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Abstract

Background: Exploratory factor analysis is a commonly used statistical technique in metabolic syndrome research to
uncover latent structure amongst metabolic variables. The application of factor analysis requires methodological decisions
that reflect the hypothesis of the metabolic syndrome construct. These decisions often raise the complexity of the
interpretation from the output. We propose two alternative techniques developed from cluster analysis which can achieve a
clinically relevant structure, whilst maintaining intuitive advantages of clustering methodology.

Methods: Two advanced techniques of clustering in the VARCLUS and matroid methods are discussed and implemented on
a metabolic syndrome data set to analyze the structure of ten metabolic risk factors. The subjects were selected from the
normative aging study based in Boston, Massachusetts. The sample included a total of 847 men aged between 21 and 81
years who provided complete data on selected risk factors during the period 1987 to 1991.

Results: Four core components were identified by the clustering methods. These are labelled obesity, lipids, insulin
resistance and blood pressure. The exploratory factor analysis with oblique rotation suggested an overlap of the loadings
identified on the insulin resistance and obesity factors. The VARCLUS and matroid analyses separated these components
and were able to demonstrate associations between individual risk factors.

Conclusions: An oblique rotation can be selected to reflect the clinical concept of a single underlying syndrome, however
the results are often difficult to interpret. Factor loadings must be considered along with correlations between the factors.
The correlated components produced by the VARCLUS and matroid analyses are not overlapped, which allows for a simpler
application of the methodologies and interpretation of the results. These techniques encourage consistency in the
interpretation whilst remaining faithful to the construct under study.
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Introduction

Metabolic syndrome (MetS) defines a clustering of risk factors

that act as an indicator for many chronic diseases such as kidney

disease [1,2], cardiovascular disease and type 2 diabetes mellitus [3–

5], however the components of MetS are still controversial [6]. In

recent literature, exploratory and confirmatory factor analyses have

been used to test the latent structure of MetS, and regression

modelling is used to test the relation between chronic diseases and

MetS components [7,8]. Whilst some exploratory analyses, such as

principal component analysis (PCA) and exploratory factor analysis

(EFA), can provide an insight into the structure of the data, the

results are often difficult to interpret and methodological decisions

are rarely justified in the application of the techniques. Discussion

regarding the misuse of factor analysis in psychological research is

quite common [9–11], however many of the same issues are rarely

highlighted in the clinical and epidemiological literature.

Definitions of MetS have been proposed by a number of leading

health bodies [12,13]. Two of the most commonly accepted are

those of the World Health Organization (WHO) and the National

Cholesterol Education Adult Treatment Panel III (ATP III) [14].

A study by Ford et al. [15] compared the prevalence of MetS using

these two definitions. In a nationally representative sample of

8,608 Americans, they found disagreement amongst 13.8% of the

subjects classified as suffering from MetS when comparing these

criteria. The variation in definitions highlights an uncertainty in

the underlying mechanisms. This ultimately leads to confusion

over the diagnosis of such a syndrome. The clustering amongst the

metabolic risk factors should stimulate research into a further

understanding of their inter-relationships, but the use of existing

definitions should be implemented with caution [16,17]. The study

by Ford et al. further highlighted differences amongst subgroups of

the population (e.g. 16.5% of African-American men were

diagnosed as suffering from MetS using the ATP III criteria,

whilst 24.9% were diagnosed using the WHO criteria). Evidence

suggests that the form of the hypothesized syndrome is not

consistent across populations [14,18]. We require methodology

that is flexible to accommodate this change, but remains able to
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identify biological consistency when it is present across subgroups

and over time.

The clinical relevance should be the primary aim for selecting

statistical methodology and deciding its application. When the

conclusions of an explorative study are so heavily dependent on

the application of the method, the reasoning behind each

methodological decision must have a strong theoretical basis

[9,11]. The ease and speed of performing an EFA in modern

statistical software has encouraged widespread use of the

methodology, but this should only serve to heighten the caution

adopted with the results. Despite attempts to warn against the

dangers of misguided decision making in factor analysis, they are

still commonly found in the literature [9,19,20]. There are also

very few guidelines for researchers undertaking an EFA in applied

research. Default software options set up by some software

packages such as PCA [21] for factor extraction, the Guttman-

Kaiser criterion [22,23] to determine the number of factors to

extract and the varimax (orthogonal) rotation [24] to obtain an

interpretable solution, were often adopted with little or no

justification to the clinical application. The same decisions as

previous studies may be selected to ensure comparability, or

researchers are simply ill-informed of the effects of their

(potentially default) decisions [9].

For the study of MetS, the methodological decisions used in the

application of EFA rarely appear to reflect the clinical hypothesis

of the concept. It is the methodological decision making that is

crucial to ensure that the analysis relates to the construct under

study. The main restriction in an explorative MetS study is that to

achieve such a structure, the complexity of the decision making

increases and the interpretation of the results often becomes

difficult. In this study, we discuss these methodological decisions

in relation to current MetS theory and present two novel

applications of clustering methodology. The aim of this study is to

encourage a consistently high contextual validity (in parallel with

appropriate methodological decisions in EFA), without the need

to increase the complexity in the application of statistical me-

thods. The results of the methods performed on a selection of

metabolic risk factors demonstrate a promising agreement to the

general structure of the construct, whilst also providing additional

insights into the complex pathways present amongst the risk

factors.

Methods

2.1 Study Subjects
We analyzed cross-sectional data from a study by Shen et al.

[25]. In short, the data was collected from 847 men aged between

21 and 81 years in the ‘Normative aging study’ (NAS). The

ongoing study was based in Boston, Massachusetts and included a

total of 2,280 predominantly white community-dwelling males

(with a mean age of 61 years). The subjects were selected from an

original 6,000 applicants who were screened at entry for existing

health conditions. Those suffering from known chronic diseases,

such as cardiovascular disease and type 2 diabetes mellitus, were

excluded from the study. The 847 subjects selected for the

application were those examined between 1987 and 1991 who

provided complete data for the following covariates: fasting insulin

(Ins), postchallenge insulin (PCIns), fasting glucose (Glu), postchal-

lenge glucose (PCGlu), body mass index (BMI), waist/hip ratio

(WHR), high density lipoprotein cholesterol (HDL), triglycerides

(Trig), systolic blood pressure (SBP) and diastolic blood pressure

(DBP). The method of data collection and the description of risk

factors in the NAS have been presented in previous papers

[25,26].

2.2 Statistical Analysis
The analysis by Shen et al. [25] considered evidence from a

range of exploratory studies to construct three hypothetical models

for the structure of MetS. The evidence was gained from the use of

EFA and in particular PCA. The subjective nature of factor

analysis as an exploratory technique is highlighted by Shen. The

series of factor structures underline the range of potential

hypotheses and heuristic interpretations. Instead, a confirmatory

factor analysis (CFA) is employed based on the results of the

previous EFA studies and biological knowledge. The use of CFA is

repeated in Shen et al. [18] to examine the structure of MetS

across sex and ethnic groups, citing the conflicting and inconsistent

results of EFA studies as motivation for choosing the methodology.

A ‘true’ factor analysis method (as opposed to a PCA) is based

on the common factor model [27] – that assumes the observed

covariation amongst the predictors is being caused by one or more

latent factors. For example, in MetS data the observed variables

are entered as ‘‘symptoms’’ exhibited by the patient. When an

EFA is performed on the data, the researcher interprets that the

factors extracted represent a ‘‘syndrome’’ as collectively they

characterize some unobserved medical condition. When applying

the methodology, the user must select the number of factors to

retain and may specify a rotational method as a secondary step to

obtain an interpretable solution. In addition, an arbitrary

threshold may be applied to determine ‘significant’ loadings to

interpret the meaning of the factors.

We consider an alternative explorative view provided from

clustering methodology. The interpretation of observed covariates

rather than abstract factors should make variable clustering

techniques an attractive option in applied research. Problems

associated with a ‘heuristic’ reading of components in factor

analysis are simplified by considering distinct non-overlapping

clusters, allowing for datasets with a large numbers of variables to

be analyzed with substantially less difficulty and improved

consistency [28,29]. Hierarchical clustering allows for images to

be constructed to aid with interpretation and effectively guarantees

a ‘simple structure’ [30].

2.2.1 The VARCLUS approach. An issue that hinders

traditional cluster analysis as a technique to identifying latent

structures is that the analysis is based on pair-wise dependencies.

This means that underlying relationships amongst covariates may

not be identified - for example, a variable Z can be approximated

as a function of X and Y, but none of the variables is involved in a

pair-wise near dependency. An alternative approach is to utilize

factor analytic methods in a hierarchical clustering framework -

labelled the VARCLUS approach [31]. To identify dependencies,

the process builds clusters of covariates around latent components.

The technique computes the first principal component of each

cluster (beginning at a cluster containing all the covariates) and

iteratively splits them into two separate clusters based on some pre-

defined criteria. The user may suggest that if the second largest

eigenvalue is greater than some given threshold value, this

demonstrates evidence of an additional dimension. Alternatively,

they may pre-define the number of clusters to extract based on

external biological evidence. The variables are assigned to the

cluster in which they demonstrate the highest squared correlation

(i.e. R2) and later reassigned if the variance explained increases by

including the covariate in another cluster. This approach ensures

that the orthogonality assumption of PCA is relaxed. The com-

ponents obtained are naturally oblique and therefore referred to

as cluster components rather than principal components. This

feature is beneficial to MetS study with inter-correlated clusters

more likely to reflect the hypothesis of a single unified syndrome

[25].

Exploratory Analysis of Metabolic Syndrome
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The VARCLUS process compromises on the maximal variance

extraction of a PCA to maintain the intuitive advantages of

clustering observed covariates. The process of directly fitting

assigned labels for variables to 1 or higher dimensional clusters is

labelled a ‘hard’ clustering technique. This has the advantage of

retaining some of the interpretive power of a cluster analysis (in

producing clusters with observed covariates), whilst making use of

a components analysis to identify latent constructs within a

dataset. In addition, the VARCLUS procedure in SAS provides a

coefficient of determination for each variable within its own cluster

(i.e. the degree to which the covariate is explained by the

remaining covariates in the cluster - R2
own) and also with the

nearest cluster in which it demonstrates the greatest R2 (labelled

R2
nearest). If clusters are well defined, the degree of association is

maximal for variables within the same cluster and minimal to

those in others. A ratio value 1{ R2
own

�
R2

nearest

� �
is provided to

demonstrate this feature. These values are particularly useful when

considered with the limitations associated with ordinary ‘hard’ (i.e.

non-overlapping) clustering procedures. Whilst the clusters

produced from a VARCLUS analysis are of the form of a ‘hard’

clustering method, the R2 values indicate the strength of the

cluster membership for each variable.

2.2.2 The Matroid Approach. It is realistic for the user not

to expect predictors in a complicated structure such as MetS to

naturally form ‘neat’ hierarchical groups (i.e. a ‘simple’ structure);

rather, we force them to be with ‘hard’ clustering techniques (such

as the VARCLUS). This form of clustering is useful because of the

benefits to interpretation it brings, but with it we bypass some of

the subtleties in the relations that EFA attempts to identify. The

VARCLUS looks to avoid this limitation by providing R2

statistics. This is particularly useful as in a complicated structure,

such as MetS, it would seem likely that the predictors will be

involved in multiple dependencies. We propose another method in

the matroid approach that could provide a compromise, whilst

retaining the interpretational benefits associated with producing

distinct non-overlapping clusters. Suggested by Greene [32], the

method draws from existing successful ideas in the field of

collinearity diagnostics and cluster analysis, whilst also introducing

favourable properties of matroids, which have previously been

confined largely to theoretical work.

The matroid approach works on the collection of all subsets of

variables, rather than considering the entire set at once. Initially,

data are divided into all possible rearrangements of covariates and

these are assigned to either a ‘dependent’ or ‘independent’ group

using a suitable index. For example, a ‘dependent’ subset may be

defined by the smallest eigenvalue being lower than a particular

threshold. Any remaining clusters of variables are labelled

‘independent’. The group of dependent subsets are then converted

into a matroid structure to ensure that they demonstrate a

combinatorial arrangement corresponding to linear relationships

among a collection of variables (See Welsh [33] for the axioms that

define a matroid). The challenge with the matroid technique is

how to convey the information of all the dependent subsets in the

simplest form to the user. Greene suggests extracting a

combinatorial group from those selected known as flats. A rank-j

flat is a maximal set of covariates that can be represented by a j-

dimensional projection [34]. In other words, if we are unable to

add another covariate to the subset without increasing its rank (i.e.

dimensionality), then it is labelled a flat. The flats ensure that every

covariate involved in a dependency is identified. In Greene’s

approach we retain the general concept of ‘hard’ clustering, but we

produce a dependency structure for a range of threshold values

(i.e. at different strengths of dependency). A cluster is not defined

only if it is uni-dimensional (as it would be for ordinary clustering),

but if it exhibits a near dependency falling close to any lower

dimensional subspace. The dimensionality of the flat determines its

rank. A labelled Hasse diagram (LHD) is used to display the flats of

the matroid (see figure 1). Each threshold produces its own

hierarchical structure containing dependencies of any rank. Flats

are displayed as ellipses and those variables presenting no

dependency as squares (i.e. independent). The rank of each subset

is illustrated on the left of the LHD and the flats joined with lines

are to show the sources of any dependency. An R2 measure is

displayed in brackets alongside each variable to demonstrate the fit

of the variable (determined by squared correlation with the

remaining covariates) to the flat in which it is assigned.

Results

3.1 EFA
To gain a solution using EFA we select a principal factor

analysis (PFA) method which is based on the common factor

model. The intention of employing this model is to capture the

clinical notion of an underlying construct amongst the manifest

variables – as hypothesized by the MetS concept [6]. To

determine the number of components to retain, statistical methods

such as the Guttman-Kaiser criterion and parallel analysis suggest

the presence of four and five factors in the model respectively.

However, biological evidence should be utilized when possible to

drive the analysis. Studies analysing similar risk factors of MetS

(although on a different population) have proposed a four factor

structure and so this will form the basis of our EFA model [35,36].

This will also provide a direct comparison with the structures

investigated in the original CFA analysis by Shen et al. An oblique

‘promax’ rotation [37] (i.e. correlated factors) is used to assess the

hypothesis of a single unified MetS construct. The ‘significant’

loadings (highlighted in bold) have been selected using an arbitrary

threshold of 0.3. This is suggested by Child [38] for data with

sample size equal to or greater than 100 – however, this popular

threshold is recommended only as a guide. Therefore, we present

all the values for the benefit of the reader. The oblique ‘promax’

rotation has achieved close to a ‘simple structure’ with ‘blood

pressure’ and ‘lipid’ factors clearly defined as factors 3 and 4

respectively (see table 1). Whilst the ‘blood pressure’ factor

demonstrates moderate correlations with other factors (see

table 2), there appears more complex inter-relationships amongst

the remaining three factors. The insulin covariates (Ins, PCIns) load

‘significantly’ along with BMI and WHR on factor 1, whilst PCIns

also loads ‘significantly’ on factor 2 along with the glucose

covariates (Glu, PCGlu). There are also high correlations between

factor 1 and each of the remaining factors, suggesting that obesity

may be a central underlying factor of the MetS construct.

3.2 VARCLUS
The ‘PROC VARCLUS’ algorithm in SAS is an example of the

VARCLUS procedure described in section 2.2.1 and has been

used in the following application. To ensure comparability, we

specified a maximum cluster option of four cluster components

and a PCA extraction to construct latent clusters. The cluster

dendrogram is illustrated in figure 2. The four cluster components

listed in table 3 appear to relate to ‘lipid’ (cluster 1), ‘blood

pressure’ (cluster 2), ‘insulin resistance’ (cluster 3) and ‘obesity’

(cluster 4). This is analogous to the CFA structures specified by

model 1 and model 3 in Shen et al. [25]. The low R2 ratios

1{ R2
own

�
R2

nearest

� �
for clusters 1, 2 and 4 indicate that the cluster

components are ‘well formed’. However, the ‘insulin resistance’

cluster component exhibits high values for the R2 ratio for Ins and

Glu risk factors. The cluster structure analysis in table 4 suggests

Exploratory Analysis of Metabolic Syndrome
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that Ins in particular loads highly on the ‘obesity’ component and

BMI similarly on the ‘insulin resistance’ component (note that

‘loadings’ demonstrate the correlation between the covariate and

the cluster component). This is further evidenced by the

correlation between the ‘insulin resistance’ and ‘obesity’ cluster

components shown in table 5.

The cluster structure explains 68% of the total variation (see

table 6) and reduces the dimension of the variables from 10 to 4.

This simple example has allowed us to gain an immediate insight

into the cluster structure, whilst still observing that the variables

are likely to be involved in multiple mechanisms. The cluster

structure and R2 statistics indicate which covariates appear ‘least

comfortable’ within the clusters and with which others they are

related to. For instance, Glu has a high R2 ratio (0.6), but it is not

highly related to another cluster (i.e. low R2
own) - the variable itself

is not explained well by its own cluster. This adds further strength

to the involvement of Ins and PCIns in other dependencies; namely

a relationship between BMI and the insulin risk factors (as

suggested in the EFA analysis). Also, HDL again demonstrates a

high loading on the ‘insulin resistance’ cluster component. The

analysis provides further evidence to the independence of the

‘blood pressure’ component (i.e. cluster 4).

3.3 The Matroid Approach
We coded the procedure for the matroid technique using the

free software package R [39]. The method has been applied to

data using a criteria based on R2; If a subset displayed an R2

higher than the threshold value (illustrated on the left of the LHD)

it is assigned dependent. The matroid LHD is displayed in figure 3.

Figure 1. An example labelled Hasse diagram. The ellipses in the labelled Hasse diagram (LHD) demonstrate near dependencies and any
variables not involved in a linear dependency are displayed as squares. The rank of each subset (illustrated on the left of the LHD) demonstrates the
dimensionality of the flat. Lines between objects are used to show the sources of any dependency. An R2 measure is displayed in brackets alongside
each variable to demonstrate the fit to the flat in which it is assigned. Abbreviations: Fasting insulin (Ins), postchallenge insulin (PCIns), fasting glucose
(Glu), postchallenge glucose (PCGlu), body mass index (BMI), waist/hip ratio (WHR), high density lipoprotein cholesterol (HDL), triglycerides (Trig),
systolic blood pressure (SBP), diastolic blood pressure (DBP).
doi:10.1371/journal.pone.0034410.g001

Table 1. The factor pattern from an exploratory factor
analysis.

Loadings

Factor 1 Factor 2 Factor 3 Factor 4 Communality

Ins 0.70 0.11 20.01 20.05 0.55

PCIns 0.52 0.37 0.04 20.03 0.62

Glu 20.06 0.63 20.08 0.06 0.36

PCGlu 20.03 0.77 0.04 0 0.58

BMI 0.63 20.08 0 0.09 0.4

WHR 0.53 20.13 0 0.12 0.29

Trig 20.08 0 0.06 20.57 0.36

HDL 0.07 0.09 0.08 0.55 0.41

SBP 20.06 0.08 0.69 0.01 0.48

DBP 0.06 20.11 0.69 20.01 0.47

A principal factor analysis is selected with four factors retained and an oblique
promax rotation used. Significance is highlighted in bold text and is determined
by a factor loading .0.3. The significant loadings suggest a blood pressure
factor (factor 3) and a lipid factor (factor 4). Factor 1 and factor 2 demonstrate
some overlap with PCIns loading significantly on each. Abbreviation: Fasting
insulin (Ins), postchallenge insulin (PCIns), fasting glucose (Glu), postchallenge
glucose (PCGlu), body mass index (BMI), waist/hip ratio (WHR), high density
lipoprotein cholesterol (HDL), triglycerides (Trig), systolic blood pressure (SBP),
diastolic blood pressure (DBP).
doi:10.1371/journal.pone.0034410.t001

Table 2. Inter-factor correlations from the exploratory factor
analysis solution.

Factor 1 Factor 2 Factor 3 Factor 4

Factor 1 1 0.54 0.36 0.49

Factor 2 0.54 1 0.27 0.27

Factor 3 0.36 0.27 1 0.13

Factor 4 0.49 0.27 0.13 1

An oblique solution produces correlated factors. The inter-factor correlations
demonstrate a high correlation between factor 1 and factor 2 (0.54). There is
also a large correlation between factor 1 and factor 4 (0.49).
doi:10.1371/journal.pone.0034410.t002
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The four component structures identified by Shen et al. [25] and

the VARCLUS approach are consistent with the 0.21 threshold

level of the matroid depiction. In the 0.22 threshold we view an

overhanging flat of rank-2 that links BMI and WHR with the

insulin resistance flat. This was hypothesised in the VARCLUS

example in observing a high correlation between these dependen-

cies and a high loading of the Ins risk factor on the ‘obesity’ cluster

component. Also, in the 0.23 threshold, BMI, HDL and Trig are

linked with ‘insulin resistance’, however WHR is not. This again

appears to agree with the first component of the cluster structure

in the VARCLUS analysis (table 4) and the low communality

estimate of the EFA (table 3). Observing the higher dimensional

flats has added an intuitive description of the ‘fuzzy’ (i.e.

overlapped) structure amongst the risk factors.

Perhaps the most important feature of the matroid technique is

found with the higher ranked subsets extracted at particular

thresholds. The intention of these is to identify subtle relationships

amongst the uni-dimensional (i.e. rank-1) flats. For instance, at the

0.23 threshold, there is a rank-3 flat containing {Ins, PCIns, Glu,

PCGlu, BMI, HDL, Trig} that is not identified elsewhere in the

clustering. This may indicate a potential mechanism amongst the

variables. The advantage here is that we retain the interpretive

benefits of producing distinct non-overlapping clusters whilst

identifying relationships potentially masked by stronger depen-

dencies at higher thresholds. The flats in this example appear to

demonstrate that the predictors (aside from SBP, DBP) are ‘fuzzy’

in nature (i.e. naturally overlapped). Overhanging dependencies of

higher rank may suggest a possible hierarchical structure and

could be viewed as evidence to support a concept such as MetS.

Discussion

The methods compared in this study each provide an

alternative approach to identifying and visualizing the structure

of the MetS risk factors. The variability between the methods is

expected as they are based on different statistical philosophies to

grouping covariates. An EFA seeks to optimize the fit of the data to

a common factor model in which observed variables are expressed

as a k-dimensional collection of ‘‘common factors’’, when k factors

are retained. An oblique rotation is employed as a secondary step

to provide some indication of the clustering amongst the observed

variables. The identification of such clusters is in general ad hoc and

is not incorporated into the model fitting. In comparison, the

VARCLUS and matroid methods directly seek clusters of

observed covariates in a single step. The role of the VARCLUS

analysis is to identify 1-dimensional clusters of mutually correlated

variables. The matroid approach has a similar goal, but also looks

to identify higher dimensional near dependencies falling close to a

lower dimensional subspace. In VARCLUS a k-dimensional

representation can be selected by the user prior to the analysis,

whilst for a matroid approach the dimensionality is selected at one

of the thresholds post analysis. This selection may utilize external

biological or clinical knowledge. The optimal fit of the data to

common factors in an EFA (or PCA) is sacrificed for the cluster

Figure 2. A dendrogram of the cluster structure produced by VARCLUS. A hierarchical clustering produced from the VARCLUS analysis with
four cluster components selected. Abbreviation: Fasting insulin (Ins), postchallenge insulin (PCIns), fasting glucose (Glu), postchallenge glucose
(PCGlu), body mass index (BMI), waist/hip ratio (WHR), high density lipoprotein cholesterol (HDL), triglycerides (Trig), systolic blood pressure (SBP),
diastolic blood pressure (DBP).
doi:10.1371/journal.pone.0034410.g002

Exploratory Analysis of Metabolic Syndrome
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identification benefits of a VARCLUS or matroid analysis. For

each of these methods the fundamental ideas have been selected to

have a greater clinical relevance to the MetS hypothesis than the

potentially default decisions frequently employed in an EFA.

Whilst in this study the EFA has not produced the same distinct

factors as the cluster components in a VARCLUS or the flats in a

matroid, the results are in agreement over the general structure of

the risk factors. The oblique rotation in the EFA allows for

correlation between the factors to reflect a single underlying

syndrome. This correlation along with the loadings ensures that

any clinical interpretation is likely to be difficult. The ‘lipid’

component (including HDL and Trig) along with the blood

pressure component (including SBP and DBP) are identified in

each approach. When no overlap exists (i.e. variables do not load

‘significantly’ on more than one factor) as in these factors, it is

easier to interpret the correlations between the factors. The

confusion in our example occurs due to the significant loading of

PCIns on the first two factors in the EFA and the correlation

between these factors. The VARCLUS and matroid methods have

instead provided a direct k-dimensional structure for a follow up

CFA if required, but also indicated how stable the clustering is.

The strong association between the risk factors included in the

‘insulin resistance’ and ‘obesity’ factors are clear in each method.

However, the non-overlapping clusters produced by the alterna-

tive techniques allows for a simpler interpretation of the latent

variables.

The aspect that we have focussed on is the use of visual image

and ‘hard’ clustering to simplify the potentially complex

interpretation of an oblique solution. The difficulty with MetS is

that its structure is likely to be hierarchical in nature (from a

statistical perspective). A PCA with default methodological

decisions is unsuitable to match the complexity or concept of this

MetS construct. It may be that a hierarchical or second order

factor analysis could provide an appropriate tool to analyze the

structure of MetS (with the intention to separate ‘broad’ factors

from ‘narrow’ factors). However, it is important to remember the

context in which these methods are to be used. A likely reason that

an oblique EFA or hierarchical factor analysis are rarely used in

Table 3. A table of R2 measures demonstrating the ‘quality’
of each cluster component.

Variable R2
own R2

nearest 1{ R2
own

�
R2

nearest

� �

Cluster 1 Trig 0.735 0.076 0.287

HDL 0.735 0.12 0.301

Cluster 2 SBP 0.785 0.058 0.228

DBP 0.785 0.031 0.222

Cluster 3 Ins 0.542 0.208 0.579

PCIns 0.704 0.149 0.348

Glu 0.42 0.035 0.601

PCGlu 0.624 0.044 0.394

Cluster 4 BMI 0.73 0.17 0.325

WHR 0.73 0.087 0.296

The R2
own demonstrate the R2 of the variable when regressed on the remaining

variables in the cluster to which it is assigned. The R2
nearest is the greatest R2

when the variable is regressed on any other cluster produced in the analysis.
The 1{ R2

own

�
R2

nearest

� �
is a measure of cluster ‘quality’. When a variable has a

high R2 within its own cluster and low to any other, the variable demonstrates
a strong fit to the cluster in whch it is assigned. Abbreviation: Fasting insulin
(Ins), postchallenge insulin (PCIns), fasting glucose (Glu), postchallenge glucose
(PCGlu), body mass index (BMI), waist/hip ratio (WHR), high density lipoprotein
cholesterol (HDL), triglycerides (Trig), systolic blood pressure (SBP), diastolic
blood pressure (DBP).
doi:10.1371/journal.pone.0034410.t003

Table 4. The correlation (or loading) between each covariate
and the cluster components.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Ins 20.297 0.192 0.736 0.456

PCIns 20.332 0.226 0.839 0.386

Glu 20.169 0.051 0.648 0.187

PCGlu 20.187 0.169 0.79 0.211

BMI 20.297 0.164 0.412 0.854

WHR 20.268 0.13 0.295 0.854

Trig 0.857 20.017 20.219 20.275

HDL 20.857 0.152 0.346 0.293

SBP 20.099 0.886 0.24 0.129

DBP 20.076 0.886 0.145 0.176

The loadings produced in a VARCLUS analysis are analogous to factor loadings
in a factor analysis. Each loading represents the correlation of the variable with
the cluster component. The loadings of the variables assigned to the cluster
component are highlighted in bold. Abbreviation: Fasting insulin (Ins),
postchallenge insulin (PCIns), fasting glucose (Glu), postchallenge glucose
(PCGlu), body mass index (BMI), waist/hip ratio (WHR), high density lipoprotein
cholesterol (HDL), triglycerides (Trig), systolic blood pressure (SBP), diastolic
blood pressure (DBP).
doi:10.1371/journal.pone.0034410.t004

Table 5. The correlations between cluster components.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 1 1 20.099 20.33 20.331

Cluster 2 20.099 1 0.217 0.172

Cluster 3 20.33 0.217 1 0.414

Cluster 4 20.331 0.172 0.414 1

The correlations between cluster components are analogous to inter-cluster
correlations in a factor analysis with oblique rotation. Cluster 3 and cluster 4
demonstrate the strongest correlation (0.414), indicating an association
between obesity and insulin resistance risk factors.
doi:10.1371/journal.pone.0034410.t005

Table 6. A summary of the variance explained by each cluster
component.

Variance
Explained

Proportion
Explained

2nd

Eigenvalue

Cluster 1 1.47 0.785 0.53

Cluster 2 1.57 0.785 0.43

Cluster 3 2.289 0.572 0.933

Cluster 4 1.46 0.73 0.54

Total variance
explained:

6.789 0.679

The 4 cluster components have explained 68% of the total variation in the data.
Cluster 3 explains the largest variation in the data. The proportion explained is
calculated as the total variance of the variables in the cluster divided by the
variance explained. The 2nd eigenvalue indicates that cluster 3 would be the
next to be split if the analysis were to be extended to a 5 cluster solution.
doi:10.1371/journal.pone.0034410.t006
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practice is due to the statistical complexity in the application and

interpretation. Therefore, we remain mindful of this when

promoting methodology such as VARCLUS and matroids to

retain a simpler interpretation, whilst improving the consistency

and appropriateness of the decision making in MetS study. This

will provide a step toward the suitable level of complexity required

to reflect the clinical nature of the MetS construct, without the

difficulties of interpreting an EFA.

Concluding Remarks
In this article we have concentrated on the exploratory

approach. However, when combined with sound prior knowledge,

a CFA can be used effectively to validate potentially complex

structures; it allows for the testing of specific questions about the

nature of the underlying mechanisms [40]. The use of an EFA or

CFA approach should rest on the confidence of the researcher in

the models used. Can we suggest a complete model, or is there

sufficient uncertainty in the population structure that an

explorative approach can relieve? These methods are not separate

entities; they are instead a reflection of our confidence in the ‘a

priori’ knowledge. As such, a considered and justified decision

making process for EFA research can provide a powerful tool in

developing our understanding of the MetS construct in partner-

ship with CFA. Ideally, we would wish MetS research to favour a

CFA approach, however limitations in exploratory techniques (or

their application) suggest that the statistical evidence used to

construct the CFA models may be less than satisfactory. The

criteria for MetS, such as those proposed by the WHO and ATP

III, have been developed to diagnose subjects, whereas the

methods presented in this paper are not intended to form such

criteria. However, the continued use of explorative techniques is of

great importance. If methods such as PCA or EFA fail to reveal an

underlying latent structure, the very existence of MetS becomes

questionable. The intention of developing methodology such as

the VARCLUS and matroid approaches is primarily to encourage

consistency and reproducibility across MetS studies. It is not

possible to judge from the explorative methods which will provide

the ‘correct’ structure, and there may never be such a structure.

Exploratory approaches should instead be valued on which yield

the more useful results in terms of understanding the complex

inter-relationships amongst the metabolic variables.
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