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INTRODUCTION

Due to the rapid advances in digital imaging technology, 
medical images are nowadays almost taken/gathered 
in digital format. This not only facilitates an easy and 
efficient way of storage and transmission for clinical picture 
archiving and communication systems (CPACS), but also 
makes it possible to conduct a digital process on the image 
information, which is required in computer-aided diagnosis 
(CAD) schemes.

From the coding point of view the main features required 
for efficient medical image information archiving and a 
transmission system can be highlighted as follows:

A B S T R A C T

In this article, an object-based, highly scalable, lossy-to-lossless 3D wavelet coding approach for volumetric medical image data (e.g., 
magnetic resonance (MR) and computed tomography (CT)) is proposed. The new method, called 3DOBHS-SPIHT, is based on the 
well-known set partitioning in the hierarchical trees (SPIHT) algorithm and supports both quality and resolution scalability. The 3D input 
data is grouped into groups of slices (GOS) and each GOS is encoded and decoded as a separate unit. The symmetric tree definition 
of the original 3DSPIHT is improved by introducing a new asymmetric tree structure. While preserving the compression efficiency, 
the new tree structure allows for a small size of each GOS, which not only reduces memory consumption during the encoding and 
decoding processes, but also facilitates more efficient random access to certain segments of slices. To achieve more compression 
efficiency, the algorithm only encodes the main object of interest in each 3D data set, which can have any arbitrary shape, and ignores 
the unnecessary background. The experimental results on some MR data sets show the good performance of the 3DOBHS-SPIHT 
algorithm for multi-resolution lossy-to-lossless coding. The compression efficiency, full scalability, and object-based features of the 
proposed approach, beside its lossy-to-lossless coding support, make it a very attractive candidate for volumetric medical image 
information archiving and transmission applications.
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Lossy-to-lossless coding: Medical image coding should 
support lossy-to-lossless coding functionality in order to 
enable the provision of appropriate services for different 
applications according to their sensitivity to the image 
quality in the diagnosis process. In lossless compression, 
the reconstructed image is exactly identical to the 
original image, while lossy compression aims to achieve 
a higher compression ratio by allowing some degradation 
in the image quality. As lossless compression does not 
degrade the image, it facilitates more accurate diagnosis, 
of course at the expense of lower compression ratios 
(i.e., higher bit rates). Discarding small image details 
that might be an indication of pathology could alter 
diagnosis, causing severe human and legal consequences. 
However, lossy compression is required to significantly 
reduce transmission and storage costs where the loss 
is not diagnostically significant. During the past years, 
many lossless and lossy compression techniques have 
been proposed for natural images, which resulted in 
several international standards such as: JPEG (for lossy 
image coding),[1] JPEG-LS (for lossless image coding),[2] 
and JPEG-2000 (the latest standard for lossy-to-lossless  
image coding).[3]
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Object-based coding: Often there are regions inside a 
medical image that contain the main information relevant 
to medical diagnostic purposes. For an efficient CPACS 
system, an object-based coding is desirable to enable the 
coding of such regions, which can have any arbitrary shape, 
separately from the other parts of the image. This feature 
helps to achieve a very high compression ratio by focusing 
only on the important regions in the image and discarding 
the unimportant background that usually takes up a large 
area of the medical images, or by encoding the background 
at a lower precision with a lossy image coder.[4-7] The region-
of-interest (ROI) coding feature in the JPEG-2000 standard 
considers the whole image for coding, but applies a higher 
coding precision to the ROI.[8,9] On the other hand, an object-
based coding makes it possible to encode the region (with 
any shape, not only rectangular shape as is the case in most 
ROI coding techniques) as a separate object, regardless of 
the rest of the image.

Scalability: This feature refers to the potential in the coded 
bitstream that allows the decoder to usefully decode from 
only parts of the bitstream in order to meet a certain quality 
and/or a spatial resolution requirement. In this article, 
scalability is always seen in conjunction with embedded 
(progressive) coding. A scalable coded bitstream consists of 
a set of embedded parts that offer an increasingly better 
signal-to-noise ratio (SNR) (known as SNR scalability or 
quality scalability) or higher spatial resolution (referred 
to as spatial scalability).[10] A highly scalable coding 
approach that supports both SNR and spatial scalability 
is an important requirement for the efficient archiving 
of medical images. It enables the hierarchical search of a 
medical database from low resolution/quality images to 
high resolution/quality, images, which can effectively speed 
up the search for a specific image or a group of images, 
by discarding a considerable number of images at the early 
low resolution/quality search stages. For telemedicine 
applications, especially over heterogeneous networks such 
as the Internet, the scalability functionality enables a wide 
range of end-users with different processing and network 
access bandwidths, to be serviced from one embedded 
bitstream. Adding the scalability feature to an object-
based coding enables the low performance end-users in a 
telemedicine network to receive the unimportant regions 
of medical images at low resolution and/or quality and 
to spend their coding budget on receiving the important 
regions at a high quality and resolution, which are crucial 
for correct diagnosis. Moreover, scalability supports a 
better error-protection mechanism. This is due to the fact 
that partitioning of the information into different parts 
makes it possible to provide better protection for the more 
important parts.

Volumetric medical images (e.g., MR and CT) are 3D data 
sets that consist of a sequence of 2D data slices. For 
efficient archiving and transmission of such vast amounts 

of data, a high degree of compression is required. A 
straightforward method is to apply a 2D coding scheme 
successively, to encode each slice independent from the 
other slices. Although this method is simple, it ignores 
the high correlation that generally exists between the 
consecutive slices. 3D coding approaches, on the other 
hand, try to exploit the interslice dependency to achieve 
a higher compression ratio. For this, contiguous slices are 
often organized in groups, and each group of slices (GOS) 
is encoded as a 3D data set. More details on this type of 3D 
coding will be given below.

Over the past decade, wavelet-based image compression 
schemes have become increasingly important and gained 
widespread acceptance. An example is the JPEG2000 
still image compression standard.[3,11] Due to the multi-
resolution signal representation offered by the wavelet 
transform, wavelet-based coding schemes have a great 
potential to support the scalability features. Among the 
state-of-the-art embedded wavelet coding approaches 
the Set Partitioning in Hierarchical Trees (SPIHT) 
algorithm[12] is well known, as a bench- mark for its 
compression efficiency, full SNR scalability support, and 
very low complexity. These features have made SPIHT 
very attractive for medical image coding as well.[4,13-14]  
As shown in,[4] an object-based version of SPIHT (OB-
SPIHT) exhibits a very competitive peak signal-to-
noise ratio (PSNR) performance for the compression of 
digital mammography. On the other hand, the research 
conducted by Pearlman[15] showed a very significant 
complexity reduction of SPIHT over JPEG2000.

Three-dimensional extensions of SPIHT have been 
reported in the literature for video coding[16-18] as well 
as for volumetric medical image compression.[13,14] Other 
3D wavelet-based techniques for coding of volumetric 
medical data sets have also been reported in literature 
(e.g.,[19-21]). The research conducted in[14] on lossless CT 
and MR coding, with an improved version of 3D SPIHT, 
showed that SPIHT is quite efficient, in comparison to 
other 2D and 3D coders, for lossless volumetric medical 
image coding.

The current literature on volumetric medical image coding 
is mainly focused on compression. The SPIHT bitstream 
is tailored for full SNR scalability, but it does not support 
spatial scalability. For an efficient medical image archiving 
and transmission system, however, a fully scalable coder is 
greatly required. Such a coder must provide a bitstream that 
can be parsed for multi-resolution decoding at different 
rates, by different clients, with different capabilities, and it 
must also provide other important features such as object-
based access and coding.

This research proposes an object-based volumetric 
medical image coding system based on the highly scalable 
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set partitioning in hierarchical trees (HS-SPIHT) algorithm. 
The HS-SPIHT, introduced by the authors in their previous 
studies,[22,23] is a modification of the SPIHT algorithm[12] 
that adds spatial scalability features to the SPIHT 
algorithm without sacrificing the interesting features of 
the original algorithm. The coding system proposed in 
this article, called 3DOBHS-SPIHT, extends the 2D HS-
SPIHT algorithm to 3D and further modifies it for object-
based coding. A new asymmetric tree structure for the 3D 
wavelet coefficients is introduced to allow a small size 
for the GOSs, for efficient random access to the slices 
in the decoding process. The 3DOBHS-SPIHT algorithm 
fulfills all of the highlighted requirements for medical 
image information, archiving, and transmission systems 
mentioned earlier in this section.

The rest of this article is organized as follows. First we 
explain the whole 3DOBHS-SPIHT coding system in four 
subsections. Then, simulations of the coding system are 
given in detail. After that we present some experimental 
results for multi-resolution lossy and lossless coding by 
the proposed coding system, and finally, we conclude the 
article.

3D OBJECT-BASED HS-SPIHT SYSTEM

In this section first an overview of the 3DOBHS-SPIHT coding 
system is given, then an asymmetric tree structure for the 
3D coding is introduced, and subsequently the 3DOBHS-
SPIHT coding algorithm is explained. Finally the scalable 
structure of the 3DOBHS-SPIHT bitstream is presented.

System Overview

The proposed 3DOBHS-SPIHT coding system is depicted in 
Figure 1. The system input is a volumetric medical image 
set that is divided into GOS. On the encoder side, the input 
GOS is first segmented in order to extract the medical object 
of interest from the background. Each voxel in the data set 
is considered either inside or outside the object. The GOS 
object is decomposed by a 3D shape-adaptive integer DWT 
(3DSA-IDWT) approach, which maps the integer object 
voxels to the integer wavelet coefficients. Details on the 
segmentation process and the DWT will be given in In the 
next section.

The decomposed object coefficients, denoted as w, and the 
decomposed shape mask, denoted as m, are then consigned 
to the 3DOBHS-SPIHT encoder. The encoder only encodes 
the coefficients that belong to the decomposed object. To 
recognize these coefficients it uses the decomposed shape 
mask. The bitstreams from the shape coding and object 
coding algorithms are assembled in the bitstream organizer 
to generate the final encoder output bitstream for the GOS.

In a customization stage, the encoded bitstream is 
reordered and truncated by a parser, which provides proper 
bitstreams for multiscale lossy-to-lossless decoding. On 
the decoder side, the bitstream separator first extracts the 
mask and the object bitstreams from the parsed bitstream. 
The shape mask is then reconstructed by decoding the 
shape bitstream. The decomposed mask, which is required 
by the 3DOHS-SPIHT decoder, is provided by applying the 

Figure 1: Block diagram of the 3DOBHS-SPIHT coding system; w denotes the wavelet coefficients and m the decomposed mask
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same level of decomposition as that used by the encoder to 
the shape mask. The 3DOHS-SPIHT decoder then decodes 
the object bitstream, and the inverse 3DSA-IDWT is applied 
to the decoded wavelet coefficients to reconstruct the GOS 
object at the requested rate and resolution.

Asymmetric Tree Structure

Figure 2 depicts the parent-offspring relationship in a 2D 
tree of wavelet coefficients defined in the SPIHT algorithm. 
A straightforward symmetric extension of this 2D tree 
is used in[13] for lossless volumetric MR and CT image 
coding by a 3DSPIHT. Figure 3a shows the symmetric 3D 
extension of the 2D tree structure for the 3D wavelet 
packet decomposition of a GOS, after applying two levels 
of axial decomposition, followed by two levels of transaxial 
decomposition, resulting in 21 sub-bands. This 3D tree 
structure was introduced in[17] for 3DSPIHT video coding. In 
this structure the coefficients in the lowest transaxial-axial 
sub-band are grouped into 2×2×2 adjacent coefficients 
that are known as tree roots [Figure 3a]. Thus, it is always 
required to have an even number of slices (at least two) in 
the lowest axial band. On the other hand, in a 3D coding 
of volumetric medical images, in order to provide efficient 
random access to individual slices in a data set, for search 
and retrieval purposes, it is necessary to have the coding 
units (i.e., the GOS) as small as possible. A smaller GOS 
size is also favorable for the encoder, parser, and decoder, 
as it consumes less memory. Choosing a small GOS size, 
however, limits the number of axial wavelet decomposition 
levels, which has a negative impact on the compression 
gain. For example to be able to apply two levels of axial 
decomposition, the GOS size needs to be at least eight. To 
overcome this problem, we have modified the 3D parent-
offspring relationship in the decomposed GOS and have 
introduced an asymmetric tree structure. Figure 3b shows 
the new asymmetric tree structure. In the lowest transaxial-
axial sub-band, the coefficients, which are known as roots, are 
grouped into 2×2 elements rather than 2×2×2 elements. 
In each slice, the parent-offspring relationship is the same as 
defined in 2DSPIHT. The coefficients in the lowest transaxial 
sub-band (the roots of 2D trees in each slice) establish the 
tree structure in the axial direction as shown in Figure 4. 
Therefore, in each slice, each root has two offsprings in the 
next higher axial domain (except for the roots in the lowest 
axial band (t-L2), which has one offspring in the t-H2 band, 
and for the roots in the highest axial band (t-H1), which are 
leaves and do not have any offspring in the axial direction) 
and four offsprings in the next transaxial band, in the same 
slice. Note that this is the same as for 2DSPIHT, where one 
coefficient in each 2×2 element, marked by ∗ in Figure 2, 
has no transaxial offspring. The new tree structure is called 
asymmetric, because unlike the symmetric tree [Figure 3a], 
in which each coefficient has eight offsprings, the number of 
offsprings in the new tree structure is different and depends 
on the location of the parent coefficient in the decomposed 

Figure 3: 3D tree structures. (a) The structure used in 3D SPIHT[17] after 
two levels of wavelet packet decomposition of a GOS; (b) The asymmetric 
3D tree structure used in the proposed algorithm in this article after two 
levels of wavelet packet decomposition of a GOS
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Figure 2: 2D SPIHT parent-children dependency across wavelet sub-bands 
in each slice
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GOS sub-bands. Algorithm 1 shows the details of the parent-
offspring relationship for the new tree structure.

Algorithm 1: Parent-offspring relationship for the 3D 
asymmetric tree structure
•	 if (the coefficient is in the lowest transaxial sub-band)
•	 if (the coefficient is in the lowest axial sub-band) it has 

five offsprings (one in the next axial sub-band [Figure 4] 
and four in the next transaxial sub-band [Figure 2], except 
for the coefficient marked by *, which has only one 
offspring in the next axial sub-band.

•	 else, if (this coefficient is in the highest axial sub-band) 
it has four offsprings in the next transaxial sub-band 
[Figure 2], except for the coefficient marked by *, which 
has no offspring.

•	 else, it has six offsprings (two in the next axial sub-band  
[Figure 4] and four in the next transaxial sub-band  
Figure 2].

•	 else, if (the coefficient is in the highest transaxial sub-
band) it has no offspring.

•	 else, it has four offspring in the next transaxial sub-
band [Figure 2].

The 3D OBHS-SPIHT Algorithm

The 3DSPIHT algorithm of[17] considers sets of coefficients 
that are related through the parent-offspring dependency 
depicted in Figure 3a. In its bitplane coding process, the 
algorithm deals with the wavelet coefficients as either 
members of insignificant sets, individual insignificant 
pixels, or significant pixels. It sorts these coefficients 
into three ordered lists: the list of insignificant sets 
(LIS), the list of insignificant pixels (LIP), and the list 
of significant pixels (LSP). The main concept of the 
algorithm is managing these lists in order to efficiently 
extract insignificant sets in a hierarchical structure and 
identify significant coefficients, which is the core of its 
high compression performance. The 3DSPIHT algorithm 
provides a progressive (by quality) bitstream, which is 
fully SNR scalable, however, its bitstream does not support 
spatial scalability.

In[22,23] we proposed a scalable modification of 2DSPIHT 
for image coding, called highly scalable SPIHT (HS-SPIHT), 
through the introduction of multiple resolution-dependent 
lists and a resolution-dependent sorting pass.

In the present study, the HS-SPIHT algorithm is first 
extended to 3D (3DHS-SPIHT), to be able to use it for 
volumetric coding and then further improved to be object-
based (3DOBHS-SPIHT) for coding of objects with any 
shape.

In a 3D (2D+1D) wavelet-decomposed GOS, the number 
of spatial resolution levels depends on the number of 2D 
spatial wavelet decomposition levels applied to the slices. 

In general, by applying Ns levels of a 2D wavelet transform 
to each slice, at most, the Ns+1 levels of different spatial 
resolution will be provided. We denote the lowest spatial 
resolution level as level Ns+1. The original sequence that 
has slices with the full spatial resolution is then known as 
level 1. The assigned spatial resolution to level k is 1/2k-1 
of the spatial resolution of the original data set. The three 
transaxial sub-bands (HLk, LHk, HHk in all axial sub-bands) 
that need to be added to the spatial resolution Level k+1 
to increase its resolution to Level k are grouped and called 
spatial sub-band set level k and referred to as Bk [Figure 5].

To provide full spatial scalability, the 3DOBHS-SPIHT 
algorithm encodes the different resolution sub-band sets 
separately, allowing a transcoder or a decoder to directly 
access the data needed for reconstruction of a desired 
spatial resolution and/or quality. To improve the algorithm 
to be used for coding of volumetric medical images, 
which contain 3D objects with arbitrary shape, we only 
consider and process those coefficients that belong to the 

Figure 5: Different levels of spatial sub-band sets related to different 
spatial resolutions in a 3D wavelet packet decomposition

Figure 4: 1D interslice dependency in a 3D wavelet decomposed GOS  
(only defined for the coefficients in the lowest spatial sub-band in each slice)
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decomposed object [Figure 6] and those sets that are at 
least partially located inside the decomposed object, similar 
to the SA-SPIHT algorithms in.[24,25]

The 3DOBHS-SPIHT algorithm uses the asymmetric tree 
structure defined in the previous subsection.

To manage the scalable coding process, for each resolution 
sub-band set, the algorithm defines a set of LIV, LSV, and LIS, 
which refer to a list of insignificant voxels, list of significant 
voxels, and list of insignificant sets, respectively. Therefore 
there are LIVk, LSVk, and LISk for k=smax, smax-1,…, 1 where 
smax is the maximum number of spatial resolution levels 
supported by the encoder (smax≤Ns+1). Similar to 3DSPIHT, 
3DOBHS-SPIHT transmits bitplane by bitplane, but it uses 
multiple lists for handling different resolution levels, similar 
to.[22,26] In each bitplane, the 3DOBHS- SPIHT coder starts 
encoding from the maximum resolution level (smax) and 
proceeds to the lowest level (level 1). During its resolution-
dependent sorting pass for the lists that belong to level s, 
the algorithm first does the sorting for the coefficients in 
the LIVs, in the same manner as 3DSPIHT, to find and output 
significance bits for all list entries, and then processes 
the LISs. In the LISs sorting pass, all entries of the list are 
processed in order. Sets that are at least partially located 
in the resolution level are tested for significance and 
those that completely fall outside the resolution level are 
moved to the LISs-1. Once a set is tested for significance, 
it stays in the LISs. If it is insignificant a ‘0’ is placed in 
the bitstream. If significant, a ‘1’ goes to the bitstream, 
and the set is partitioned into its offspring voxels and 
descendant subsets and will be removed from the LISs. The 
offspring voxels will be tested for significance and moved 
to the end of LIVs if insignificant and LSVs if significant. The 
new subsets will then be added to the end of LISs-1. After 
completing the sorting pass for LIVs and LISs, the refinement 
pass will be done for all entries of LSVs according to the 
current threshold. Then the threshold is lowered for the 

next bitplane coding stage and the procedure will be 
repeated. After the algorithm completes the sorting and 
the refinement passes to resolution level s it will repeat 
the same procedure for the next lower level until the full-
resolution stage (level 1) is completed. The total number of 
bits belonging to a particular bitplane for 3DOBHS-SPIHT is 
the same as for 3DSPIHT, but 3DOBHS-SPIHT arranges them 
according to their spatial resolution dependency. Note that 
the total storage requirement for LIVs, LSVs, and LISs, for all 
resolutions, is the same as for LIS, LIP, and LSP used by the 
3DSPIHT algorithm.

Bitstream Structure

Figure 7 shows the structure of the bitstream generated by 
the 3DOBHS-SPIHT encoder for a GOS. The GOS bitstream 
contains the mask and object bitstreams. The scalable 
object bitstream is constructed with different codeparts 
(Pn), where each part belongs to a bitplane level. Inside 
each bitplane codepart, the bits belong to different spatial 
sub-band sets, Pk

n, separable. To support bitstream parsing, 
some markers are put into the bitstream, to provide the 
information required for identifying the different resolution 
and bitplane codeparts in the parsing process.

The encoder needs to encode the input 3D object only 
once at a lossless rate (covering all biplane coding levels 
from the maximum bitplane level to bitplane level 0). 
Different bitstreams for different spatial resolutions 
can be easily generated from the encoded bitstream by 
selecting the related resolution codeparts. For example, to 
provide a bitstream for resolution level r, in each bitplane 
codepart, only the resolution parts that belong to the 
spatial resolution levels greater or equal to r are kept, 
and all other parts are removed. The parsing process is a 
simple reordering of the original bitstream codepart and 
can be carried out by a server that stores the encoded 
medical data sets or by an individual parser as a part of an 
active network. The parser does not need to decode any 
part of the bitstream. As a distinct feature, the reordered 
bitstreams for each spatial resolution are completely 
rate-embedded (fine granular at the bit level) and can 
be truncated at any point up to the level of a perfect 
lossless reconstruction. Note that the markers in the main 

Figure 7: Structure of the 3DOBHS-SPIHT encoder bitstream for a GOS. 
Pk

n is related to the codepart of spatial sub-band set level k (Bk) at bitplane 
level n
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Figure 6: Example of a 2D decomposed mask of an arbitrarily shaped 
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bitstream are only used by the parser and do not need to 
be sent to the decoder.

The decoder required for decoding the reordered bitstreams 
follows the encoder exactly, similar to the original SPIHT 
algorithm. It needs to keep track of the various lists only 
for spatial resolution levels greater or equal to the required 
one. Thus, the proposed algorithm naturally provides 
computational scalability as well.

SIMULATION DETAILS

As volumetric medical data we have chosen the four 
gray-scale (eight bits per voxel) MR data sets that were 
also used in.[13,14,27] These data sets are available online 
for downloading at.[28] A description of the MR sets is 
given in Table 1. In each slice, to extract objects from the 
unimportant, very low magnitude background voxels and 
a two-stage threshold-based segmentation scheme were 
applied. In the first stage, each MR set was compared with 
a threshold and all voxels that exceeded the threshold were 
considered to belong to the object. In the second stage, all 
the background areas that were surrounded by the object 
were reclassified to belong to the object. Similarly, small 
object regions not connected with the main object were 
removed and classified as the background. The threshold 
chosen was small enough to make sure that the extracted 
region in each slice completely covered the true object. 
Note that the main contribution of this article does not 
include object segmentation and the segmentation 
process mentioned here is only to have a rough mask, 
which covers the whole area of the object (to make sure 
that the main object is completely inside the mask) to 
enable us to provide results for object-based coding 
cases and show this functionality of the proposed coding 
algorithm. The first slices of the MR test sets and their 
appropriate segmentation masks are shown in Figures 8 
and 9, respectively.

For object-based wavelet decomposition, an efficient, 
non-expansive SA-DWT approach, based on the method 
introduced in[29] was implemented. The GOS size was set 
to 4. Note that, as mentioned before, a small GOS size is 
favorable for easy and fast random access to certain slices 
in the data set bitstream. Two levels of 1D decomposition 
in the axial domain were first applied to the input GOS 
followed by three levels of 2D decomposition in the 
transaxial (spatial) domain. The integer I(2,2) wavelet filter 

bank[30] was implemented in a lifting scheme and used for 
both axial and transaxial decompositions, with symmetric 
extension at the boundaries of the GOS object.

For lossy decoding, the wavelet transform should be unitary 
or near-unitary, so that the distortion in the transform 
domain can be directly related to the distortion in the voxel 
domain.

As the reversible integer transform was not unitary, the 2D 
sub-band weighting scheme used in[31] was extended to 3D, 
and applied, to make the transform approximately unitary.

Figure 9: Segmentation masks for the first slice of each volumetric MR data 
set. (a) MR ped chest; (b) MR liver t1; (c) MR liver t2e1; (d) MR sag head

Figure 8: The first slice of each volumetric MR data set. (a) MR ped chest; 
(b) MR liver t1; (c) MR liver t2e1; (d) MR sag head

Table 1: Description of the MR data sets used as test volumetric medical images in this article
History Age Sex File name Voxel size (mm) Volume size

Congenital heart disease 1 M MR ped chest 0.78×0.78×5 256×256×77
Normal 38 F MR liver t1 1.45×1.45×5 256×256×58
Normal 38 F MR liver t2e1 1.37×1.37×5 256×256×58
Left exopthalmos 42 M MR sag head 0.98×0.98×3 256×256×58
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Table 2: Average bits per voxel and compression ratios obtained for lossless encoding of the MR data sets
Spatial resolution MR ped chest MR liver t1 MR liver t2e1 MR sag head

bpv CR bpv CR bpv CR bpv CR

3DOBHS-SPIHT with GOS=4
Quarter
Half
Full

0.0931
0.2938
0.8638

85.9291
27.2294
9.2614

0.1976
0.6232
1.8025

40.4858
12.8370
4.4383

0.1963
0.6450
1.9339

40.7539
12.4031
4.1367

0.1332
0.4411
1.4260

60.0600
18.1365
5.6101

2DOBHS-SPIHT
Quarter
Half
Full

0.1419
0.4339
1.2550

56.3777
18.4374
6.3745

0.2722
0.8320
2.3420

29.3902
9.6154
3.4159

0.2605
0.8378
2.4955

30.7102
9.5488
3.2058

0.1727
0.5435
1.7440

46.3231
17.7194
4.7993

CR – Compression ratios; bpv – Bits per voxel; GOS – Group of slices

The 3DOBHS-SPIHT encoder was set to progressively 
encode the decomposed objects of all GOSs, of each MR 
test set, to the lossless stage (i.e., coding from the maximum 
required bitplane to bitplane zero), with three levels of 
spatial scalability support. As the last GOS of each MR data 
set contains less than four slices, some blank slices were 
added to the end in order to fix the GOS size to four. The 
flexibility of the 3D coding of data sets with any number of 
slices is provided by the object-based functionality of both 
the transform and the coding process. The binary GOS mask 
information was encoded by an arithmetic binary coding 
scheme.[32]

After encoding, the 3DOBHS-SPIHT bitstream was fed into 
a parser to produce progressive (by quality) bitstreams for 
multi-resolution lossy-to-lossless decoding. Reference slices 
for the lower spatial resolutions were defined by taking 
the lowest resolution sub-band after applying appropriate 
levels of 2D SA-IDWT to the slices. In the original GOS, and 
the fidelity was measured by the PSNR defined as

PSNR=10log10(PEAK2/MSE) dB� (1)

where MSE is the mean squared error between the original 
reference and the reconstructed data, and PEAK is the 
maximum possible magnitude for a voxel, which is 255 
for the MR test sets. The bit rates (bits per voxel) for all 
resolutions were calculated according to the total number 
of voxels in the original full resolution GOS.

RESULTS AND DISCUSSION

Table 2 provides the average bits per voxel (bpv) and 
compression ratios (CR) obtained by 3DOBHS-SPIHT for 
multi-resolution lossless coding of the four MR object 
sets. For comparison, results of the same cases obtained 
by a 2DOBHS-SPIHT coding approach, which encodes each 
slice separately, are also provided in this table. For all the 
three spatial resolutions (quarter, half, and full) specified in  
Table 2, the 3DOBHS-SPIHT method significantly 
outperforms the 2DOBHS-SPIHT method. As the results 
show for both methods, a lossless version of the lower 
resolutions can be obtained at very small rates. Note 
that the rate consumed for coding of the binary mask 
information of the MR sets was between 0.011 bpv and 
0.014 bpv, and therefore ignorable, compared to the rate 
spent for coding of the object texture.

In Table 3, the 3DOBHS-SPIHT results for lossless coding 
at full resolution are compared with some other coding 
approaches.

For the 3DHS-SPIHT, 3D-SPIHT, 2DHS-SPIHT, 2DSPIHT, 
JPEG2000, JPEG-LS, and WinZip cases, which are not 
object-based, the object background in all slices was set to 
zero before encoding. This results in better compression 
efficiency, and therefore, it is a fair comparison with object-
based coding cases (i.e., 2DOBHS-SPIHT and 3DOBHS-SPIHT). 
A very small difference between the lossless compression 

Table 3: Comparison results for average bits per voxel and compression ratios obtained for lossless encoding of the MR data 
sets at full resolution with different coding methods
Method MR ped chest MR liver t1 MR liver t2e1 MR sag head

bpv CR bpv CR bpv CR bpv CR

3DOBHS-SPIHT
3DHS-SPIHT
3D-SPIHT
2DOBHS-SPIHT
2DHS-SPIHT
2DSPIHT
JPEG2000
JPEG-LS2
WinZip

0.8638
1.0109
1.2102
1.2550
1.5921
1.5818
1.4537
1.2183
1.8900

9.2614
7.9137
6.6105
6.3745
5.0248
5.0575
5.5032
6.5665
4.2328

1.8025
2.0869
2.2091
2.3420
2.6354
2.6247
2.2266
1.9587
3.7261

4.4383
3.8334
3.6214
3.4159
3.0356
3.0480
3.5929
4.0843
2.1470

1.9339
2.1561
2.3153
2.4955
2.7781
2.7677
2.3499
2.1134
3.7512

4.1367
3.7104
3.4553
3.2058
3.4044
2.8905
3.4044
3.7854
2.1327

1.4260
1.6948
1.9072
1.7440
2.1772
2.1660
1.9029
1.5911
2.3571

5.6101
4.7203
4.2041
4.5872
3.6744
3.6934
4.2041
5.0280
3.3940

CR – Compression ratios; bpv – Bits per voxel
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Table 5: PSNR results for lossy decoding of the lossless bitstreams at different spatial resolutions and rates
Spatial resolution Rate (bpv) PSNR (dB)

MR ped chest MR liver t1 MR liver t2e1 MR sag head

3DOBHS-SPIHT with GOS=4
Quarter 0.0625

0.125
53.84

–
48.02
53.81

47.00
51.88

51.04
56.01

Half 0.0625
0.125
0.25

43.09
48.74
51.82

36.74
41.84
47.31

34.40
39.58
45.10

38.58
43.70
49.06

Full 0.0625
0.125
0.25
0.5
1

35.09
39.09
43.34
46.81

–

30.49
34.32
38.28
42.59
46.20

27.81
31.39
34.84
39.96
45.09

31.26
34.12
37.56
41.54
46.15

2DOBHS-SPIHT
Quarter 0.0625

0.125
45.72
58.26

35.65
45.37

35.59
45.58

42.84
53.70

Half 0.0625
0.125
0.25

33.56
40.43
48.00

28.79
33.88
40.26

27.62
31.96
38.85

32.70
38.45
44.75

Full 0.0625
0.125
0.25
0.5
1

27.47
32.42
36.72
42.23
47.70

23.17
28.13
32.96
37.03
43.05

21.90
25.67
29.90
34.89
40.24

26.82
30.55
34.33
38.43
43.47

PSNR – Peak signal to noise ratio; bpv – Bits per voxel; GOS – Groups of slices

Figure 10: Original slice 9 of MR sag head at full, half, and quarter resolution
Figure 11: Scalable lossy reconstruction of slice 9 of MR sag head by 
3DOBHS-SPIHT. Left: full resolution, bpv=0.2, PSNR=36.63dB. Middle: 
half resolution, bpv=0.1, PSNR=41.37dB. Right: quarter resolution, 
bpv=0.05, PSNR=48.76dB

Table 4: Results obtained for lossless encoding of the MR data sets at full resolution with different GOS sizes by 3DOBHS-SPIHT
MR ped chest MR liver t1 MR liver t2e1 MR sag head

bpv CR bpv CR bpv CR bpv CR

GOS=4
GOS=8
GOS=16

0.8638
0.8040
0.7749

9.2614
9.9502

10.3239

1.8025
1.7016
1.6555

4.4383
4.7015
4.8224

1.9339
1.7915
1.7302

4.1367
4.4555
4.6237

1.4260
1.3574
1.3270

5.6101
5.8936
6.0286

CR – Compression ratios; bpv – Bits per voxel; GOS – Group of slices

rates of 2DHS-SPIHT and 2DSPIHT is due to the extra budget 
consumed by 2DHS-SPIHT for the markers put into the 
bitstream, which are required for the parsing process. The 
3DHS-SPIHT approach is a 3D extension of the 2DHS-SPIHT 
approach and uses the asymmetric tree structure, but unlike 
3DOBHS-SPIHT, does not support the object-based coding 
functionality. To show the efficiency of the asymmetric tree 
structure, results for 3D-SPIHT, which use the symmetric tree 
structure, are also provided in this table.

The results show a better performance for 3DHS-SPIHT than 
3D-SPIHT. Among the 2D coding algorithms in Table 3, JPEG-
LS, which is especially tailored for lossless coding, shows 
a slightly better compression efficiency than 2DOB-SPIHT, 
however, it does not support the spatial scalability feature. 
The proposed 3DOBHS-SPIHT algorithm shows a significantly 
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better performance than all other coding approaches in the 
table. To show the effect of GOS size on the 3DOBHS-SPIHT 
coding performance, Table 4 provides the lossless coding 
results at a full spatial resolution for three different GOS 
sizes. As expected, by increasing the GOS size, the coding 
performance was increased.

It should be mentioned that all results reported here for 
SPIHT and HS-SPIHT, for both object-based and non-object-
based, the 2D and 3D coding cases were obtained without 
extra arithmetic coding of the encoder output bitstreams. 
As shown in,[12] an improved coding performance for SPIHT 
and consequently for HS-SPIHT can be achieved by further 
compressing the binary bitstreams with an arithmetic coder.

To show the full scalability of 3DOBHS-SPIHT, Table 5 presents 
some numerical results for multi-resolution decoding of 
the MR test sets at a wide range of bit rates. This is based 
on a scenario of one-time-encoding and multiple-times-
decoding, and by parsing the encoder bitstream for various 
resolutions and rates. The parsed bitstream was decoded by 
the 3DOBHS-SPIHT decoder and the fidelity was measured 
by the PSNR. For comparison purposes, the results for the 
same resolutions and rates obtained from the 2DOB-SPIHT 
algorithm are also provided in the table. As the results 
clearly show, the 3D coding significantly outperforms the 
2D coding for all resolutions and rates. For all resolutions, 
as the rate decreases, the difference between the 3D and 2D 
PSNRs increases. Thus, the 3D case benefits more from the 
better compaction of the GOS energy in the lower wavelet 
sub-bands provided by the 3D wavelet decomposition.

To give a visual impression, slice 9 of the MR sag head data 
set was decoded at three different spatial resolutions (full, 
half, and quarter).

Figure 10 shows the original slice 9. Figures 11 and 12 give 
visual results for scalable decoding, reconstructed by the 
3DOBHS-SPIHT and 2DOBHS-SPIHT decoders at 0.05 bpv, 
0.1 bpv, and 0.2 bpv, respectively. As one can see, 3D-OBHS-
SPIHT not only has a higher PSNR, but also a much better 

visual quality than 2DOBHS-SPIHT. The same holds for all 
other scalable decoders mentioned earlier.

CONCLUSIONS

An object-based, highly scalable 3D wavelet coding system, 
3DOBHS-SPIHT, for lossy-to-lossless coding of volumetric 
medical images was presented. The 3D medical data set 
was first organized in groups of slices (GOS) and the objects 
of interest were segmented from the background in each 
slice. A 3D (1D axial+2D transaxial) reversible shape-
adaptive integer DWT was used to decompose the input 
GOS. The 3DSPIHT algorithm was modified to support 
spatial scalability. The symmetric tree definition of the 
original 3DSPIHT algorithm was improved to an asymmetric 
structure, which allowed small GOS sizes, which not only 
facilitated more efficient random access to the slices, but also 
required less memory from the coding system. The 3DOBHS-
SPIHT bitstream was fully scalable and easily re-orderable by 
a simple parser for multi-resolution decoding at lossy-to-
lossless rates. For the parsing process, the parser did not 
need to decode the main bitstream. The experimental results 
on some MR data sets provided for both lossy and lossless 
coding, at various spatial resolution levels, showed excellent 
performance of the proposed 3DOBHS-SPIHT algorithm. 
Even at the lossless stage, the proposed coder significantly 
outperformed other known non-scalable coders. Possessing 
important features, such as, arbitrarily shaped object coding, 
resolution scalability functionality, and progressive lossy-
to-lossless coding made the proposed approach attractive 
for volumetric medical image information archiving and 
transmission systems.
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