
Phylogenetic Reconstruction and DNA Barcoding for
Closely Related Pine Moth Species (Dendrolimus) in
China with Multiple Gene Markers
Qing-Yan Dai1, Qiang Gao1, Chun-Sheng Wu2, Douglas Chesters2, Chao-Dong Zhu2, Ai-Bing Zhang1*

1 College of Life Sciences, Capital Normal University, Beijing, People’s Republic of China, 2 Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology,

Chinese Academy of Sciences, Beijing, People’s Republic of China

Abstract

Unlike distinct species, closely related species offer a great challenge for phylogeny reconstruction and species identification
with DNA barcoding due to their often overlapping genetic variation. We tested a sibling species group of pine moth pests
in China with a standard cytochrome c oxidase subunit I (COI) gene and two alternative internal transcribed spacer (ITS)
genes (ITS1 and ITS2). Five different phylogenetic/DNA barcoding analysis methods (Maximum likelihood (ML)/Neighbor-
joining (NJ), ‘‘best close match’’ (BCM), Minimum distance (MD), and BP-based method (BP)), representing commonly used
methodology (tree-based and non-tree based) in the field, were applied to both single-gene and multiple-gene analyses.
Our results demonstrated clear reciprocal species monophyly for three relatively distant related species, Dendrolimus
superans, D. houi, D. kikuchii, as recovered by both single and multiple genes while the phylogenetic relationship of three
closely related species, D. punctatus, D. tabulaeformis, D. spectabilis, could not be resolved with the traditional tree-building
methods. Additionally, we find the standard COI barcode outperforms two nuclear ITS genes, whatever the methods used.
On average, the COI barcode achieved a success rate of 94.10–97.40%, while ITS1 and ITS2 obtained a success rate of 64.70–
81.60%, indicating ITS genes are less suitable for species identification in this case. We propose the use of an overall success
rate of species identification that takes both sequencing success and assignation success into account, since species
identification success rates with multiple-gene barcoding system were generally overestimated, especially by tree-based
methods, where only successfully sequenced DNA sequences were used to construct a phylogenetic tree. Non-tree based
methods, such as MD, BCM, and BP approaches, presented advantages over tree-based methods by reporting the overall
success rates with statistical significance. In addition, our results indicate that the most closely related species D. punctatus,
D. tabulaeformis, and D. spectabilis, may be still in the process of incomplete lineage sorting, with occasional hybridizations
occurring among them.
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Introduction

DNA barcoding (http://www.barcodinglife.org) has gained

widespread prominence during the past eight years as part of

the worldwide campaign to develop a global biodiversity inventory

[1–14]. On 23 Aug. 2011, there were 1,348,985 barcode records

from 110,892 species in the Barcode of Life Database (BOLD)

(www.barcodinglife.org). However, some reservations still remain

about the utility of DNA barcoding [15–24]. Two main issues, the

choice of barcoding gene and methods for species assignments,

have been the central problems.

The choice of barcoding gene is one of the primary issues. The

5 prime segment of the mitochondrial (mt) cytochrome c oxidase

subunit I (COI) gene (648 bp) was initially proposed to serve as

DNA barcode [1–2], and proved to be of great success in many

animal groups [1–2,25]. Currently, COI has been selected as a

standard barcode gene for animal groups. However, the rationale

of selection of COI as standard barcode is subject to debate, and

with the increase in barcoded taxa, from algae, fungi, bacteria and

plants to invertebrates and vertebrates, scientists have found its less

effective in some taxon groups [2,20,26–28]. The search for the

most suitable gene for species identification is not over, with

several recent studies testing the efficiencies of different genes,

using part of, or the whole of mtDNA genome to look for the

optimal DNA barcode gene [29–30]. On the other hand,

empiricists have also proposed other gene segments as candidate

DNA barcode loci, such as the nuclear ITS regions (ITS1, ITS2)

[31–32]. ITS - Internal Transcribed Spacer (ribosomal DNA

repeating unit), which is a commonly used DNA biomarker, was

suggested and examined in several plant groups [31–32], and fungi

(http://www.boldsystems.org/views/projectmenu.php?&). This

widely used genetic marker might be suitable as a DNA barcode
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due to its highly variability. This is especially the case for groups

composed of closely related species, where the rate of successful

species identification with COI is relatively low (less than 70%)

(e.g., fly, [20]). Unlike groups of distantly related species, where the

existence of large genetic divergence between species makes

discrimination easy, groups of closely related species offer greater

challenges for phylogenetic reconstruction and clear species

identification.

Pine moth species (caterpillar) are one of the most serious pest

insect group in China [33–39], with outbreaks of the pest regularly

causing extensive forest damage [34–35,37–39]. This pest species

group consists of six commonly occurring, closely related species,

between which discrimination is very challenging. Taxonomically,

three of them (Dendrolims punctatus [40], D. tabulaeformis [41], D.

spectabilis [42]) have a very uncertain species status. For instance,

the latter two had been suggested as a subspecies of D. punctatus

[34–35]. However, these species were treated as three different

species in several other studies [37–39]. Therefore, this species

group provides a good model for investigating the efficiency of

DNA barcode species identification for closely related species

groups.

In addition to the selection of barcoding region, the methods

used to assign a query to species in the reference database has been

another hotly debated issue [1–2,10,12,18,20,24,43–50]. Several

barcoding methods have been used or proposed in the current

DNA barcoding campaign, including tree-based methods (ML,

NJ), distance-based methods (the ‘‘best close match’’ (BCM), [20]),

Bayesian methods [48-49], pure clustering methods [51], BP-

based methods [12,52], and the fuzzy-set-thoery-based method

[53]. Five of these are selected (Maximum likelihood (ML)/

Neighbor-joining (NJ), ‘‘best close match’’ (BCM), Minimum

distance (MD), and BP-based method (BP)), as representatives of

different types of methods, to apply in current study. Apart from

the tree-based methods, we performed 14710 simulation repli-

cates, analyzing the genes individually or in combination. The

main goal of this study is to examine the phylogenetic relationship

among those closely related species, and the second is to compare

the performance of the standard COI gene, the nuclear rDNA

genes ITS1 and ITS2, and their combinations in identification of

closely related pine moth species in this study. In addition, we

factor in the success rate of DNA sequencing. A successful species

identification with a given DNA barcoding system includes several

steps: genomic DNA extraction, PCR, sequencing, and species

assignments. The success rate and accuracy of the former two steps

(DNA extraction, PCR) in a DNA barcoding system have been

documented [1–2,43], in particular in the use of museum

collections [54]. However, the effect of sequencing success rates

on DNA barcoding is remarkably ignored in most current studies.

Therefore, we also propose that the success rate of a DNA barcode

system takes into account both sequencing success and assignment

success (different barcoding methods/algorithms), since some

potential DNA barcoding markers, such as ITS, may suffer from

low sequencing success rates due to heterogeneity of different ITS

copies in the same individuals.

Results

Phylogenetic Inferences and Haplotype Network
Reconstruction

One hundred and forty specimens from six closely related

species of the genus Dendrolimus were obtained from 22 sampling

locations (Fig. 1; Appendix S1; see Materials and Methods for

details). The COI gene achieved the highest sequencing success

rate of 100% among the three genes examined, while the other

two obtained low success rates, of some 50% (49.30% for ITS1

and 69.30% for ITS2). All sequences successfully sequenced were

used in the subsequent alignment analysis. The resultant COI

sequence had a length of 652bp, while ITS1 and ITS2 had aligned

lengths of 804bp and 656bp respectively. All sequences have been

deposited in GenBank with accession numbers JN602739 to

JN602878 for COI, JN602879 to JN602947 for ITS1, and

JN602948 to JN603044 for ITS2. We obtained seven ML trees,

including three single-gene trees based on each of COI, ITS1 and

ITS2 genes (Fig. 2, 3, 4, 5; Appendix S4), three gene trees based

on the combinations of two of these three genes (COI-ITS1, COI-

ITS2, ITS1-ITS2; Fig. 5a–c), and one three-gene tree based on

the combination of all three genes (COI-ITS1-ITS2; Fig. 5d). The

corresponding NJ trees were provided as online supplementary

materials since they presented similar topologies to those ML trees

(Appendix S2, S3). Sister group relationship of D. kikuchii [55] and

D. houi [56] was recovered by all single gene, and two-gene and

three-gene trees (Fig. 2, 3, 4, 5a). Meanwhile, species level

monophyly for D. superans [42], D. kikuchii and D. houi was also

found by all these phylogenetic trees from single-gene phylogeny

to multiple-gene trees (Fig. 2, 3, 4, 5a). A topology of (((D.

tabulaeformis, D. punctatus, D. spectabilis), D. superans), (D. kikuchii, D.

houi)) was supported by the COI gene and ITS2 genes repectively,

and ((D. tabulaeformis, D. punctatus, D. spectabilis), (D. superans, (D.

kikuchii, D. houi)) was supported by the ITS1 gene, while the former

was also supported by the three-gene tree (Fig. 5d). The three-gene

tree recovered one additional monophyletic clade for species D.

spectabilis (Fig. 5d). Further, the close relationship of D. tabulaeformis,

D. punctatus and D. spectabilis was found by both single-gene and

multiple-gene trees (Fig. 2, 3, 4, 5).

Further analysis on these mostly closely related species (D.

tabulaeformis, D. punctatus, and D. spectabilis) with haplotype networks

shed light on phylogenetic/phylogeographic relationship among

them (Fig. 2, 3, 4b). The COI haplotype network was divided into

two separate clades, Clade A and Clade B (Fig. 2b). The latter

contained haplotypes only from species D. spectabilis. The former

consisted of haplotypes mostly from species D. punctatus and D.

tabulaeformis, with only one exception (CS10), which was from

species D. spectabilis. Clade A was further divided into four sub-

clades: I, II, III and IV. Sub-clade I only consisted of haplotypes

from species D. punctatus while sub-clade II and III constituted

haplotypes from D. tabulaeformis. Sub-clade IV is a clade with

mixed haplotypes from all the three species (Fig. 2b). However,

there are no shared haplotypes among these three species for COI

gene. The COI network indicated that D. tabulaeformis has a closer

relationship with D. punctatus than with D. spectabilis, by forming a

minimum two-step mutations from hyplotypes of D. punctatus

(Fig. 2b). D. spectabilis showed a relatively distant relationship with

D. punctatus via at least six-step mutations to the haplotypes of D.

punctatus (sub-clade IV) and a maximum 11-step mutations to clade

A (A111, Fig. 2b). ITS1 networks (both gaps as missing and ‘‘5th’’

status) presented larger variation among these three species by

forming a few more separated haplotypes (YS34, YS39,CS01-

CS04; YS34, YS08, YS39, B88, CS01-CS04) with 11-step

mutations from the main clade (Fig. 3bc). One shared haplotype

(B13) between species D. tabulaeformis and D. punctatus was found,

indicating close relationship between these two species. Obviously,

treating gaps as ‘‘5th’’ status made the variation among haplotypes

become larger than as missing (Fig. 3bc), e.g., haplotype YS08

presented seven-step mutations from the haplotype B13 when gaps

were treated as missing, while haplotype YS08 became separated

from haplotype B13 with 11-step mutations when gaps were

treated as ‘‘5th’’ states. ITS2 networks illustrated that most D.

spectabilis haplotypes presented 2–7 step mutations (gaps as missing,

Phylogenetic Reconstruction and DNA Barcoding
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except haplotype CS11) and 2–9 step mutations from haplotypes

of D. punctatus and D. tabulaeformis (gaps as ‘‘5th’’ status; except

CS11) (Fig. 4bc). Haplotypes from D. tabulaeformis and D. punctatus

showed mixed patterns on both networks, indicating a close

phylogenetic relationship between these two species (Fig. 4bc).

One two-species shared haplotype (A612, between species D.

punctatus and D. spectabilis) and a three-species shared haplotype

(CS11, among D. punctatus, D. tabulaeformis, and D. spectabilis) were

found on the ITS2 network with gaps as missing (Fig. 4b). Three

two-species shared haplotypes (A612 and B88, between D. punctatus

and D. tabulaeformis, and CS11, between D. tabulaeformis and D.

spectabilis) were found when gaps were treated as ‘‘5th’’ states

(Fig. 4c).

It is reasonable to assume that the success of species assignment

may be higher where the reconstructed evolution of the gene

reflects the speciation events, particularly where closely related

species are under study [57]. For the individual ML gene trees, we

find the GMYC model had no improved fit over the null model.

However, since three species (the colored clades in Fig. 2, plus D.

spectabilis in COI) formed robust monophyletic clades, the GMYC

analyses was repeated on a tree in which only sequences belonging

to these species of interest were retained. In the case of the ITS

loci, we found no significant GMYC clusters. For the COI tree,

the GMYC was an improvement over the null model, and was

clustered into five ML entities (p = 0.0014, likelihood

ratio = 15.6)(Fig. 2a). Interestingly, the COI GMYC groups did

not precisely correspond to assigned morphospecies, as D. kikuchii

was recovered as two separate MOTUs, although this was perhaps

not surprising given the relatively long branches (apparent in

Fig. 2a) separating the two D. kikuchii subclades.

Mantel Test
There was no significant correlation between genetic variation

and geographical distances found with each of three genes for the

most closely related species (D. punctatus, D. tabulaeformis, and

D. spectabilis) (Fig. 6) (P~0:21,r~0:10 for COI gene;

P~0:98,r~{0:39 for ITS1 gene; P~0:91,r~{0:20 for ITS2

gene). The average Fst values ranged from 0:41 to 0:56 (0.56 for

COI; 0.41 for ITS1; 0.47 for ITS2), while mean geographical

distances were in the range of 1079.71 to 1161.09 km. The results

indicated that the genetic variation among these closely related

species did not result from isolation by geographical distance.

Some other factors, such as variation in host use, may play

important role in the genetic differentiation of these species.

Additional Mantel tests on six morphospecies with different genes

generally showed no correlation between geographical distance

and genetic variation (P~0:80,r~{0:09 for ITS1 gene;

P~0:56,r~{0:02 for ITS2 gene; P~0:07,r~0:14 for COI

gene).

Species Assignments with Distance-based Methods and
the Neural Network Approach

In the case of identification with the MD method, and

regardless of the effect of sequencing on success rate, the COI

barcode correctly identified 487 individuals from 500 random

queries, generating a 97.4% success rate of species identification

with 95% confidence interval (CI) (95.60–98.47%), while both the

ITS1 and ITS2 barcodes obtained significantly lower species

identification success rates of 78.00% (95%CI: 74.16–81.41%) and

77.60% (95%CI: 73.74–81.04%; Fig. 7a). For two-gene barcodes,

both COI-ITS1 and COI-ITS2 combinations generated higher

Figure 1. Sampling sites of six closely related Dendrolimus pine moth species in China. Detailed geographical information about
sampling sites was deposited in Appendix S1.
doi:10.1371/journal.pone.0032544.g001

Phylogenetic Reconstruction and DNA Barcoding
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species identification success rates (98% with 95% CI: 96.36–

98.81% for COI-ITS1, 96.80% with 95% CI: 94.87–98.02%)

than that of single gene barcode (ITS1 and ITS2), except for COI.

However, the combination of ITS1 and ITS2 (ITS1-ITS2)

produced a lower success rate (83.00% with 95% CI: 79.46–

86.04%) than even that of the single COI barcode (97.40% with

95% CI: 95.60–98.47%). The ITS1-ITS2 barcode generated

slightly higher success rate (83.00%) compared with that of each of

them (78.00%, 77.60%), but with no statistic significance. The

three-gene barcode (COI-ITS1-ITS2) achieved a 100% species

identification success rate, outperforming all other barcodes but

COI (with no significant difference compared). However, the

overall species identification success rates of these barcodes, from a

single-gene to the three-gene system (COI being the exception),

dramatically dropped to less than 70.00% (in the range of 29.90–

63.60%; Fig. 6a) when taking success rate of sequencing into

account. There is no difference in species identification success

rates for ITS1 and ITS2, but if the overall identification success

rates were considered, ITS1 is better than ITS2, significantly, even

both genes obtained lower success rates.

In the case of the BCM method (Fig. 7b), performances of

different barcode systems, from single-gene system to three-gene

Figure 2. Phylogenetic trees (ML) of six Dendrolimus pine moth species constructed with single COI gene and Haplotype network for
three mostly closely related species D. punctatus, D. tabulaeformis, D. spectabilis A) ML tree based on COI gene; Clades with different
colors indicate different species respectively. MW - D. punctatus, SM - D. kikuchii, YN - D. houi, YS - D. tabulaeformis, CS - D. spectabilis, LY - D.
superans; OG - OUTGROUP; Numbers above branches indicate bootstrap values (less than 50 not shown) (hereinafter). Clades with light blue branches
indicate GMYC species, see text for details; B) Haplotype network based on COI gene. Empty circles mean haplotypes of species D. punctatus, gray
circles indicate haplotypes of species D. tabulaeformis, and black circles represent haplotypes of species D. spectabilis. Shared haplotypes between
different individuals from the same species or different species were listed in Appendix S4, hereinafter.
doi:10.1371/journal.pone.0032544.g002
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system, presented quite a similar pattern to the MD method. The

single COI barcode achieved a success rate of 96.60% (95% CI:

94.62–97.87%) over 500 random queries, significantly outper-

forming both ITS barcodes (ITS1, ITS2) with a 64.80% success

rate with 95% CI: 60.52–68.86% for ITS1, and 71.00% success

with 95% CI: 66.87–74.81% for ITS2. The performance of ITS2

was slightly better than that of ITS1, but without statistical

significance. The two-gene barcodes (COI-ITS1, COI-ITS2,

ITS1-ITS2) significantly outperformed single ITS barcode (ITS1

or ITS2) (COI-ITS1: 93.20%; COI-ITS2: 91.80%; ITS1-ITS2:

87.40%; ITS1: 64.80%; ITS2: 71.00%; Fig. 7b), but to a lesser

degree than that of the single COI barcode. The tree-gene

barcode system (COI-ITS1-ITS2) achieved the highest success

rate of 100% (Fig. 7b). However, if taking efficiency of sequencing

into account, the overall species identification success rate of these

barcodes abruptly fell to less than 65% (from 29.90 to 63.60%;

Fig. 7b), apart from the COI barcode (achieved a success rate of

96.60%). Where sequencing efficiency is considered, the three-

gene system obtained an extremely low overall success rate of

34.20%, primarily due to the low sequencing efficiency of ITS

(Fig. 7b).

Instead of using the leave-one-out simulation for MD and BCM

methods as mentioned above, we used randomly selected reference

and query sequences [12] to investigate the performance of

different barcode systems. This strategy was employed due to the

slow training process which hinders the utility in large scale

simulation studies of the BP-based method. Where the ratio of

50% reference sequences to 50% query sequences was used, the

COI barcode successfully identified 69 sequences from the

randomly chosen set of 71 queries, generating a success rate of

97.2% (95% CI: 90.32–99.23%; Fig. 7c). Both ITS1 and ITS2

produced low success rates of 64.70% (95% CI: 47.90–78.50%),

and 81.60% (95% CI: 68.60–90.00%) respectively. The two-gene

barcodes (COI-ITS1, COI-ITS2) generated slightly higher success

Figure 3. Phylogenetic trees (ML) of six Dendrolimus pine moth species constructed with single COI gene and Haplotype network for
three mostly closely related species D. punctatus, D. tabulaeformis, D. spectabilis. a) ML tree based on ITS1 gene; Clades with different colors
indicate different species respectively. MW - D. punctatus, SM - D. kikuchii, YN - D. houi, YS - D. tabulaeformis, CS - D. spectabilis, LY - D. superans; OG -
OUTGROUP; Numbers above branches indicate bootstrap values (less than 50 not shown) (hereinafter). Clades with light blue branches indicate
GMYC species, see text for details; b) Haplotype network of ITS1 gene (gaps missing); c) Haplotype network of ITS1 gene (gaps ‘‘5th’’ status). Empty
circles mean haplotypes of species D. punctatus, gray circles indicate haplotypes of species D. tabulaeformis, and black circles represent haplotypes of
species D. spectabilis.
doi:10.1371/journal.pone.0032544.g003
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rates (90.00%, 84.80%) than those of ITS barcodes (64.70%, and

81.60%) with no statistic significance, but significantly lower than

that of COI barcode (97.20%). The remaining two-gene system

(ITS1-ITS2) presented much low species identification success rate

compared to those of the above mentioned two (Fig. 7c). The

three-gene barcode (COI-ITS1-ITS2) obtained a success rate of

Figure 4. Phylogenetic trees (ML) of six Dendrolimus pine moth species constructed with single COI gene and Haplotype network for
three mostly closely related species D. punctatus, D. tabulaeformis, D. spectabilis A) ML tree based on ITS2 gene; Clades with different
colors indicate different species respectively. MW - D. punctatus, SM - D. kikuchii, YN - D. houi, YS - D. tabulaeformis, CS - D. spectabilis, LY - D.
superans; OG - OUTGROUP; Numbers above branches indicate bootstrap values (less than 50 not shown) (hereinafter). Clades with light blue branches
indicate GMYC species, see text for details; B) Haplotype network of ITS2 gene (gaps missing); C) Haplotype network of ITS2 gene (gaps ‘‘5th’’ status).
Empty circles mean haplotypes of species D. punctatus, gray circles indicate haplotypes of species D. tabulaeformis, and black circles represent
haplotypes of species D. spectabilis.
doi:10.1371/journal.pone.0032544.g004

Phylogenetic Reconstruction and DNA Barcoding
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Figure 5. Phylogenetic trees (ML) of six Dendrolimus pine moth species constructed with multiple genes (a combination of two or
three COI, ITS and ITS2). A) ML tree based on a combination of COI and ITS1 gene; B) ML tree based on a combination of COI and ITS2 gene; C) ML
tree based on a combination of ITS1 and ITS2 gene; D) ML tree based on a combination of COI, ITS1, and ITS2 gene.
doi:10.1371/journal.pone.0032544.g005

Phylogenetic Reconstruction and DNA Barcoding
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92.00% (95% CI: 75.03–97.78%), which was lower than that of

single COI barcode (Fig. 7c). The overall species identification

success rates when considering sequencing efficiency, were much

lower than those of their corresponding counterparts, but the COI

barcode which still achieved a high success rate of species

identification (97.20% with 95.00% CI: 90.32–99.23%). Increas-

ing the reference sequences (ratio = 9:1) basically improved species

identification success rate for most of these barcodes and their

combinations, except for COI barcode (94.10% with 95.00% CI:

72.99-98.95% for the case of reference:query = 1:1; 97.20% with

95% CI: 90.32–99.23% for the case of reference:query = 9:1).

Considering sequencing success rates, the overall success rates

dropped to less than 60.00% (in the range of 24.80–56.50%;

Fig. 6c) for the case of 1:1 reference query ratio, apart from the

COI barcode. The success rates of most barcodes and their

combinations dropped to less than 70.00% (in the range of 32.80–

69.30%, Fig. 6c) for reference:query = 9:1, but the COI barcode

which still obtained a success rate of 94.10% (95% CI: 72.99–

98.94%; Fig. 7c). The results of the success rate of sequencing for

the three individual genes/barcodes are presented in Fig. 7d. 140

COI PCR products were successfully sequenced, with a 100%

sequencing success rate, indicating the reliability of generating the

COI barcode, while both ITS1 and ITS2 generated a low

sequencing success rate of 49.30% and 69.30% respectively (69/

140, 97/140). As a consequence, the barcoding system with one of

Figure 6. Correlation between Fst and geographical distance with Mantel tests for three mostly closely related species and for all
six species with different genes. A) Correlation between Fsts and geographical distances with COI gene for three mostly closely related species D.
punctatus, D. tabulaeformis, D. spectabilis (P~0:21,r~0:10); B) Correlation between Fst and geographical distance with COI gene for six species for six
species (P~0:021,r~0:21 for six species (P~0:07,r~0:14); C) Correlation between Fst and geographical distance with ITS1 gene for three mostly
closely related species D. punctatus, D. tabulaeformis, D. spectabilis (P~0:98,r~{0:39); D) Correlation between Fst and geographical distance with
ITS1 gene for six species (P~0:80,r~{0:09); E) Correlation between Fst and geographical distance with ITS2 gene for three mostly closely related
species D. punctatus, D. tabulaeformis, D. spectabilis (P~0:91,r~{0:20); F) Correlation between Fst and geographical distance with ITS2 gene for six
species (P~0:56,r~{0:02).
doi:10.1371/journal.pone.0032544.g006
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these two genes generated extremely low overall species identifi-

cation success rates in most cases.

Intraspecific, Interspecific Variation, and DNA Barcoding
Gaps

The COI barcode obtained an average interspecific K2P

distance of 5:73+2:63%, which is about 5 times (4.73) larger than

the mean intraspecific distance (1:21+1:04%, Appendix S5 A) for

this closely related pest species group. However, there is no

positive DNA barcoding gap for the COI barcode (Appendix S5

A), indicating the difficulty of distinguishing these sibling species.

Both ITS1 and ITS2 genes presented greater interspecific genetic

variation (10:60+7:01% for ITS1; 7:30+5:16% for ITS2) than

intraspecific variation (0:79+0:84% for ITS1;0:26+0:35% for

ITS2). The former is about 13 (13.41) and 28 (28.07) times larger

than that of the latter, respectively. Nevertheless, there is still no

positive barcoding gaps for these two markers, violating the

discrimination of these sibling species (Appendix S5 BC). The

multiple-gene barcode system (two or three gene combinations)

depicted the same patterns as those of single-gene barcode system

(Appendix S5 and S6), further indicating the difficulties in

identification for these closely related species. These results are

consistent with those of tree-based methods, where species D.

punctatus, D. spectabilis, and D. tabulaeformis presented polyphyletic/

paraphyletic relationship with each other.

Discussion

Among six morphspecies, three of them (D. superans, D. kikuchii,

and D. houi), were successfully found as monophyletic groups each

at the level of species by both single-gene trees and multiple-gene

trees (Fig. 2, 3, 4, 5). The phylogenetic relationship among the

most closely related species (D. tabulaeformis, D. punctatus and D.

spectabilis) was not resolved by the traditional tree-building methods

(ML or NJ) with single gene or multiple genes. The three-gene tree

found one more monophyletic species clade of D. spectabilis,

indicating the power of multiple gene markers in discoverying

species phylogeny. Further haplotype network analysis for three

mostly closely related species indicated that D. tabulaeformis has a

closer relationship with D. punctatus than D. spectabilis with D.

punctatus, although the three morphospecies were even not

completely separated on the networks. These results further

confirmed their close relationship which may be ascribed to

Figure 7. Success rates of species identification based on different gene/barcodes or their combinations for six closely related
Dendrolimus pine moth species with distance-based methods and neural network approach [52]. a) Success rates with MD method [53]
based on 500 replications; b) Success rates with BCM method [20] based on 500 replications; c) Success rates with BP-based method [12]; d) Success
rates of sequencing for COI, ITS1, and ITS2 genes. Bars with different colors denote different genes/barcodes or their combinations. Vertical solid line
with two horizontal short lines indicate 95% confidence intervals of success rates. Bars under ‘‘original’’ and ‘‘Overall’’ mean original success rates and
the overall success rates corrected by sequencing success rates respectively (see text for details).
doi:10.1371/journal.pone.0032544.g007
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hybridization among them or incomplete lineage sorting. Joint

analysis of multiple genes, especially maternal (COI) and bi-

parental (nuclear ITS genes here), may suffer from theoretic

imperfection since different gene may have different evolutionary

history. Therefore, caution should be exercised when combing

multiple genes in a phylogenetic analysis. More attention should

be paid to the contrasting phylogenetic signals among different

genes. Fortunately, there is slight difference in tree topologies

between COI gene tree and one of ITS gene trees (ITS1), while

ITS2 presents consistent phylogeny with that of COI gene (Fig. 2,

3, 4). Therefore, the combining of these genes was thought to be

less problematic in this study. On the other hand, multiple-gene

analysis can improve the power for barcoding due to its increasing

in genetic diversity.

The segment of the COI gene currently used as the standard

barcode for animals is one of the best barcodes among the genes

examined in this study, for these closely related pine moth species,

regardless of assignment methods. For example, the COI barcode

outperformed the other two ITS genes significantly for three non-

tree based methods, with good statistical features for species

identification success rate. The COI barcode achieved a high

success rate of 94.10–97.40% while ITS1 and ITS2 obtained a

success rate of 64.70–81.60%. The latter two ITS genes presented

slightly different species identification success rates but without

statistical significance. The COI barcode outperforms the ITS

genes also in terms of its high success rate of sequencing. A

hundred percent success rate were achieved for COI region, but a

49.30% success rate for ITS1, and a 69.30% success rate for ITS2

were obtained, although subcloning of these two genes may yield

the sequences, it generates inconveniences in a DNA barcoding

framework. Non-coding ITS markers, in theory, are expected to

be more polymorphic than COI due to suffering from less

selection pressure compared to protein-coding COI genes.

Therefore, ideally, ITS markers are more suitable for phylogenetic

relationship at a lower level, i.e. closely related species. As

expected, both ITS1 and ITS2 genes demonstrated larger genetic

variations for three relatively distantly related species (D. superans,

D. kikuchii, and D. houi) than COI. However, ITS markers become

less variable for the most closely related species group (D.

tabulaeformis, D. punctatus, and D. spectabilis), mainly because

indels/gaps are generally treated as ‘‘missing’’ during the

calculation of genetic distances due to the fact that so far no

molecular evolutionary models are able to simulate evolution of

indels. Furthermore, treating the gaps/indels as missing data may

have different effects on the topologies between the most closely

related species and the distant related species group. In additional

network analysis gaps were treated as ‘‘5th’’ states in the

alignments of ITS markers, in order to extract more information

from these regions. The low success rate of sequencing for ITS

genes may be ascribed to its heterogeneity, which is one of the

more problematic issues for the use of ITS2 as DNA barcode. The

problems caused by heterogeneity are not limited to its use in

DNA barcoding, but for phylogenetic analysis in general [58].

Identifying heterogeneity using measures, such as subcloning, can

be applied for use in phylogenetic studies. However, this clearly

burdens the DNA barcoding process, as mentioned above. Some

successes were reported with ITS barcodes for plants [31–32].

However, these studies only used ITS2 sequences that were

successfully sequenced, disregarding the sequencing success rates,

since most of these data were downloaded from GenBank directly,

where only successfully sequenced sequences are deposited. We

found that in our pine moth case, sequencing success rates of both

ITS1 and ITS2 were low (49.30% for ITS1, 69.30% for ITS2)

compared with that of standard COI barcode (100%). Taking

sequencing success rates into account, both ITS1 and ITS2 will

generate extremely low overall species identification success rates,

indicating that ITS genes may be less suitable for DNA barcoding

of animals, despite their reported successes in plant. The failure of

sequencing for these region resulted from heterogeneity, which

indicates the model of concerted evolution [59–60] may not be

sufficient for the evolution of ITS genes in these closely related

pine moth species. Introgression (due to hybridization) and

incomplete lineage sorting, or an origin of parapatric species pairs

by recent speciation, are all processes that may result in

heterogeneity. Our current dataset does not distinguish between

these two causes, but further research into this question would be

required to understand the process.

Multiple-gene barcoding system achieved better species identi-

fication success rates only when each gene possesses a 100%

sequencing success rate, otherwise the overall species identification

success rate will drop dramatically, at least in our pine moth case.

In this study, we firstly proposed the use of overall DNA barcode

success rate taking both assignment success and sequencing success

into account. The latter has been largely neglected in current

DNA barcoding studies. Therefore, the actual species identifica-

tion success rates were overestimated in some current barcoding

studies (e.g. [61]). In our pine moth case, the overall species

identification success rates were significantly lower than those of

their corresponding species assignment success rates (treated as

species identification success rates in current studies). This was the

case for both multiple-gene barcoding system and the single-gene

barcoding system (except COI), e.g., the three-gene system (COI-

ITS1-ITS2) achieved a 100% assignment success rate, but the

overall species identification rate is only 34.20%. In addition, the

non-tree based DNA barcoding analysis illustrated an advantage

over tree-based methods by presenting explicit success rates with

statistic testing. The tree-based methods presented only success-

fully sequenced DNA sequences on a phylogenetic tree.

Mis-assignments only occurred among the three pine moths

species, D. punctatus, D. tabulaeformis, and D. spectabilis, whose

distribution areas are slightly overlapped [33–39]. Both tree- and

non-tree based methods provided consistent results, in the

formation of a paraphyletic/polyphyletic clade of these three

species for the former, or by mis-assigning queries into one of these

three species for the latter. The outcome of the tree-based three-

gene system was improved by clustering one more additional

monophyletic clade species D. spectabilis, and the non-tree based

three-gene system also achieved a hundred percent success rate

without considering sequencing rates. These three monophyletic

species did present a complex species status historically [33–39].

Our results indicate that the most closely related species D.

punctatus, D. tabulaeformis, and D. spectabilis may be still in the process

of imcomplete lineage sorting, and occasional hibridizations

occurr among them.

Materials and Methods

Sampling, DNA Extraction, PCR and Sequencing
One hundred and forty specimens from six closely related

species of the genus Dendrolimus were sampled from 22 sampling

locations (Fig. 1; Appendix S1), throughout their distribution area

in China [No specific permits were required for the described field

studies, the locations are not privately-owned or protected in any

way, and the field studies did not involve endangered or protected

species]. Species from the family Liparidae and Callimorpha

principalis [62] were included as outgroup taxa when constructing

phylogenetic trees. DNA samples were prepared from individual

insects by extraction of total DNA frozen or 100% ethanol

Phylogenetic Reconstruction and DNA Barcoding
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preserved animals. Genomic DNA was extracted using BIOMED

DNeasy kit. The COI gene was amplified via PCR using rTaq

(TAKARA) with the primers LCO1490 (GGTCA ACAAA

TCATAA AGATA TTGG), and HCO2198 (TAAAC TTCAG

GGTGA CCAAA AAATCA)[63]. The ITS region of rDNA

utilized the primers 18SF1(TACAC ACCGC CCGTC GCTAC

TA) and 5.8SB1d(ATGTG CGTTC RAAAT GTCGA

TGTTCA) for ITS1, and 5.8SFc(TGAAC ATCGA CATTT

YGAAC GCACAT) and 28SB1d(TTCTT TTCCT CCSCT

TAYTR ATATG CTTAA) for ITS2 [64]. The amplification

reaction was performed in a total volume of 25ml, including 2:5ml
10|buffer, 2:5ml 2.5 mM MgCl2, 2:0ml 2.5 mM dNTP, 0:1ml of

each primer (10mM ), 1ml of template DNA, and 0:125m5U=ml of

DNA Taq polymerase, and 16:675ml of distilled water. The PCR

conditions for the COI gene were as following: 94uC for

2 minutes, 40 cycles of 94uC for 20 seconds, 54uC for 20 seconds,

72uC for 45 seconds, and a final extension at 72uC for 10 minutes.

The PCR conditions for ITS region were: 94uC for 2 min,

40 cycles of 94uC for 20 seconds, 51uC(ITS1) and 35uC(ITS2) for

30 seconds, 72uC for 15 seconds, and a final extension at 72uC for

10 minutes. Sequencing was performed with an ABI3130

sequencer.

Processing of DNA Sequences
The raw DNA sequences were all checked manually by eye.

After trimming the ends of the raw sequences, they were aligned

using MUSCLE [65] under default parameters. Besides single-

gene datasets (COI, ITS1, ITS2), we also assembled three two-

gene (COI-ITS1, COI-ITS2, ITS1-ITS2) datasets and a single

three-gene data set (COI-ITS1-ITS2), named as two-gene

barcoding system and three-gene barcoding system hereinafter.

Maximum Likelihood Inferences and Neighbor-joining
Reconstruction of Species Phylogeny with Single and
Multiple Genes

To explore phylogenetic relationship among these closely

related species, we constructed Maximum likelihood trees (ML)

for these species with each single gene, and their combinations via

the fast ML program PHYML3.0 [66]. Initially, NNIs search was

used to have a rough idea of the phylogeny. Secondly, a SPR

search was performed to generate the final ML tree. K2P model

was used as the model of nucleotide substitution [1–2]. Nucleotide

frequencies, the transition/transversion ratio, and proportion of

invariable sites were all estimated in the maximum likelihood

framework by the program. Branch supports were estimated using

1000 bootstrap replications. All other parameters were set as

default settings. Additionally, we constructed a neighbor-joining

tree (NJ, [67]) for each dataset. NJ trees were built using

MEGA4.0 [68] with a K2P molecular evolutionary model [1–2].

Successful identification was inferred where sequences from the

same species formed a monophyletic group although treating

reciprocal monophyly as species identification success remains

controversial [45]. We next determined whether the individual

gene trees formed monophyletic groups possessing branching

characteristics of species (a reduced within-group branching rate),

and whether these delineated groups corresponded to the

morphospecies. The ML trees were delimited into operational

taxonomic units using the generalized mixed Yule coalescent

approach (GMYC), which integrates both within species (coales-

cent) and between species (Yule) branching characteristics, finding

the most likely position in which a shift between the two has

occurred. The tree was dereplicated by identifying and pruning

terminals with no molecular divergence from their neighbours,

and an ultrametric tree generated by non-parametric rate

smoothing (as implemented in r8s, [69–70]), upon which we

apply the single threshold GMYC model [71]. The groups

delimited thus are compared to a null model of a single coalescent

group.

Network Analysis and Mantel Tests
Traditional bifurcating trees are less powerful to resolve

relationship among intraspecific populations and closely related

species, while haplotype networks can provide significant infer-

ences about evolutionary relationships among them [72–74].

Therefore, we constructed haplotype networks for the most closely

related species, D. punctatus, D. tabulaeformis, and D. spectabilis, with

each gene marker (COI, ITS1 and ITS2). For the latter two genes,

gaps in the alignments were treated as ‘‘missing’’ or ‘‘5th’’ states

respectively. To test whether geographically closer species/

populations tend to be genetically more similar, correlation

between geographical distance and Fst were performed with

Mantel test (1000 permutations) implemented in Arlequin 3.1

[75]. Furthermore, Mantel tests were performed at two different

scales: one was within the most closely related species (D. punctatus,

D. tabulaeformis and D. spectabilis), another was for all six

morphospecies although the Mantel test is generally performed

at the species level for phylogeographic aims. For the latter

analysis, we only wanted to investigate the phylogeographic

relationship among these six morphospecies on a longer time span.

Species Assignments with Distance-based Methods and
the Neural Network Approach

Distance-based methods of species assignments in conjunction

with computer simulations are capable of determining statistical

significance of species identification success rates. We therefore

performed the ‘‘best close match’’ (BCM) ([20]), and a minimum

distance (MD) method, utilizing ‘‘single-sequence-ommission’’ or

‘‘leave-one-out’’ simulation. In these simulations, we remove one

sequence at a time and use it as a query, with all other sequences

remaining as the reference database. We performed 500 random

replications for each dataset. The ‘‘best close match’’ (BCM, [20])

identification protocol first identifies the best barcode match of a

query, but only assigns the species name of that barcode to the

query if the barcode is sufficiently similar. This approach requires

a threshold similarity value that defines how similar a barcode

match needs to be before it can be identified. Such a value could

be estimated for a given data set by obtaining a frequency

distribution of all intraspecific pairwise distances and determining

the threshold distance below which 95% of all intraspecific

distances are found. The ‘‘BCM’’ approach is implemented in the

computer program TaxonDNA ([20]). The Minimum Distance

(MD) method is implemented in a program package MD [53].

With these distance-based methods, we further examined the

efficiencies of each single barcode (COI, ITS1, ITS2), two-gene

barcodes (COI-ITS1, COI-ITS2, ITS1-ITS2), and the three-gene

barcode (COI-ITS1-ITS2) in success rate of species identification.

BP Neural Network-based (BP-based method or BP) species

identification has recently been proposed by Zhang and his

colleague [12,52]. The BP-based method proved to be powerful in

species assignments via DNA sequences, especially for closely

related species [12]. As mentioned above, we have three single

gene datasets, three two-gene datasets and one three-gene dataset.

Each of these datasets were randomly divided into a reference

dataset and a query dataset respectively. The reference dataset was

used to train a BP-Neural Network model, while the query dataset

as a test dataset. We considered two scenarios - reference:qu-

ery = 9:1, and 1:1. In the former, nine of ten sequences in the
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dataset were randomly chosen as reference sequences, whereas in

the later, one of two sequences was used as reference sequences.

For all these simulations, the learning rate was set to 0.2, moment

value 0.5, and training goal 0.00001, as implemented in the

program BPSI2.0 [52].

Success Rate of Species Identification and Confidence
Intervals

The success rate of species identification is defined with the

following formula [12]:

Ratesuccess~
Numberhit

Numbertest

ð1Þ

where Numberhit and Numbertest are the numbers of sequences

successfully hit by the method under study and the number of total

query sequences examined, respectively. A success hit is counted if

a query is assigned to its correct species name in the database.

Since success rates of sequencing for different genes might affect

the final success rate of species assignments, we further define a

overall success rate, taking sequencing success into account,

measured as in the following equation.

RateOverall
success ~Ratesuccess|

Successfully Sequenced

Totally Sequenced
ð2Þ

where, Totally Sequenced and Successfully Sequenced denote

the total number of specimens submitted to sequencing, and the

number of successfully sequenced for that species.

Binary data indicating the presence (successful identification) or

absence (failed identification) of a specific attribute are often

modeled as random samples from a Bernoulli distribution with

parameter prob, where prob is the proportion in the population

with that attribute. A (1{a)-level confidence interval (CI) for prob
is calculated by the following formula [76]:

(dprobprob{b)

(1z
z2

n
)

ƒprobƒ

(dprobprobzb)

(1z
z2

n
)

ð3Þ

where a~0:05, b~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidprobprob(1{dprobprob)z2

n
z

z4

4n2

s
, z~za=2 (n is the

number of replications, and z is the critical value corresponding to

an area 1{a under the standard normal curve).

Intraspecific, Interspecific Variation, and DNA Barcoding
Gaps

The distance between intraspecific and interspecific variation

(the DNA barcoding gap), is considered as an important term in

DNA barcoding practice. Clearly, a large DNA barcoding gap

makes species discrimination possible and easy. Conversely, small

or negative DNA barcoding gaps blur species boundaries, and

hamper species assignation in DNA barcoding. To search for the

reason for failures in species identification, we further explored the

intraspecific and interspecific variations within this closely related

species group, calculated DNA barcoding gaps for each gene, and

for combined two or three - gene barcodes. A Perl script was

developed for this task.

Supporting Information

Appendix S1 Taxon information, detailed sampling
sites, genes used.
(XLS)

Appendix S2 Phylogenetic trees (NJ) of six closely
related Dendrolimus pine moth species constructed with
single gene (COI, ITS1 or ITS2). a) NJ tree based on COI

gene; b) NJ tree based on ITS1 gene; c) NJ tree based on ITS2

gene. Clades with different colors indicate different species

respectively. MW - D. punctatus, SM - D. kikuchii, YN - D. houi,

YS - D. tabulaeformis, CS - D. spectabilis, LY - D. superans; OG -

OUTGROUP; Numbers above branches indicate bootstrap

values (less than 50 not shown) (hereinafter).

(TIF)

Appendix S3 Phylogenetic trees (NJ) of six closely
related Dendrolimus pine moth species constructed with
multiple genes (a combination of two or three COI, ITS
and ITS2). a) NJ tree based on a combination of COI and ITS1

gene; b) NJ tree based on a combination of COI and ITS2 gene; c)

NJ tree based on a combination of ITS1 and ITS2 gene; d) NJ tree

based on a combination of COI, ITS1, and ITS2 gene.

(TIF)

Appendix S4 List of shared haplotypes between differ-
ent individuals of the same species or different species.
(XLS)

Appendix S5 Histograms of intra-(in red) and inter-
specific (in blue) pairwise distance between single-gene
barcodes for six closely related Dendrolimus pine moth
species.
(TIF)

Appendix S6 Histograms of intra-(in red) and inter-
specific (in blue) pairwise distance between multiple-
gene barcodes for six closely related Dendrolimus pine
moth species.
(TIF)
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