transition matrix over the source and

transient nodes. The solution of the emitting mode using the new matrix recovers the normalized channel

tensor F̂ and allows for additional generalizations.

Let VK = fi 2 V : �FiK > 0g be the set of all nodes in V that are connected with any sink in K by a

directed path and denote by SK and TK the sets S X VK and T X VK, respectively. Suppose 0 £ l £ 1. For

i 2 SK [ TK , let

fi =
X
k2K

�Fik fk; (34)

where fk > 0 are arbitrary for k 2 K. For i; j 2 VK , define

Nij =
~Pij fj

fi
: (35)

Since all transient nodes are assumed to be connected to a sink, the matrix N is well defined for

0 < l £ 1. It can be shown using parts of Appendix C.2 that it is also well defined in the limit as l Y 0.

Clearly, Nkj = 0 for all k 2 K and j 2 K. Over SK W TK, the matrix N is stochastic (Proposition D.1), that

is
P

j2VK
Nij = 1. Hence, N is an evolution operator for flow entering at sources and terminating exclu-

sively at a point in K. The dependence on l is built in the transition probabilities Nij. Furthermore,

Equation (34) is the only way to construct a function over VK so that (35) gives a stochastic transition

matrix (Proposition D.1).

Denote by G(N), �F(N), �H(N), F(N) the quantities corresponding to G, F, H and F respectively, when the

matrix ~P is replaced by the transition matrix N. Since transformation (35) is a similarity transformation

from ~P to N, it is easy to establish the following:
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Proposition 3.2. The following identities hold:

(i) For all i, i‚ j 2 TK , [G(N)]ij = Gij fj / fi,
(ii) For all i 2 VK and k 2 K, [�F(N)]ik = �Fik fk=fi,
(iii) For all s 2 SK and i 2 VK‚ [ �H(N)]si = �Hsi fi=fs‚
(iv) For all s 2 SK‚ i 2 VK and k 2 K, [F(N)]s

i‚ k =Fs
i‚ k fk=fs:

The special case where fk’s are equal for all k 2 K results in [ �H(N)]si = F̂s
i‚ K and [F(N)]s

i‚ k = F̂s
i‚ k. Hence,

N in this case can be considered a ‘‘natural’’ transition operator for random walks or Markov chains that

start at sources S and terminate at a point in K. The time evolution of such processes can be followed by

raising N to appropriate powers. As demonstrated in the previous sections, the parameter l, which is

implicit in N, controls the how fast the random walkers move towards their destinations. Figure 2 shows a

graphical example of the transformation of the operator ~P into N, which directs the flow towards the sink.

(a)

(b)

(c)

FIG. 2. Transformation of the evolution oper-

ator using potentials. (a) Directed graph from

Figure 1 with transition probabilities indicated by

edge arrows. Nodes are shaded according to the

potential associated with the sink (octagon). (b)

Normalized transition operator N resulting from

the application of the sink potential to the context

specific transition matrix (the single source is

indicated as hexagon). (c) Values of the nor-

malized channel tensor as shades and the direc-

tional flow through each edge as arrows.

Comparison between (b) and (c) shows that

edges with large transition probabilities need not

carry significant flows.
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In general, each value fk represents the sink strength of the sink k 2 K. Equal sink strengths imply no

prior preference for any sink while in the case of unequal sink strengths the flow from sources towards sinks

is preferentially pulled towards sinks with larger strength. It is also possible to exclude some sinks from

consideration by setting their strength to 0. Since the scaling of fk’s does not affect the transition matrix,

they can be considered as probabilities over K and, in the Bayesian framework, as priors. Indeed, the

equation

[�F(N)]ik =
�FikfkP

k02K
�Fik0 fk0

(36)

can be easily recognized as Bayes’ formula for posterior likelihood. Here �Fik can be interpreted as the

likelihood of a random walk from i being absorbed at sink k, given that k is absorbing; fk is the prior

probability that k is absorbing; while [�F(N)]ik is the likelihood that a walker starting at i is absorbed at k,

given that it is absorbed at any of the ‘‘active’’ sinks (i.e., sinks with fk > 0). This suggests a use of the

absorbing and channel modes as Bayesian inference frameworks for forming and testing hypotheses. For

example, sinks can be associated with mutually exclusive hypotheses. The likelihood of each source being

associated with a hypothesis can then be evaluated using (36).

The matrix N can also be expressed in terms of potentials. Suppose fk > 0 for each k 2 K and set the

potential of each node i 2 VK by

Y(i) � - log
X
k2K

Fikfk: (37)

Then, N can be written as

Nij = ~Pijexp(Y(i) -Y(j))‚ (38)

with the straightforward interpretation of the information flow moving from high- to low- potential

nodes. Unlike our earlier potential (31), which was totally heuristic, this new potential is theoretically

founded.

4. APPLICATIONS TO CELLULAR NETWORKS

In the recent years, development of high-throughput genomic and proteomic techniques resulted in

proteome-wide interaction networks (interactomes) in a number of model organisms (Ito et al., 2001;

Uetz et al., 2000; Giot et al., 2003; Li et al., 2004; Stelzl et al., 2005; Rual et al., 2005; Ptacek et al.,

2005). Databases such as the BioGRID (Breitkreutz et al., 2008), IntAct (Kerrien et al., 2007), DIP

(Salwinski et al., 2004), and MINT (Chatr-Aryamontri et al., 2007) have been established to collect and

curate sets of interactions from different experiments and make them publicly available. Most databases

contain physical binding interactions, while the BioGRID additionally includes genetic interactions (such

as synthetic lethality) and biochemical interactions, which describe a biochemical effect of one protein

upon another.

A protein (or a protein state) is mapped to a node in a cellular protein network. Hence, the solution of a

channel mode context (as tensors F and F̂) will highlight an ITM consisting of the proteins most visited by

a directed flow from sources to sinks, that is, the proteins lying on the most likely paths connecting sources

and sinks. Clearly, biological interpretations of the model results will depend on the nature of interactions

ascribed for links within the network graphs: the interpretation for an ITM from a genetic or functional

network and that for an ITM from a physical network should be different. Here, we will mainly focus on the

physical networks where interactions correspond to binding between two proteins (undirected) or a post-

translational modification of one protein by another (directed). Each step of a random walk in such a

network is equivalent to a physical event and dissipation naturally corresponds to protein degradation by a

protease and negative feedback mechanisms that limit transmission of information. It is thus plausible that

the information channels obtained by solving the channel mode with suitable sources and sinks may

correspond to (portions of) actual signaling or gene regulation pathways. However, it is important to note

that the biological validity of a network path is contingent upon the transitivity of biochemical effect along

that path as not all protein-protein interactions have the same downstream effect. Also, even in the best
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case, the information obtained from a random walk models would be primarily qualitative since cellular

processes in general do not correspond to linear models.

The simplest way to use the channel mode is for knowledge retrieval by exploring large networks. In

many model organisms, it is possible to construct physical protein interaction networks that integrate

proteome-wide data collected from results of multiple experiments from different sources using a variety of

techniques. All three modes discussed in this paper, emitting, absorbing and channel, can be used to explore

network neighborhoods of proteins of interest and learn more about their function(s). In particular, given

two proteins, one set as a source and the other as a sink, one may use the channel mode to extract a sub-

network containing only the proteins most relevant to the possible functional relation between them. By

using graphical tools to visualize the sub-network and by examining the annotations for the individual

proteins within it, one can learn about their role within the cell and hence understand the cellular context of

the query proteins.

More complex settings of the channel mode can be used for hypothesis forming and confirmation. For

example, using destructive interference between flows from multiple sources may reveal the points of

crosstalk between different biological pathways that can be selected for further experimental investigation.

Given one or more proteins of interest one can explore the hypothesis about their function by using the

property that sinks split the flow. Set these proteins of interest as sources and set several sinks, each

associated with an a different biological role. After running a channel mode, the sinks attracting most of the

flow would point to the most likely cellular role of the proteins, given all alternatives. Of course, if all

alternatives are biologically invalid, no valid functional inference can be made.

Since it is possible to arbitrarily specify sources and sinks and obtain model results that may not

correspond to any cellular role, it is desirable to be able to check whether retrieved ITMs can be associated

with any existing annotation. A common way to do so is through enrichment analysis (Huang et al., 2009),

which assigns terms from a controlled vocabulary such as Gene Ontology (Ashburner et al., 2000) or

KEGG (Kanehisa et al., 2010) to a set of genes or proteins with weights. Each term from a controlled

vocabulary annotates one or more proteins and enrichment analysis aims to retrieve, by statistical inference,

those terms that best describe the set of submitted proteins with weights. While many enrichment tools

were developed for analysis of microarrays (Huang et al., 2009), we found that none of them are entirely

suitable for analyzing the results of our model. We have therefore developed a novel tool, called SaddleSum

(Stojmirović and Yu, 2010), which is based on asymptotic approximation of tail probabilities (Lugannani

and Rice, 1980). For each term, it computes the probability that a score greater than or equal to the sum of

weights, for all the proteins associated with that term, can arise by chance. In the context of the channel

mode, the quantities that can serve as input to SaddleSum are source specific content, total content, and

destructive interference.

4.1. Example: yeast pheromone pathway

As an illustration, we will consider the mating pheromone response pathway in Saccharomyces cere-

visiae, the one of the best understood signalling pathways in eukaryotes (Bardwell, 2005). The mating

signal is transferred from a membrane receptor to a transcription factor in nucleus, leading to transcription

of mating genes. We will only provide a very brief overview of the pathway necessary for discussing our

examples; more details are available in the review by Bardwell (2005).

A mating pheromone binds the transmembrane G-protein coupled pheromone receptors Ste2p/Ste3p.

This leads to dissociation of Ste4p and Ste18p, the membrane bound subunits of the G-protein complex,

which also contains the subunit Gpa1p. Ste4p then binds to the protein kinase Ste20p, which is recruited to

the membrane through Cdc42p, and the scaffold protein Ste5p. On the scaffold, a MAPK (mitogen acti-

vated protein kinase) cascade occurs, where each protein kinase in the cascade is activated by being

phosphorylated by the previous kinase and in turn activates the next protein. In this case, the cascade goes

Ste20p / Ste11p / Ste7p / Fus3p or Kss1p. The final activated kinase Fus3p or Kss1p then migrates to

the nucleus where it phosphorylates the proteins Dig1p and Dig2p, the repressors of the Ste12p tran-

scription factor activity. The Ste12p transcription factor can then, in coordination with other transcription

factors such as Tec1p, promote the transcription of the mating genes.

As a basis for the underlying network, we used all physical yeast protein-protein interactions from the

BioGRID-3.0.65 (Breitkreutz et al., 2008). To improve the fidelity of the network, we removed every

interaction reported by a single publication unless that publication described a low-throughput experiment,
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which we assumed to be more targeted. We considered an experiment low-throughput if it reported fewer

than 300 interactions in total. We also removed all interactions labelled with the ‘‘Affinity Capture-RNA’’

experimental system since they were not protein-to-protein. The physical binding interactions were given a

weight 1 in both directions while the interactions labeled as ‘‘Biochemical Activity’’ were interpreted as

directional (bait / prey) and given a weight of 2. In cases where both physical and biochemical inter-

actions were reported, only biochemical were considered. Since it is known (Steffen et al., 2002) that

proteins with a large number of non-specific interaction partners might overtake the true signaling proteins

in the information flow modeling, we excluded a set of 165 nodes corresponding to cytoskeleton proteins,

histones and chaperones. We found that the excluded nodes do not strongly affect the results of the

particular examples presented here. For each example, we computed the normalized channel tensor

summed over all sinks, that is F̂s
i‚ K in our notation.

Figure 3 focuses solely on the MAPK cascade portion of the pheromone pathway, with Ste20p as a single

source and Ste12p as a single sink. Selection of top proteins by participation ratio captures all important

participants of the cascade but emphasizes a ‘‘shortcut’’ through Slt2p, which is a MAP kinase involved in

a different signalling pathway. Upon examination of the reference (Zarzov et al., 1996) used by the

BioGRID to support the Ste20p / Slt2p link, we discovered that it does not anywhere claim existence of

such interaction. Hence, we removed Slt2p from our network for all subsequent queries and reran the query.

In addition to the true pathway, the second ITM emphasized a path through Nup53p (a nuclear core

protein). We examined the publication (Lusk et al., 2007) indicated by the BioGRID to support the

Ste20p / Nup53p link and found that while it is true that Ste20p phosphorylates Nup53p in vitro, another

kinase was mainly responsible for its phosphorylation in vivo. We therefore felt justified to exclude Nup53p

as well. The final ITM resulting from the same query with Slt2p and Nup53p excluded in addition to the

165 proteins mentioned before is shown in Figure 3. Enrichment analysis using the GO database (Fig. 5,

column D) gives ‘‘receptor signaling protein serine/threonine kinase activity’’ as a top term under ‘‘Mo-

lecular Function’’ and ‘‘filamentous growth’’ as a top term under ‘‘Biological Process.’’ Hence, the final

ITM agrees well with the canonical understanding of the MAPK cascade.

To obtain an ITM best describing the entire pheromone response pathway, it is necessary to include two

sources, the receptor Ste2p and the membrane-bound protein Cdc42p (Fig. 4). Including only Ste2p is not

sufficient because of the shortcut through the link Gpa1p / Fus3p, which avoids the MAPK cascade.

Furthermore, inclusion of Cdc42p is biologically sensible because Cdc42p activates Ste20p (Bardwell,

2005) and is hence necessary for the MAPK cascade. Since the information flows from Ste2p and Cdc42p

to Ste12p share some but definitely not all paths in common (Fig. 4a), interference between them (Fig. 4b),

rather than total visits, is most appropriate to highlight the most important proteins in the signalling

pathway.

Figure 4b–d illustrates the effect of changing the damping factor l. With l = 1 (Fig. 4c), the flows from

sources visit a much larger portion of the network (the average path length �TsK = 1
jSj
P

s2S TsK = 19:32) than

with l = 0.85 (Fig. 4b, �TsK = 7:14) or l = 0.55 (Fig. 4d, �TsK = 4:58). The lower bound on path length is 3,

the shortest distance from both sources to Ste12p. In terms of enrichment analysis with GO (Fig. 5, columns

FIG. 3. ITMs for the MAPK cascade part of the yeast

pheromone response obtained by running the normal-

ized channel mode with Ste20p as the source and

Ste12p as the sink (l = 0.85). In addition to the

‘‘standard’’ excluded nodes (histones, chaperones,

cytoskeleton), we also removed the nodes for Slt2p and

Nup53p as discussed in the main text. Gray shading of

each node indicates its total content (darker nodes

represent more visits). The number of nodes shown is

determined by the participation ratio.

392 STOJMIROVIĆ AND YU



FIG. 5. Gene Ontology term en-

richment analysis of examples

from Figures 3 and 4 using Sad-

dleSum. The most significant GO

terms from the Biological Process

and Molecular Function categories

are shown on the left (number of

annotated proteins is in brackets),

with their E-values indicated by

shading of the squares on the right.

Each column corresponds to a sin-

gle example: (A) Fig. 4c (l = 1).

(B) Fig. 4b (l = 0.85); (C) Fig. 4d

(l = 0.55). (D) Fig. 3 (l = 0.85).

The input weights for columns A–

C were obtained from the interfer-

ence values at all non-excluded

nodes except sources and sinks,

while total content was used for

column D. E-values larger than the

cutoff of 0.01 are shown as white

squares.

(a)

(c)

(b)

(d)

FIG. 4. Yeast pheromone re-

sponse ITMs obtained by running

the normalized channel mode with

Ste2p and Cdc42p as the sources

and Ste12p as the sink with damp-

ing factors l = 0.85 (a, b), l = 1

(c), and l = 0.55 (d). Part (a) shows

flow intensity from each source

using a separate base color, while

(b–c) show interference (darker

nodes indicate stronger interfer-

ence). All images show the top 30

nodes in terms of the total content

for the case of l = 0.85.
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A–C), all three cases pick as significant the terms related to cell growth but with different statistical

significance. In addition, both the l = 0.85 and l = 1 cases can be associated with terms related to MAP

kinase and signal transduction. Hence, results for large l tend to give lower GO term E-values but with

lower specificity while results for small l give very specific results but with less significant E-values. The

l-dependence of E-values for any given term is not surprising since different ls correspond to different null

models. Based on the images in Figure 4, the enrichment results as well as our experience in other model

contexts, the values of l around 0.85, corresponding to a random walk visiting about four more nodes than

the minimum necessary to reach the sink, appear to give the best results in emphasizing biologically

relevant channels.

5. DISCUSSION

We have described the channel mode for modeling context-specific information flow in interaction

networks. It supports discovery of the most likely channels through networks between user-specified

origins (sources) and destinations (sinks) of information. The transition operator N, constructed by applying

potentials centered on sinks to the original transition operator, fully describes the dynamics of the flow

within the channels. The mathematical formulation of the channel mode is flexible and can be easily

modified for related cases. For example, it is possible to model the flow through a sequence of ‘‘check-

points’’ by using destination from one context as the origin for another.

Unlike other models based on random walks and/or electrical networks proposed in the literature (Tu

et al., 2006; Suthram et al., 2008; Missiuro et al., 2009; Voevodski et al., 2009) that can be reduced to either

emitting or absorbing modes, our channel mode allows for ‘‘directed’’ information flow. Furthermore, it

can readily accommodate networks containing directed links and multiple sources and sinks. Most im-

portantly, like our original framework (absorbing and emitting modes), the channel mode uses damping to

retain the information flow in the portion of the network most relevant to the specified context and prevent

visits to distant nodes. Damping is controlled by a free parameter l (or more generally, node specific

parameters ai), which in the case of the channel mode controls the amount of path deviation from the

shortest one. In statistical physics terms, this is equivalent to using fugacity to control the number of

particles of the system. Computation of the model solution requires only a solution to a (sparse) system of

linear equations, without needing to simulate random walks as was done in Tu et al. (2006). If computation

of multiple contexts with the same damping coefficients is required, it is possible, using well known results

from linear algebra (Press et al., 2007), to re-use the Green’s function for one context to efficiently compute

the Green’s function for another.

Applied to physical protein interaction networks, the channel mode can be used as a framework for

knowledge retrieval through network exploration and hypothesis formation and confirmation. The node

weights obtained can be interpreted directly as well as submitted to an enrichment tool for further analysis.

Note however that, in many cases, the annotation of a protein by a term is directly tied to publications

reporting its physical interactions.

As illustrated by our pheromone pathway example, the results of our model are sensitive to ‘‘shortcuts’’

between biologically unrelated protein nodes. Therefore, to obtain valid conclusions from the ITMs re-

trieved, the underlying interaction network must be constructed from high-quality data relevant to the

biological context under investigation. The nodes with many non-specific interactions, as well as links that

may not represent actual in vivo interactions under the query context, should be removed from the network.

The damping factor l also needs to be selected appropriately for the biological context investigated,

depending on whether the coverage (high l) or the selectivity (low l) of the channel are desired more. The

results of enrichment analysis for the example shown in Figure 4 indicate that at least some interpretations

are robust to the change of l.

We have already deployed a software implementation of our framework, called ITM Probe, to the web

for the use of biomedical researchers (Stojmirović and Yu, 2009). In future, we plan to extend our

information flow framework to a platform for network-based context-specific qualitative analysis of cel-

lular process. The improved models will take into account additional biological information, such as

protein complex memberships, post-translational modification states and abundances, possibly leading to

non-linear transition operators. Generally, while wishing to improve accuracy by incorporating more

specific information, we aim to preserve the simplicity of the present framework.
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6. APPENDIX

A. Channel tensor as expectation

Lemma A.1. Let Zs
i‚ k be a random variable denoting the total number of times a random walk starting

at s 2 S and absorbed at k 2 K visits i 2 V. Then,

E(Zs
i‚ k) =Fs

i‚ k: (39)

Proof. Consider a path x = x0‚ x1‚ x2 . . . xs from s 2 S to k 2 K of total length s where x0 = s‚ xs = k and

x1‚ x2‚ . . . xs - 1 2 T . The total weight or probability associated with x is P(x) = Px0x1
Px1x2

. . . Pxs - 1xs . For any

i 2 V , let Xi(x, t) = 1 if xt = i and 0 otherwise. Then, the total number of times x visits i is

Ni(x) =
Ps

t = 0 Xi(x‚ t) and

Zs
i‚ k =

X1
s = 1

X
x2X (s)

Ni(x)‚

where X (s) denotes the set of all paths from s to k of length s. Therefore,

E(Zs
i‚ k) =

X1
s = 1

X
x2X (s)

Ni(x)P(x) =
X1
s = 1

X
x2X (s)

Xs

t = 0

Xi(x‚ t)P(x) =
X1
s = 1

Xs

t = 0

Yi(t; s)‚ (40)

where Yi(t; s) =
P

x2X (s) Xi(x‚ t)P(x). There are three cases to consider depending on whether i is a source, a

sink or a transient node.

If i is a source, a path from s can visit i only if i = s and t = 0. Therefore, Xi(x, t) = dsidt0 and hence

Yi(t; s) =

dsiPsk if t = 0 and s = 1‚P
j‚ j02T dsiPij Ps - 2

TT

� 	
jj0

Pj0k if t = 0 and sq2‚

0 otherwise:

8><
>: (41)

Here Ps - 2
TT

� 	
jj0 is exactly the total weight of paths of length s - 2 that start at j 2 T , visit nodes in T and

terminate at j0 2 T . Hence,

E(Zs
i‚ k) = dsiPik +

X1
s = 2

X
j‚ j02T

dsiPij Ps - 2
TT

� 	
jj0

Pj0k = dsi PSK½ �ik + dsi

X
j‚ j02T

Pij

X1
n = 0

Pn
TT

� 	
jj0

Pj0k

= dsi[PSK + PST GPTK ]ik = �Hsi
�Fik =Fs

i‚ k: (42)

Similarly, if i is a sink, a walker from s can visit i and terminate at k only if i = k and 0 < t = s. Thus,

Xi(x, t) = dikdts and

Yi(t; s) =
Psidik if t = s = 1‚P

j‚ j02T Psj Ps - 2
TT

� 	
jj0

Pj0idik if t = sq2‚

0 otherwise:

8<
: (43)

Therefore,

E(Zs
i‚ k) = Psidik +

X1
s = 2

X
j‚ j02T

Psj Ps - 2
TT

� 	
jj0

Pj0idik = PSK½ �sidik +
X

j‚ j02T

Psi

X1
n = 0

Pn
TT

� 	
jj0

Pj0idik

= [PSK + PST GPTK ]sidik = �Hsi
�Fik =Fs

i‚ k: (44)

Finally, suppose i 2 T . In order to visit i at time t and terminate at k at time s, a path in X (s) must take

one step to reach T, spend there t - 1 steps before arriving at i, then take another s - t - 1 steps in T and an

additional step to terminate at k. Considering all possible paths that visit i at time t, we have

Yi(t; s) =
P

j‚ j02T Psj Pt - 1
TT

� 	
ji

Ps - t - 1
TT

� 	
ij0

Pj0k if 1pt < s‚

0 otherwise:



(45)

It follows that
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E(Zs
i‚ k) =

X1
s = 2

Xs - 1

t = 1

X
j‚ j02T

Psj Pt - 1
TT

� 	
ji

Ps - t - 1
TT

� 	
ij0

Pj0k =
X1
t = 1

X1
s = t + 1

X
j‚ j02T

Psj Pt - 1
TT

� 	
ji

Ps - t - 1
TT

� 	
ij0

Pj0k

=
X

j‚ j02T

Psj

X1
n = 0

Pn
TT

� 	
ji

X1
m = 0

Pm
TT

� 	
ij0

Pj0k = PST G½ �si GPTK½ �ik = �Hsi
�Fik =Fs

i‚ k: -

B. Reversibility of sources and sinks

It is easy to see that in general, reversing sources and sinks produces different values for the normalized

channel tensor. One important exception, however, is the case when the underlying graph is undirected and

there is a single source and a single sink.

Lemma B.1. Let G = (V, E, w) be an undirected weighted graph with a weight matrix W and tran-

sition matrix P as defined in (1), with ai 2 [0‚ 1] for all i 2 V. Suppose G is connected and let s‚ k 2 V .

Denote by F̂ the normalized channel tensor over G with s as a single source and k as a single sink, and

denote by Ĉ the normalized channel tensor over G with k as a single source and s as a single sink. Then, for

all i 2 V ,

F̂
s

i‚ k = Ĉ
k

i‚ s: (46)

Proof. Since G is an undirected graph, it satisfies the detailed balance equation pyPxy = Pyxpx for all

x‚ y 2 V , where px = ax=
P

z2V Wxz. It directly follows that

pyGxy =
X1
n = 0

py[Pn
TT ]xy =

X1
n = 0

[Pn
TT ]yxpx = Gyxpx: (47)

For i = s or i = k, one can immediately see that F̂
s

i‚ k = 1 = Ĉk
i‚ s. Observing that the transient state is the same

for both F̂ and Ĉ, we have for each i 2 T ,

F̂s
i‚ k =

P
j2T PsjGji

� � P
j02T Gij0Pj0k

� �
Psk +

P
j‚ j02T PsjGjj0Pj0k

=

P
j2T

ps

pj
Pjs

pj

pi
Gij

� � P
j02T

pi

pj0
Gj0i

pj0
pk

Pkj0

� �
ps

pk
Pks +

P
j‚ j02T

ps

pj
Pjs

pj

pj0
Gj0j

pj0
pk

Pkj0
= Ĉk

i‚ s: -

C. The role of the damping factor in the channel mode

Recall that P = lQ, where l 2 (0‚ 1) is the uniform damping factor and Q is given in (3). For this range

of l, the Green’s function G = (I - PTT ) - 1 =
P1

n = 0 Pn
TT =

P1
n = 0 Qn

TTln is well-defined (see (Stojmirović and

Yu, 2007), Proposition 2.2) and hence the solution matrices �F and �H from Equations (19–20) are well

defined and continuous as functions of l. As l Y 0, all the damping factors in a uniformly tend to 0 and

P / 0. However, we will show in C.2 that the normalized channel tensor is well-defined in the limit as

l Y 0 (provided it is well defined for other values of l).

At the other extreme, as l [ 1 and P / Q, the Green’s function may not exist for every choice of

boundary nodes, since the spectral radius of QTT may be equal to 1. If the vertex set is restricted to V (K),

the set of all nodes connected through a directed path to at least one sink, then by Proposition 2.1 of

(Stojmirović and Yu, 2007), the Green’s function is well-defined for l = 1 as well. Also note that for a

channel tensor F to be non-trivial (i.e. non-zero everywhere), it is also necessary that each source is

connected to at least one sink through a directed path, or equivalently, that FsK > 0 for all s 2 S.

C.1. Path lengths. The damping parameter l controls the distribution of lengths of the paths (or the

times) a random walk emitted from a source takes before being absorbed at a sink.

For nodes s 2 S and k 2 K, let Lsk (more precisely, Lsk(l)) denote the random variable giving the

length of the path (or a number of steps) taken by a random walk originating at s and terminating at k. At
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least one such path from s to k exists if and only if Fsk > 0. The underlying probability density P(Lsk = n) is

given by

P(n) =
1

Fsk

Psk for n = 1;

[PST Pn - 2
TT PTK]sk for nq2:



(48)

Let MLsk(l) denote the moment generating function for Lsk and let CLsk(l) � log MLsk(l) denote its cumulant

generating function. Let us write Fsk as a function of l:

Fsk(l) = Qskl +
X1
n = 2

QST Qn - 2
TT QTK

� 	
sk
ln‚ (49)

and observe that

MLsk(l)(t) =
X1
n = 0

P(n)ent = Psket +
X1
n = 2

PSTPn - 2
TT PTK

� 	
sk

ent

= Qsklet +
X1
n = 2

QST Qn - 2
TT QTK

� 	
sk
lnent = Fsk(let): (50)

Thus, all moments and cumulants of Lsk can be expressed in terms of the Green’s function G and its related

quantities F, H and F, both directly and in terms of derivatives of their entires with respect to l. In

particular,

E(Lsk) = C0Lsk(l)(0) =
q
qt

Fsk(let)

Fsk(let)





t = 0

=
letF0sk(let)

Fsk(let)





t = 0

=
lF0sk(l)

Fsk(l)
: (51)

Using the easily provable identity
P1

n = 0 (n + 2)Pn
TT = G2 + G, we have

F0sk(l) = Qsk +
X1
n = 2

QSTQn - 2
TT QTK

� 	
sk

nln - 1 =
1

l
Psk +

X1
n = 0

(n + 2) PST Pn
TT PTK

� 	
sk

 !

=
1

l
Psk + PST (G + G2)PTK

� 	
sk

� �
=

1

l
Fsk + PSTG2PTK

� 	
sk

� �
: (52)

Therefore, by (51),

E(Lsk) = 1 +
PST G2PTK

� 	
sk

Fsk

= 1 +
X
i2T

HsiFik

Fsk

= 1 +
X
i2T

Fs
i‚ k

Fsk

‚ (53)

and we obtain the following

Lemma C.1. Let s 2 S, let k 2 K and let l 2 (0‚ 1). Suppose Fsk > 0. Then,

Tsk = E(Lsk) = 1 +
X
i2T

Fs
i‚ k

Fsk

=
l

Fsk

qFsk

ql
: (54)

Similarly,

Var(Lsk) = C00Lsk(l)(0) =
q
qt

letF0sk(let)

Fsk(let)





t = 0

=
letF0sk(let) + l2e2tF00sk(let)

Fsk(let)
-

letF0sk(let)

Fsk(let)

� �2



t = 0

= E(Lsk) +
l2F00sk(l)

Fsk(l)
- E2(Lsk): (55)

Using another easily provable identity
P1

n = 0 (n + 2)(n + 1)Pn
TT = 2G3, and Equation (52), we have
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F00sk(l) =
X1
n = 2

QSTQn - 2
TT QTK

� 	
sk

n(n - 1)ln - 2 =
1

l2

X1
n = 0

(n + 2)(n + 1) PSTPn
TT PTK

� 	
sk

=
2

l2
PSTG3PTK

� 	
sk
: (56)

Hence, we obtain

Lemma C.2. Let s 2 S, let k 2 K and let l 2 (0‚ 1). Suppose Fsk > 0. Then,

Var(Lsk) = E(Lsk) +
2 PST G3PTK

� 	
sk

Fsk

- E2(Lsk): (57)

Denote by LsK the random variable giving the length of the path (or the number of steps) taken by a

random walk originating at s and terminating at any sink in K. This random variable is well-defined

provided s is connected with at least one k 2 K through a directed path, or equivalently, if

maxk2K Fsk > 0. Let K̂(s) = fk 2 K : Fsk > 0g Then, LsK can be expressed as a weighted sum of Lsk over

k 2 K̂(s):

LsK =
X

k2K̂(s)

Fsk

FsK

Lsk: (58)

Here Fsk/FsK gives the conditional probability of a random walker from s reaching sink k, given

that it reaches any of the sinks in K̂(s). Through properties of mean, this leads to the following

corollary.

Corollary C.3. Let s 2 S and let l 2 (0‚ 1). Suppose maxk2K Fsk > 0. Then,

TsK = E(LsK) = 1 +
X
i2T

F̂s
i‚ K (59)

=
l

FsK

qFsK

ql
: (60)

Since E(Lsk) and E(LsK ) can be expressed in terms of sums and products of entries of G, they

are continuous and increasing functions of l 2 (0‚ 1). The value of E(LsK) is bounded from below

by the length of the shortest path from the source to any of the sinks. If the graph nodes are restricted

to V (K), G is well-defined for l = 1 and E(LsK ) is bounded and attains its maximum there. The value

of the maximum varies depending on the underlying network graph and the particular context.

C.2. Large dissipation asymptotics. For all i‚ j 2 V , let q(i, j) denote the (unweighted) length of the

shortest directed path between i and j. We allow q(i, j) = N if there exists no directed path between i and j.

It is well-known that q is a (not necessarily symmetric) distance that satisfies the triangle inequality, that is,

for all i, j, k 2 V , q(i, j) + q(j, k) ‡ q(i, k). For any source s 2 S, recall that q(s‚ K) = mink2K q(s‚ K) and let

Ks = fk 2 K : q(s‚ k) = q(s‚ K)g, the set of all the sinks closest to s.

Theorem C.4. Let s 2 S‚ i 2 T and k 2 K such that q(s, i) and q(i, k) are both finite. Then, if k 2 Ks

and i lies on the shortest path from s to k,

lim
lY0

F̂s
i‚ k =

QST Q
q(s‚ i) - 1
TT

h i
si

Q
q(i‚ k) - 1
TT QTK

h i
ikP

k02Ks
QSTQ

q(s‚ k) - 2
TT QTK

h i
sk0

: (61)

Otherwise, limlY0 F̂s
i‚ k = 0
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Proof. Let s 2 S‚ i 2 T and k 2 K. Since, q(s, i) and q(i, k) are finite, it follows that q(s, k) is also finite,

that is, k is reachable from s through i and the normalized channel tensor F̂ is well defined for all l 2 (0‚ 1).
Recall that

F̂s
i‚ k =

Fs
i‚ k

FsK

=
[PSTG]si[GPTK ]ikP

k02K Fsk0
(62)

where Fsk0 = [PSK + PSTGPTK]sk0.

Let u, u‚ v 2 T and let d = q(u, v). It can be easily shown (see Lemma A.3 from (Stojmirović and Yu,

2007) for a partial proof) that Pn
TT

� 	
uv

= 0 for all n < d and that Pd
TT

� 	
uv
> 0. Therefore,

Guv =
X1
n = d

Pn
TT

� 	
uv

=
X1
n = d

ln Qn
TT

� 	
uv

= ld Qd
TT

� 	
uv

+ O(ld + 1)

as l Y 0. Hence,

[PST G]si =
X
j2T

lq(j‚ i) + 1Qsj Q
q(j‚ i)
TT

h i
ji

+ O(lq(j‚ i) + 2) = lq(s‚ i) QSTQ
q(s‚ i) - 1
TT

h i
si

+ O(lq(s‚ i) + 1)‚ (63)

[GPTK ]ik =
X
j2T

lq(i‚ j) + 1 Q
q(i‚ j)
TT

h i
ij
Qjk + O(lq(i‚ j) + 2) = lq(i‚ k) Q

q(i‚ k) - 1
TT QTK

h i
ik

+ O(lq(i‚ k) + 1): (64)

Let n = q(s, k†), where k00 2 Ks. We will consider the denominator of Equation (62) under two separate

cases, n = 1 and n > 1.

If n > 1, for all k0 2 K, the vertices s and k0 are not adjacent and thus Psk0 = 0. Hence, since s and k0

are connected, there exist j‚ j0 2 T such that q(s, k0) = q(s, j) + q(j, j0) + q(j0, k0) = q(j, j0) + 2,

implying

[PSTGPTK]sk0 =
X

j‚ j02T

lq(j‚ j0) + 2Qsj Q
q(j‚ j0)
TT

h i
jj0

Qj0k0 + O(lq(j‚ j0) + 3)

= lq(s‚ k0) QSTQ
q(s‚ k0) - 2
TT QTK

h i
sk0

+ O(lq(s‚ k0) + 1):

(65)

Similarly,

FsK =
X
k02Ks

ln QSTQn - 2
TT QTK

h i
sk0

+ O(ln + 1)‚ (66)

and, as l Y 0,

F̂s
i‚ k !

lq(s‚ i) + q(i‚ k) QSTQ
q(s‚ i) - 1
TT

h i
si

Q
q(i‚ k) - 1
TT QTK

h i
ik

ln
P

k02Ks
QST Qn - 2

TT QTK

h i
sk0

(67)

By the triangle inequality and our assumptions on s, i and k,

q(s‚ i) + q(i‚ k)qq(s‚ k)qn: (68)

The first inequality becomes an equality if and only if i lies on the shortest path between s and k while the

second is an equality if and only if k 2 Ks. Therefore, if the assumption of the theorem is satisfied, the

value of F̂s
i‚ k converges to the value of the right hand side of Equation (61), while otherwise limlY0 F̂s

i‚ k = 0.

On the other hand, if n = 1‚ FsK !
P

k02Ks
lQsk0 + O(l2) and therefore, since q(s‚ i) + q(i‚ k)q2‚

F̂s
i‚ k ! 0 as lY0. -

We have therefore shown that, as l Y 0, only the nodes associated with the shortest path from each

source to the sink(s) closest to it will have positive values of the normalized channel tensor – all other

entries will be exactly 0.
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Corollary C.5. Let s 2 S and suppose the normalized channel tensor F̂ is well defined for all

l 2 (0‚ 1). Then,

lim
lY0

E(LsK) = q(s‚ k)‚ (69)

where k 2 Ks.

Proof. Let s 2 S, let k 2 Ks and let d = q(s, k). For m = 1‚ 2 . . . d - 1, let Ps(m) = fi 2 T : q(s‚ i) = m and

q(s‚ i) + q(i‚ k) = dg. The set Ps(m) consists of all transient nodes that are at the distance m from s on a

shortest path from s to any of the sinks closest to s. By Theorem C.4,

lim
lY0

X
k002K

X
i2T

F̂s
i‚ k00 =

X
k002Ks

Xd - 1

m = 1

X
i2Ps(m)

QSTQm - 1
TT

� 	
si

Qd - m - 1
TT QTK

� 	
ik00P

k02Ks
QST Q

q(s‚ k) - 2
TT QTK

h i
sk0

=
X

k002Ks

Xd - 1

m = 1

X
i2T

QST Qm - 1
TT

� 	
si

Qd - m - 1
TT QTK

� 	
ik00P

k02Ks
QST Qd - 2

TT QTK

� 	
sk0

=
Xd - 1

m = 1

P
k002Ks

QSTQd - 2
TT QTK

� 	
sk00P

k02Ks
QSTQd - 2

TT QTK

� 	
sk0

= d - 1:

Therefore, by Equation (59),

lim
lY0

E(LsK) = 1 + lim
lY0

X
k02K

X
i2T

F̂s
i‚ k0 = q(s‚ k):

-

D. Normalized evolution operator

To make our arguments more concise we will here additionally assume, without loss of generality, that

every node is connected to a sink via a directed path, that is, that VK = V.

Note that N is indeed well defined in the limit as l Y 0. For example, if i, j 2 T , we have from (64)

Nij =
~Pij

P
k2K [GPTK]jkfkP

k02K [GPTK]ik0 fk0
!

P
k2K lq(j‚ k) + 1Qij Q

q(j‚ k) - 1
TT QTK

h i
jk

fkP
k02K lq(i‚ k0) Q

q(i‚ k0) - 1
TT QTK

h i
ik0

fk0

=

P
k2K lq(j‚ k) + 1Qij Q

q(j‚ k) - 1
TT QTK

h i
jk

fk

lq(i‚ K)
P

k02K lq(i‚ k0) - q(i‚ K) Q
q(i‚ k0) - 1
TT QTK

h i
ik0

fk0

=
0 if q(j‚ k) > q(i‚ K) - 1‚P

k2K
Qij Q

q(i‚ K) - 2

TT
QTK½ �

jk
fkP

k02K
Q

q(i‚ K) - 1

TT
QTK½ �

ik0 fk0
if q(j‚ k) = q(i‚ K) - 1:

8<
: (70)

Similar well-defined limits for Ni,j, with i,j ˛V, can also be easily demonstrated using the results from

Appendix C.2.

Proposition D.1. Let f denote an arbitrary vector over V. Suppose i 2 S [ T. Then,X
j2V

Nij = 15fi =
X
k2K

�Fik fk: (71)

Proof. Write the vector f as f = [fS, fT, fK]T and the matrix �F as �F, where
�FSK = PSTGPTK + PSK ‚ �FTK = GPTK and �FKK = I. The right equality from (71) can then be written in the

block matrix form as fT = �FTKfK , and fS = �FSKfK .

By definition of N, our premise
P

j2V Nij = 1 is equivalent to

fi =
X
j2T

Pij fj +
X
k2K

Pikfk: (72)
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For i 2 T , Equation (72) can be expressed in matrix form as fT = PTTfT + PTKfK, that is, (I - PTT )fT =
PTKfK . Since the matrix I - PTT is invertible by our assumption of connectivity, this is further equivalent to

fT = GPTKfK = �FTKfK : (73)

For i ˛ S, Equation (72) can be written as fS = PSTfT + PSKfK, which using (73) is equivalent to

fS = PSTGPTKfK + PSK fK = �FSKfK‚ (74)

as required. -

Proof of Proposition 3.2

Proof. All properties follow from the fact that the transformation from �P to N is a similarity trans-

formation.

(i) Let i, j 2 T . We have

[G(N)]ij =
X1
n = 0

[Nn
TT ]ij =

X1
n = 0

[Pn
TT ]ijfj

fi

=
Gijfj

fi

:

(ii) Let k 2 K and suppose i 2 K. Then [�F(N)]ik = dik = dik fk
fi

= �Fikfk
fi

. Now suppose i 2 T . Then,

[�F(N)]ik = [G(N)NTK]ik =
X
j2T

Gijfj

fi

Pjkfk

fj

=
�Fikfk

fi
:

If i 2 S, we have

[�F(N)]ik = [NSK + NSTG(N)NTK]ik =
Pikfk

fi

+
X
j2T

X
l2T

Pijfj

fi

GjlPlkfk

fj

=
�Fikfk

fi

:

(iii) Let s 2 S and suppose i 2 S. Then [ �H(N)]si = dsi = dsifi
fs

= �Hsifi
fs

. Now suppose i 2 K. Then

[ �H(N)]si = [�F(N)]si =
�Fsifi

fs
=

�Hsifi

fs
. If i 2 T ,

[ �H(N)]si = [NST G(N)]si =
X
j2T

Psjfj

fs

Gjifi

fj
=

�Hsifi

fs

:

(iv) Let s 2 S‚ i 2 V and k 2 K. Then,

[F(N)]s
i‚ k = [ �H(N)]si[�F(N)]ik =

�Hsifi

fs

�Fikfk

fi

=Fs
i‚ k

fk

fs
:

-
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