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Abstract

Cytokine/cytokine receptor gene polymorphisms related to structure/expression could impact immune response. Hence,
the 2237 polymorphic site in the 59 promoter region of the IL-12Rb2 (SNP ID: rs11810249) gene associated with the AP-4
transcription motif GAGCTG, was examined. Amplicons encompassing the polymorphism were generated from 46
pulmonary tuberculosis patients, 35 family contacts and 28 miscellaneous volunteers and sequenced. The C allele
predominated among patients, (93.4%, 43/46), and in all volunteers and contacts screened, but the T allele was exclusively
limited to patients, (6.5%, 3/46). The functional impact of this polymorphism on transcriptional activity was assessed by
Luciferase-reporter and electrophoretic mobility shift assays (EMSA). Luciferase-reporter assays showed a significant
reduction in transcriptional efficiency with T compared to C allele. The reduction in transcriptional efficiency with the T allele
construct (pGIL-12Rb2-T), in U-87MG, THP-1 and Jurkat cell lines, were 53, 37.6, and 49.8% respectively, compared to the C
allele construct (pGIL-12Rb2-C). Similarly, densitometric analysis of the EMSA assay showed reduced binding of the AP-4
transcription factor, to T compared to the C nucleotide probe. Reduced mRNA expression in all patients (3/3) harboring the
T allele was seen, whereas individuals with the C allele exhibited high mRNA expression (17/25; 68%, p = 0.05). These
observations were in agreement with the in vitro assessment of the promoter activity by Luciferase-reporter and EMSA
assays. The reduced expression of IL-12Rb2 transcripts in 8 patients despite having the C allele was attributed to the
predominant over expression of the suppressors (IL-4 and GATA-3) and reduced expression of enhancers (IFN-a) of IL-12Rb2
transcripts. The 17 high IL-12Rb2 mRNA expressers had significantly elevated IFN-a mRNA levels compared to low
expressers and volunteers. Notwithstanding the presence of high levels of IL-12Rb2 mRNA in these patients elevated IFN-a
expression could modulate their immune responses to Mycobacterium tuberculosis.
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Introduction

Approximately 10% of the individuals, exposed to Mycobacterium

tuberculosis, develop clinical disease [1], the remaining individuals

are able to restrict, and eliminate the infection by generating an

appropriate immune response. Accumulating evidence suggests

that genetic factors contribute to variations in host response

against M. tuberculosis. Hence, the variety of cytokines expressed

during the incubation period critically influences the quality and

the dominance of the type of immune response, [2]. Therefore,

polymorphisms in cytokine genes and their receptors that could

potentially modify expression and or biological activity would be of

particular interest, [3]. Polymorphisms in the genes of cytokines

and their receptors have been reported to be associated with

tuberculosis disease status in various populations, [4].

Polymorphisms in the regulatory regions of the genes have been

associated with variation in gene expression, [5]. The present

study focuses on the investigation of the functional role of

polymorphism in the promoter region of the IL-12Rb2 gene. The

heterodimeric IL-12 receptor consists of IL-12Rb1 and b2

subunits. The b2 chain along with b1 chain constitutes the high

affinity IL-12 binding site. The effectiveness of IL-12 biological

function is determined by the presence of the IL-12 receptors on

the cells. Both receptor subunits bind IL-12; however the signal

transducing component is exclusively limited to the IL-12Rb2

chain, [6]. Further, the IL-12Rb2 chain is restricted in its

distribution among Th1 cells, [7,8]. Several transcription factors

such as SP-1, SP-3, NFATc2, GATA- 3, Oct-1, etc., regulate

expression of the IL-12Rb2 gene [9,10]. The alteration in the

promoter activity of IL-12Rb2 gene has been reported with the

base exchange at the following sites namely 21110, 21035,

2628, 2890 and 2465. Besides these sites, the polymorphism at

the 2237 position, (SNP ID: rs11810249) has been reported

previously in asthma [10]. As predicted by in silico analysis, the
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2237 polymorphic site is a part of the AP-4 transcription factor

binding motif. AP-4 is a ubiquitously expressed transcription

factor, which belongs to the basic helix-loop-helix leucine zipper

(hHLH-LZ) subgroup of bHLH proteins and recognizes the

symmetrical DNA core sequence CAGCTG [11]. This motif has

been referred throughout this manuscript as the consensus motif.

In the IL-12Rb2 promoter region the motif is predicted to be

located at position 2234 to 2239. This predicted cognate motif

has a conserved substitution at position 2234 C to G. This

sequence namely GAGCTG has been referred to as the IL-12Rb2

AP-4 motif. As the 2237 polymorphism is located in the

regulatory region, this may potentially modulate the IL-12Rb2

gene expression which in turn may influence the biological activity

of IL-12 required in the genesis of host immune response to M.

tuberculosis.

Apart from examining the role of the polymorphism at the

2237 site related to IL-12Rb2 mRNA expression, cytokines/

transcription factors that are known to be associated with

enhancement/suppression of IL-12Rb2 mRNA expression have

been investigated. The suppressors included were the cytokine IL-

4, [7] and the transcriptional factor GATA-3, [12]; and the

enhancer considered was IFN-a, [13].

Results

The one of the objectives of the present study was to detect the

presence of the 2237 C/T polymorphism (SNP ID: rs11810249)

in the IL-12Rb2 promoter region and to assess its distribution

among tuberculosis patients, household contacts and miscella-

neous healthy volunteers. For this purpose, we subjected the

622 bp DNA amplicons encompassing the polymorphic site,

derived from 109 individuals to double stranded DNA sequencing.

The results of this analysis are presented in Figure 1 & Table 1.

Examining the polymorphic position 2237 C/T, it was seen that

the C2237 site was present in 93.4% (43 / 46) patients and in all

contacts (35 / 35) & healthy volunteers (28 /28); whereas the

T2237 position, was detected exclusively in 3 of the 46 (6.5%)

tuberculosis patients.

Altered transcriptional activity
The substitution of T for C at the 2237 polymorphic site alters

the IL-12Rb2 AP-4 transcription factor binding motif GAGCTG,

[10,11,14]. Therefore to evaluate the impact of C to T

polymorphism on transcriptional efficiency, promoter-reporter

constructs harboring the polymorphic binding sites were trans-

fected into U-87MG, THP-1 and Jurkat cell lines, (Figure 2, Panel

A). Figure 2, Panel B, shows the estimated relative luciferase

activity with each of the constructs in the respective cell lines.

Luciferase reporter gene driven by IL-12Rb2 promoter containing

the C allele (pGIL-12Rb2-C) exhibited significantly higher

luciferase activity in all cell lines compared to the T allele

construct (pGIL-12Rb2-T). The maximum luciferase activity of

37.862.8 (Mean 6 SEM) fold over the promoter less PGL3-Basic

vector was observed in the Jurkat cell line with the construct pGIL-

12Rb2-C. This maximal activity was set as a reference value of

100%, and promoter activity of other constructs was compared

against this reference value. Accordingly, the activity of pGIL-

12Rb2-T in Jurkat cell line was observed to be 50.663.3%. While

the transcriptional activity of pGIL-12Rb2-C construct in THP-1

and U-87 MG cell lines was 50.764.9 and 17.260.3%, compared

to the pGIL-12Rb2-T construct wherein it was reduced to

31.862.4 and 8.160.4% respectively.

The luciferase activity of the pGIL-12Rb2-T construct was

lower in all the three cell lines investigated, (Figure 2, Panel B).

The observed reduction in luciferase activity with the T compared

to the C allele, in U-87MG, THP-1 and Jurkat cell lines was 52.7,

37.3 and 49.1% respectively. This reduction was statistically

Figure 1. PCR amplification and sequencing analysis chro-
matograms for the 2237C/T polymorphism. Panel (A & B):
Chromatogram showing the sequencing analysis of the 622 bp
amplicon derived from individual with polymorphic C (shown in panel
A), or T type alleles (shown in panel B) respectively. The presence of the
wild type 2237C and the polymorphic 2237T allele has been indicated
with (*).
doi:10.1371/journal.pone.0034355.g001

Table 1. The distribution of 2237 C/T polymorphism among
patients, healthy contacts and volunteers.

Subjectsa 2237 C/Tb

Cc Td

Ne %f N %

Patientsg 46 93.4 3 6.5

Contactsh 35 100 0 0

Volunteersi 28 100 0 0

a Subjects included in the study;
b Polymorphism position ;
c Individuals with C nucleotide at 2237 position;
d Individuals with T nucleotide at 2237 position ;
e Total number of individuals investigated;
f Percentage of individuals.
g pulmonary tuberculosis patients ;
h healthy patients contacts ;
i Healthy laboratory Volunteers.
doi:10.1371/journal.pone.0034355.t001
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significant in the three cell lines examined, (p = 0.0031 for U-87

MG; p = 0.0097 for THP-1; p = 0.0001 for Jurkat cell lines

respectively; Figure 2, Panel B). These results suggest the

association of T allele with reduced promoter activity.

C to T polymorphism alters AP-4 binding
In silico analysis, revealed that C to T polymorphism, which

caused a reduction in promoter activity, also abolishes the AP-4

binding to IL-12Rb2 AP-4 motif (GAGCTG). We employed

EMSA to assess, the consequence of this polymorphism on binding

of AP-4 transcription factor and the results are presented in

Figures 3, 4, 5.

To establish and confirm the binding of C and T ds-oligos with

the AP-4 transcription factor, the AP-4 consensus probe was used

as a positive control. The binding efficiencies of C, T and AP-4

type probes to the nuclear factor was assessed in the presence of

varying concentrations (0 to 100 molar excess) of the unlabeled ds-

oligos containing the AP-4 consensus motif (CAGCTG, Figure 3,

Panel A). All probes exhibited formation of a DNA-protein

complex with the nuclear extract derived from PMA–PHA

activated Jurkat cells, (Figure 3, Panel A, AP-4 probe Lanes 1–5;

C probe Lanes 6–10; T probe Lanes 11–15). These complexes

showed identical electrophoretic mobility suggesting the binding of

similar nuclear factor(s) to the probes. Excess of unlabeled ds-

oligos containing the consensus AP-4 binding motif could displace

the radio labeled AP-4 probe from the DNA-protein complex. A

similar displacement of the radio labeled C and T probes from

their respective DNA-protein complexes by unlabeled AP-4

consensus ds-oligos was observed. These results suggest the

specificity of the binding of the transcription factor AP-4, to the

radio labeled AP-4, C and T probes.

Densitometric analysis of the DNA-protein complexes was

carried out. The densitometric value of the AP-4 consensus probe-

protein complex (positive control) was set as 100%, (Figure 4,

Panel B, Lane 2). The analysis revealed comparable binding of

AP-4 transcription factor to the AP-4 consensus and C-probes.

Accordingly the degree of binding with C and T probes was

estimated to be 96.562.3, (Mean 6 SD, Lane 7) and 44.862.1%

(Lane 12) respectively. Displacement assays revealed that a 10

molar excess of AP-4 consensus ds-oligo was sufficient to displace

the T probe from the DNA-AP-4-protein complex. Whereas this

displacement could not be achieved by 100 molar excess of the

AP-4 ds-oligo in case of the AP-4 consensus or C probe complexes

(Figure 3, Panel B, Lanes 5 & 10). These results revealed that the

intensity of the DNA-protein complex with consensus AP-4

(100%) and C (96.5%) probes was comparable. However, the

intensity of this complex with the T probe (44.8%) was

approximately 2 fold lower (Figure 3, Panel B, Lanes 7 & 12).

No DNA-protein complex was detected when EMSA was

carried out with the T probe in the presence of 100 molar excess of

the unlabeled T or C ds-oligos (Figure 4, Panel A, Lane 9 & 10).

However, 100 molar excess of unlabeled C ds-oligo (Lane3) but

not T ds-oligo (Lane 4) could completely abolish the formation of

this complex with the C probe. Densitometric analysis revealed

that the T ds-oligo could abolish 90% binding of the C probe to

AP-4 protein, (Figure 4, Panel B, Lane 4), whereas C ds-oligo

could completely abolish the binding of the same factor with the T

probe, (Figure 4, Panel B, Lane 10). The formation of the complex

with T / C probe could not be abolished in the presence (1006
molar concentration) of nonspecific competitor containing CEBP-

a binding motif, (Figure 4, Panel A & B Lanes 6 & 12). These

results further confirm the binding of AP-4 to C and T probes and

the higher affinity of C compared to the T probe to AP-4

transcription factor.

In order, to identify the proteins binding to the polymorphic

site, super shift experiments were conducted using the wild-type

probe harboring the C nucleotide at 2237 position and the

polymorphic type probe harboring T, and nuclear extracts derived

from Jurkat cells, (Figure 5). As this site previously has been

predicted to bind AP-4 transcription factor, polyclonal antibody

directed against transcription factor AP-4 was used in the super

shift assay. Addition of antibody super shifted the labeled probe-

lysate complex, (Figure 5, Lanes 3, 6, 9) compared to the

complexes in the absence of the antibody, (Lanes 2, 5, 8). The

shifted DNA- protein complex was further super-shifted maximally

Figure 2. Schematic representation of the vector constructs
and the luciferase activity observed in different cell lines.
Panel A. Schematic representation of the promoter constructs, namely
pGIL-12Rb2-C (with C allele) and pGIL-12Rb2-T (with T allele) that have
been used for the luciferase reporter assays. The region extending from
2591 up to +55 of the 59 region the IL-12Rb2 promoter was cloned into
pGL3-Basic vector. The location of the polymorphic allele at 2237
positions has been underlined. The dotted box indicates the AP-4
binding motif in the IL-12Rb2 promoter. Panel B: The vector constructs
pGIL-12Rb2-C, pGIL-12Rb2-T and the pGL3-Basic vector (Negative
control) were co-transfected along with pRL-TK vector into U-87, THP-
1 and Jurkat cell lines as described in methods. The renilla activity
expressed by the pRL-TK vector was used to normalize the transfection
efficiency. The reporter gene Firefly luciferase activity was determined
for each sample in triplicates, 42 hours post transfection. The relative
luciferase activity was expressed as fold increase in the activity
compared to the promoter less pGL3-Basic vector and the results has
been shown as mean 6 SEM of three independent experiments.
Student’s t test with unequal variances was carried out to compare the
transcriptional efficiency (*) of the constructs, (*p = 0.0031; **p = 0.0097,
***p = 0.0001).
doi:10.1371/journal.pone.0034355.g002
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Figure 3. EMSA experiments for the assessment of AP-4 / C type / T type probe binding ability on addition of unlabelled AP-4
consensus oligos as competitor. Panel (A): Shows the EMSA experiments carried out to assess the displacement of the probe complexed with
the protein in the presence of excess molar concentrations (10, 50 & 1006) of the unlabelled AP-4 oligonucleotide as indicated. The probe-protein
complex was generated using the labeled AP-4 consensus (Lanes 1–5), C (Lanes 6–10) and T probes (Lanes 11–15). Panel (B): The bar diagram shows
the densitometric profile of the autoradiograph depicted in Figure 2, Panel c. The labeled AP-4 consensus (Lanes 1–5), C probe (Lanes 6–10) and T
probe (Lanes 11–15) were incubated with the nuclear lysate. The bars represent the mean 6 SD of three experiments.
doi:10.1371/journal.pone.0034355.g003

Figure 4. EMSA experiments to assess binding ability and specificity of probes. Panel (A): Shows the EMSA experiments to evaluate the
specificity of the Oligo – Nuclear protein complex formed with the C and T probes. The Oligo–Nuclear protein complex was formed in the presence of
1006 excess molar concentration of the unlabelled competitors namely Self / Heterologous / AP-4 consensus / Non specific (CEBP-a, NS) oligos.
Panel (B): Bar diagram showing the densitometric profile of the autoradiograph, Figure 5.7, Panel A. The C & T type of oligo without nuclear lysate
(Lanes 1 & 7) ; with nuclear lysate and without competitors (Lanes 2 & 8); with self competitors (Lanes 3 & 9) ; with heterologous competitors (Lanes 4
& 10 ); with unlabelled AP-4 consensus oligo ( Lanes 5 & 11) and with unlabelled non specific oligo (NS, CEBP-a, Lanes 6 & 12). The bars represent the
mean 6 SD of three experiments.
doi:10.1371/journal.pone.0034355.g004

IL12Rb2 Polymorphism in Tuberculosis
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with AP-4 consensus probe (Figure 5, Lane 3) followed by the wild

type C probe (Lane 6) and the polymorphic type T probe (Lane 9).

As IL-12Rb2 surface expression was low in unstimulated

circulating PBMCs (Data not shown), experiments were carried

out to determine mRNA expression of the IL-12Rb2 subunit at

the baseline level in peripheral blood leucocytes derived from 28

tuberculosis patients, (Figure 6). Analysis was carried out to

establish a relationship if any between the IL-12Rb2 mRNA

expression and the polymorphism at 2237 position of the IL-

12Rb2 promoter.

IL-12Rb2 mRNA expression
The Relative transcript level (_DD Ct) was calculated after

normalization with the b-actin mRNA and expressed with respect

to that of healthy laboratory volunteers (N = 28) as described [15].

Individuals were categorized as high expressers when the deduced

transcripts levels was .1, while individuals with transcripts levels

,1 were categorized as low expressers. The mRNA expression of

the 28 tuberculosis patients, investigated showed a mixed

expression profile of the IL-12Rb2 mRNA expression, (Figure 6).

The mRNA expression in 3 patients harboring the T allele at

the 2237 position was low, (,1; Figure 6, Patient numbers 3, 5 &

7 respectively). The remaining 25 patients harboring the C allele

showed divergent expression of mRNA. 17 patients showed high

levels of expression (.1; 68%) and the 8 patients showed low

expression (,1; 32%). The high levels of expression of mRNA in

the presence of C allele in 17 patients and the low levels of mRNA

with the T allele in 3 individuals correlated with the in vitro

functional assays related to promoter activity as observed in the

luciferase reporter assays, (p = 0.05 ; Fisher’s exact test). Similarly,

the EMSA assays also confirmed the higher binding of the AP-4

transcription factor with the C type allele compared to the T allele.

Assessment of IL-4, IFN-a and GATA-3 mRNA expression
In case of the 8 patients the IL-12Rb2 mRNA expression was

negligible despite their harboring C in the IL-12Rb2 AP-4 motif,

which was in contradiction to the high transcriptional activity

expected as determined by the reporter assay, (Figure 2). In this

regard, experiments were designed to investigate if any, the

possible role of additional modulators of IL-12Rb2 expression

such as IL-4, IFN-a and the master switch transcription factor

GATA-3. IL-4 and GATA-3 suppresses, whereas IFN-a is a

potent enhancer of IL-12Rb2 expression, [7,12,13].

The results of IL-4, GATA-3 and IFN-a mRNA expression

among the 28 untreated tuberculosis patients and equivalent

number of healthy volunteers have been depicted in figure 7.

These patients have been categorized based on the levels of IL-

12Rb2 mRNA detected, into 17 high and 11 low expressers as

described in Figure 6. In addition, the 11 low expressers were

further sub-divided into 8 patients with the C allele (Low-C) and 3

with the T allele (Low-T) in the IL-12Rb2 AP-4 motif.

As a group healthy volunteers had lower transcript levels for all

the three target genes investigated compared to tuberculosis

patients, (IL-4, p = 0.03; IFN-a, p = 0.009 and GATA-3, p = 0.04).

On the other hand, differences between the patient groups were

seen. The 8 low expressers of IL-12Rb2 mRNA (Low-C) had the

highest transcript levels of IL-4 compared to the Low-T, (p = 0.01)

& High-C (p = 0.02) group of tuberculosis patients and healthy

volunteers examined, (p = 0.002, Figure 7, Panel A). On

comparing the IFN-a transcripts, the Low-C patients had reduced

transcript levels compared to the Low-T and High-C patient

groups, (p = 0.04, Figure 7, Panel B). The highest GATA-3

transcript levels was seen among the Low-C compared to Low-T

(p = 0.05) & High-C patients, besides healthy volunteers (p = 0.02,

Panel C).

Patients with the T mutation (Low-T), showed low expression of

IL-4 transcripts compared to Low-C (p = 0.01) & High-C (p = 0.02)

patient groups and healthy volunteers, (Figure 7, Panel A). These

patients showed higher IFN-a transcript’s compared to Low-C &

healthy volunteers and lower GATA-3 transcripts compared to

Low-C, (p = 0.05) & High-C patients and healthy volunteers.

Discussion

This is the first report of the analysis of the polymorphism

2237C to T in the IL-12Rb2 gene and its association with

tuberculosis. We found the presence of the T nucleotide at 2237

position (SNP ID: rs11810249) of the IL-12Rb2 promoter

exclusively in patients. Since the C/T2237 polymorphic site, lies

on the putative AP-4 binding site, we investigated whether the

difference in the IL-12 receptor expression is due to the variation

in promoter activity owing to its differential binding. In silico

analysis predicted the loss of the binding of the AP-4 transcription

factor with C to T base exchange. The regulatory role played by

the polymorphism namely C/T at the 2237 position has been

confirmed by luciferase reporter assays, wherein we found that the

promoter construct with the C nucleotide had higher promoter

activity compared to the T nucleotide promoter construct. In

addition, the binding ability of C or T type probes with the AP-4

transcription factor was assessed by EMSA and super shift assays.

The results showed that the C type of probe had greater affinity to

bind the AP-4 transcription factor compared to the T type probe.

Figure 5. Supershift assay using AP-4 consensus, wild type and
polymorphic type probe incubated with / without AP-4
polyclonal antibody. The assay carried out utilizing different probes
without nuclear lysate ; (lanes 1 , 4 & 7); with Jurkat nuclear lysate ;
(Lanes 2,5 & 8) Super shift assay with Jurkat cell nuclear extracts was
carried out using anti AP-4 antibody (20 ml ) with specific AP- 4 probe
(lane 3), C and T type probes, lanes 6 & 9 respectively. The arrow head
indicates the shifted band corresponding to the different type of
probes. The star symbol indicates supershifted complex corresponding
to different probes. These data are representative of 2 independent
experiments.
doi:10.1371/journal.pone.0034355.g005

IL12Rb2 Polymorphism in Tuberculosis
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This observation was in agreement with the promoter activity

assessed by the luciferase reporter assays. In addition to in vitro

assays, mRNA expression data showed that individuals with T

allele had the lowest expression of mRNA compared to other

counterparts. Hence polymorphism of C/T at 2237 position

could potentially affect the expression of the IL-12Rb2 receptor

component of the IL-12 receptor.

The factors that determine resistance or susceptibility to

tuberculosis remain ill-defined, [2]. Polymorphisms both in the

regulatory and coding region of the IL-12Rb2 gene have been

identified in leprosy, (21047delT, 21035A/G, 21033T.C,

–1023A/G, 2650delG, 2568A/C, 2557T/C, 2550T/C,

2464A/G 2464A/C, 202T/C and2188A/C, [16] and in

allergic, respiratory disorders such as asthma, (21035A/G,

21033T/C, 21023A/G, 2465A/G and 2237C/T, [10].

Alterations in the promoter activity, associated with polymorphism

in the genes of several cytokines and their receptors in tuberculosis,

[17,18] and other diseases have been examined, [19,20].

In the present study, analysis of the polymorphic site showed

that the T allele was found in 6.5% (3/46) and the C allele in

93.4% (43/46) of patients. Earlier reports on 2237 polymorphism

among Caucasoid asthmatics, the frequency of the T type allele in

asthmatics was low (2.5%, 2/80) compared to the C allele.

However in the study the distribution of 2237 C/T in healthy

controls and its functional consequence was not investigated, [10].

Mutations such as +1577A to G, and +2799 A to G and the

truncated +2496 del 91, in the coding region of the IL-12Rb2

gene, have been associated with reduced IFN-c production, [21].

As assessed by cross-competition experiments, the binding

affinity to the protein(s) by the wild-type C allele variant was

approximately 2-fold greater than that seen with the mutant T

allele counterpart. The reduction in transcriptional efficiency in U-

87MG, THP-1 and Jurkat cell lines was 53, 37.6 and 49.8%

respectively. These results indicated the influential role played by

the C/T nucleotide at 2237 position for promoter activity of the

IL-12Rb2 gene. The reduction in the promoter activity with the T

allele was not tissue specific, however, the degree of reduction was

tissue specific, where it was least reduced in THP-1 cell line. The

highest transcriptional activity of the constructs (pGIL-12Rb2-C

and pGIL-12Rb2-T) was observed in the Jurkat cell line followed

by THP-1 and least in U-87MG cell line. The highest activity

observed in Jurkat cells (human T cell lymphoma) may be due to

the fact that expression of IL-12Rb2 is primarily associated with

Th1 type of T cells, [8,22]. We predict that the higher activity of

the promoter with the C allele and reduced activity with the T

allele was due to the alteration in the binding of the transcription

factor AP-4.

Super shift experiments confirmed the binding of AP-4 to the

probes with C/T nucleotide at the 2237 position. The probe-

protein complexes formed with C/T probes migrated to the

position identical to that seen with AP-4 consensus sequence.

Complexes were further displaced upon addition of specific

polyclonal antibodies. As the T allele showed comparatively less

intensive binding as well as decreased transcriptional activity, it

appears, in vitro AP-4 seems to function as an activator, in the IL-

12Rb2 promoter. The change, in the AP-4 protein binding affinity

at this polymorphic site, could be potentially responsible, for the

alteration, in the in vivo expression of the IL-12Rb2 gene.

AP-4 has been described previously as an activator [14] as well

as a repressor of gene transcription, [23,24] indicating its probable

Figure 6. Relative mRNA quantification of IL-12Rb2 mRNA expression in tuberculosis patients (N = 28). Histogram shows the IL-12Rb2
mRNA expression profile in the blood of the tuberculosis patients. The identification of the polymorphism at 2237 site has been carried out by PCR
amplification and sequencing (forward & reverse) of the 622 bp region spanning 2780 to 2159. The patients with the T at 2237 polymorphic site
has been indicated. The bars represent expression of IL-12Rb2 mRNA in each individual. The fold activity pattern in real time PCR assay was calculated
as described in methods, [15]. The individuals with reduced / elevated IL-12Rb2 mRNA expression have been designated as Low expressers / High
expressers.
doi:10.1371/journal.pone.0034355.g006

IL12Rb2 Polymorphism in Tuberculosis
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regulatory role in gene expression. The role of polymorphism

affecting the AP-4 binding has been assessed in Pin1 promoter with

relation to Alzheimer’s disease, where the role of AP-4 as a

transcriptional repressor has been reported in the context of G to

C base exchange, [25]. In contrast, the functional investigation of

the SNP at the AP-4 binding site at position 256 (T to C) in the

promoter of interferon-gamma receptor 1 (IFNcR1) gene in tuberculosis

patients and other ethnic groups, showed loss of promoter activity,

[18].

Role of potential GATA3 binding motifs present at positions

21035, 21110, 2890, 2628, and 2465 of the IL-12Rb2

promoter on transcriptional efficiency have been previously

assessed. The mutation at the 21035 site did not alter the

binding, whereas mutation at the 2465 position a threefold

increase in transcriptional efficiency was seen. When the non-

polymorphic GATA binding sites (2628, 2890, 21110) were

mutated no alteration in the transcriptional efficiency was seen

[10]. The role of the promoter polymorphisms in other cytokine

receptor genes, such as G-611A & T-56C of the IFNGR1 gene

showed no association with susceptibility to mycobacterial

infection, [18]. However, an association between IL-10 promoter

polymorphisms at 2819 and 2592 sites with elevated IL-10 levels

in pleural tuberculosis has been reported, [17].

In 17 patients who harbored the C allele (17 / 25; 68%, High-

C) high levels of IL-12Rb2 mRNA expression was detected. On

the other hand, despite the presence of C allele at the 2237 site in

8 patients (Low-C) reduced levels of IL-12Rb2 mRNA were

detected. Comparing the suppressors (IL-4, GATA-3) and

enhancer (IFN-a) of IL-12Rb2 expression in these individuals a

direct relationship was observed between the high and low

expression of IL-12Rb2 mRNA. In 17 patients, high transcripts of

IFN-a and low levels of IL-4 & GATA-3 transcripts was detected,

whereas in 8 patients with low levels of IL-12Rb2 expression (Low-

C), significantly high transcripts levels of IL-4 compared to all

other groups of patients and healthy volunteers was observed.

Besides high transcript levels of IL-4 & GATA-3 were detected, a

concomitant reduction in IFN-a mRNA was detected in these 8

individuals. GATA-3 is a known to inhibit of the differentiation of

TH1 lineage of T cells by suppressing the expression of the IL-

12Rb2 [12], whereas IFN-a inhibits GATA-3 expression, [26].

Hence, the appropriate conditions for IL-12Rb2 mRNA expres-

sion was prevalent among the 17 high expressers and was absent in

the 8 low expressers. Whereas the 3 patients (Low-T) with low

levels of IL-12Rb2 expression had equivalent transcript levels of

IFN-a and low levels of IL-4, a condition conducive for optimal

expression of IL-12Rb2. However these individuals failed to

express IL-12Rb2 owing to the presence of the polymorphic allele

T in the AP-4 motif.

Apart from IL-4 and GATA-3, other suppressors include IL-10

[17,27], TGF-b [28] and IL-17 [29]. Additionally, the presence of

stress indicators such as cortisols and prostaglandin E2 [30] could

contribute to the depression of IL-12Rb2 mRNA expression. High

levels of these cytokines [17,31] and corticosteroids [32] have been

detected in serum/at the disease foci of tuberculosis patients.

Further, in vitro, induction of IL-4 has been reported in patients

following exposure to mycobacterial antigens, [33]. Additionally,

Figure 7. Real -Time PCR analysis for transcripts of suppressers
(IL-4 and GATA-3) and enhancers (IFN-a) of IL-12Rb2 mRNA in
28 tuberculosis patients and healthy volunteers. The Box plots
represents the expression levels of IL-4 (Panel A), IFN-a (Panel B) and
GATA-3 (Panel C) mRNA expression among the untreated Tuberculosis
patients and healthy volunteers (HV), as estimated by Real-Time PCR.
The patients were categorized based on IL-12Rb2 mRNA levels detected
and the presence of C/T allele at the 2237 position, (Figure 6). Target
gene expression was normalized with b-actin gene expression. The data
has been calculated with the 22DCt formula, as described in methods.
The horizontal bar represents the median value for mRNA in each
group, the 25th and 75th percentile have been represented by the
boxes. The whiskers represent the maximum and minimum values of
the data, respectively. The data has been plotted on log10 scale. Low-C:
Low IL-12Rb2 mRNA expressers with allele C at 2237 position (N = 8);
Low-T: Low IL-12Rb2 mRNA expressers with polymorphic allele T at
2237 position (N = 3); High–C: High IL-12Rb2 mRNA expressers with
allele C at 2237 position (N = 17); HV: Healthy volunteers free of
tuberculosis (N = 28). To compare the transcript levels between groups,
non-parametric Mann-Whitney Test was applied. (*) - Significant

differences in transcript levels between compared groups have been
indicated. Panel A: Low-C Vs Low-T, p = 0.01; Low-C Vs HV, p = 0.002;
Low-C Vs High-C (?????) p = 0.02; Low-T Vs High-C, p = 0.02;Low-T Vs HV &
High-C Vs HV, not significant. Panel B: Low-C Vs High-C (????), p = 0.04;
High-C Vs HV, p = 0.002; Low-T Vs HV, p = 0.05. Panel C: Low-C Vs Low-
T, p = 0.05; Low-C Vs HV, p = 0.02; High-C Vs HV, p = 0.04; Low-C Vs High-
C, and Low-T Vs HV not significant.
doi:10.1371/journal.pone.0034355.g007
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high levels of circulating plasmacytoid dendritic cells a copious

source of IFN-a have been reported to be present in untreated

tuberculosis patients, [34] could account for the elevated IFN-a
transcripts detected in patients in the present study. IFN-a is

known to down regulate IFNGR1 receptor in infected macro-

phages, thus making macrophages intransient to IFN-c induced

activation, [35,36]. We have reported the down regulation of

IFNGR1 following infection with M. tuberculosis, [37]. Besides

down regulation of IFNGR1 receptor, IFN-a inhibits the synthesis

of the IL-12p40 subunit of the IL-12 cytokine by human antigen

presenting cells, [36]. Hence elevated levels of IFN-a could be a

pre-disposing factor for the onset of clinical tuberculosis despite its

potency to induce expression of IL-12Rb2 mRNA. Besides IFN-a,

IFN-c has been shown to upregulate the expression of IL-12Rb2,

[7,8]. Elevated levels of IFN-c have been reported in the disease

site [38] as well as in circulation among tuberculosis patients,

[33,34].

The higher expression of the IL-12Rb2 receptor in 17 patients

did not result in resistance to M. tuberculosis. The plausible reasons

could be that, the over expression of IL-12Rb2 has been reported

to sustain murine T regulatory (Treg) cells [39]. Higher levels of

FOXP3 mRNA have been observed in tuberculosis patients,

[40,41]. FOXP3 protein is expressed exclusively in Treg cells,

[42]. Increased transcription of IL-12Rb2 gene in patients could

result in increased expression of the IL-12Rb2 chain, in

CD4+Tregs. The genesis and prevalence of Treg cells could

initiate an inappropriate immune response(s) in patients leading to

progressive disease.

Low IL-12Rb1 expressing PBMCs has been detected in

tuberculosis patients, [28]. Hence lack of expression of the IL-

12Rb1 chain on immune-competent cells despite the presence of

IL-12Rb2 chain would result in impairment in the binding of IL-

12. As a consequence, would lead to the failure of the development

of functional dendritic and NK cells, and critically impact the host

immune response. However, both IL-12Rb1 & b2 mRNA in

bronchoalveolar lavage have been detected in tuberculosis

patients, [43]. Besides the coordinated expression of both IL-

12Rb1 & b2 chains and the availability of the composite IL-12R in

patients, yet another scenario exists wherein, the availability of IL-

12 appears to be limiting, [34]. No one factor appears to be

universal among the patients of tuberculosis that determines the

loss of IL-12 bio-activity. The combination of factors that appear

to be accountable for the disease is varied as the range of

individuals susceptible to M. tuberculosis.

Materials and Methods

Ethics statement
The institutional ethical committees of the All India Institute of

Medical Sciences (AIIMS), and Lala Ram Sarup Institute of

Tuberculosis and Respiratory Diseases, Mehrauli, New Delhi,

India, (LRS), approved the study. All individuals included in the

study were Informed about the study and written consent was

obtained from them.

Study subjects
A total of 109 individuals consisting of untreated pulmonary

tuberculosis patients who were sputum AFB positive (N = 46;

Mean age: 31 years; 26 males and 20 females) registered in the

Out-patient Department (OPD) of the LRS hospital and healthy

family contacts of the patients (N = 35; Mean age 31.8 years; 20

males and 15 females) who were related / closely associated with

the patients were included in the study. Miscellaneous healthy

laboratory volunteers (N = 28; Mean age: 30 years; 18 males and

10 females) from Department of Biotechnology, AIIMS, were

included as controls. All patients underwent clinical examination,

chest X-ray, sputum microscopy for acid fast bacilli (AFB), and

routine laboratory tests. Diagnosis of tuberculosis was made on

the basis of clinical and radiological assessment and detection of

AFB in sputum. Scrutinizing clinical histories of patients, physical

examination, and laboratory investigations ruled out the

occurrence of concomitant intracellular infections, in the enrolled

individuals. All patients were human immunodeficiency virus

negative. The healthy family contacts and miscellaneous healthy

laboratory volunteers were screened for clinical signs of

tuberculosis and were radiologically examined; when warranted

on the basis of the symptoms, additional tests such as sputum

examination for AFB and erythrocyte sedimentation rate were

undertaken.

Genomic DNA isolation
DNA was extracted from 300 ml of acetate citrate dextrose

(ACD) collected blood by using Wizard Genomic DNA isolation

kit (Promega, MD, USA) according to the manufacturer’s

instructions. The PCR reaction mixture in a final volume of

20 ml contained, 16 PCR buffer, 200 mM dNTPs, 2.5 mM

MgCl2, 0.5 mM of each primer IL-12F-780 and IL-12R -159

with 1.0 U of Taq DNA polymerase (MBI Fermentas, Lithuania)

and 100 ng of genomic DNA as template. A negative control

without DNA was also included. Initial denaturation of the

reaction mixture at 95uC for 5 min, and 35 cycles of each

denaturation (94uC, 45 sec), annealing (62uC, 45 sec) extension

(72uC, 45 sec) and a final extension at 72uC for 10 min, was

carried out.

Detection of amplified products and sequencing analysis
The resulting PCR amplified products (622 bp) were analyzed

by agarose gel electrophoresis (1.5%) in the presence of 1 mg/ml of

ethidium bromide and visualized under UV-Illumination (Syn-

Gene, Gene Genius Bio Imaging System, UK). The amplified

DNA fragments from tuberculosis patients, household contacts

and healthy volunteers were purified from the gel using the Gel

extraction kit (Promega) according to the manufacturer’s instruc-

tions, and subjected to double stranded DNA sequencing to detect

the polymorphism. The nucleotide sequences were analyzed using

GeneDoc (Version 2.6.002 Nicholas and Nicholas 1997).

In silico analysis
The amplified 2591 to +55 region of the IL-12Rb2 promoter

fragment was analyzed for the presence of transcription factor

binding motifs, (http://motif.genome.jp).

Promoter–reporter constructs
Using DNA with CC genotype as template the 2591 to +55 59

flanking region of the IL-12Rb2 gene was PCR amplified utilizing

primers 2591F and +55R [9] (Table 2) and high fidelity proof

reading enzyme (Pfu DNA polymerase, MBI). To facilitate

cloning, SacI and NheI sites were incorporated in the forward

and reverse amplimers. The purified 646 bp amplicon was cloned

upstream to the luciferase reporter gene in pGL-3-Basic to

generate pGIL-12Rb2-C construct. To examine the role of C to T

polymorphism in the cognate AP-4 binding motif (GAGCTG)

present in the pGIL-12Rb2-C construct, it was changed to

GAGTTG by site directed mutagenesis to generate the pGIL-

12Rb2-T construct.
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Site directed mutagenesis
The purified promoter reporter construct (pGIL-12Rb2-C)

harboring C nucleotide (wild type allele) at the polymorphic site

(2237) was used as a template for the site-directed mutagenesis.

For mutagenesis of the 2237 polymorphic site, the Quick-change

site-directed mutagenesis kit (Stratagene, La Jolla, CA, USA) and

the primers FTMU 59-attatgcagagttgccgacccct-39 and RTMU 59-

aggggtcggcaactctgcataat- 39 containing T nucleotide at the 2237

position were used. The resulting construct pGIL-12Rb2-T

obtained was used for transfection studies after confirming the

polymorphism by DNA sequencing.

Human Cell lines
Jurkat cells (T cell lymphoma, NCCS, India) and THP-1

(monocyte cell line, ATCC, USA) were cultured in RPMI-1640

(GIBCO) supplemented with 10% heat inactivated fetal bovine

serum (GIBCO) and antibiotics, (100 u/ml penicillin, 75 mg/ml

streptomycin, 50 mg/ml gentamycin) in a humidified, 5% CO2 air

atmosphere incubator, at 37uC. The U-87MG (glioblastoma,

ATCC, USA) cells were grown under identical conditions with

supplements in DMEM (Life Technologies).

Transfection and Luciferase Assays
16106 Jurkat/THP-1 cells/ml suspended in plain RPMI media

were co-transfected with the promoter reporter constructs (2 mg)

and renilla expression vector, pRL-TK (0.5 mg) using 7 ml of

Lipofectamine (Invitrogen). Cells transfected with pGL3-Control

vector (SV-40 promoter, Promega) and promoter less vector

pGL3-Basic, served as positive, and negative controls, respectively.

The U-87MG cells were transfected as described [44]. Thirty-six

hours later, transfected cells were stimulated with PHA (1 mg/ml)

and PMA (50 ng/ml, Sigma) for five hours. Then the stimulated

cells were washed with cold PBS, lysed (Passive Lysis Buffer,

Promega) and centrifuged (10,500 g) for 10 min at 4uC. Firefly

and renilla luciferase activities in supernates were estimated

according to manufacturer’s protocol, (Dual Glo Luciferase assay

system, Promega; Sirius-Single Tube Luminometer, Berthold

Detection Systems, Australia). Transfection efficiency was nor-

malized based on the renilla luciferase activity. The normalized

firefly luciferase activity was expressed as fold increase over pGL3–

Basic.

Electrophoretic mobility shift assays (EMSA)
The change in the binding of the AP-4 transcription factor to its

motif with C/T being present was evaluated using EMSA. Sense

and anti-sense oligonucleotides (Table 2) extending from 2248 to

2224 containing the wild type (GAGCTG) or polymorphic

(GAGTTG) AP-4 binding motifs, were annealed and end labeled

([c-32 P] ATP, 3000 Ci mmol-1, BRIT, India), using T4

polynucleotide kinase, (Promega). The purified labeled probes

Table 2. List of primers used in the study.

Assay Name Sequence

Sequencing IL-12F-780 59 - agagcggttttaaggtaatgccca - 39 (622 bp )a

IL-12R -159 59 - actcccgtataggtcccgtgtt - 39

Cloning 2591Fb 59- gcgcgagctcgatatctaaataaaatctct - 39 (646 bp)

+55Rc 59- agttccctgatggctgtcaaca- 39

Mutagenesis FTMU 59- attatgcagagttgccgacccct - 39

RTMU 59- aggggtcggcaactctgcataat - 39

EMSA C probe S 59- attatgcagagctgccgacccctct - 39

C probe AS 59- agaggggtcggcagctctgcataa t-39

T probe S 59- attatgcagagttgccgacccctct - 39

T probe AS 59- agaggggtcggcaactctgcataat -39

AP4-S 59- cacccggtcagctggccctacacc -39

AP4- AS 59- ggtgtagggccagctgaccgggtg -39

C/EBP-a S 59- atgtttttatgtaataaaa -39

C/EBP-a AS 59- ttttattacataaaaacat -3 9

Real time Primers b-Actin –F 59- agaggggtcggcaactctgcataat -39 (101 bp )

b-Actin –R 59- atgctatcacctcccctgtgtg - 39

IL-12mRNA-F 59- cctgtatcaatagtgatgaaattc -39 (103 bp )

IL-12mRNA-R 59- tcccttctgtatgcaggataaat -39

IL-4RT-F 59- aacagcctcacagagcagaagac - 39 (101 bp )

IL-4RT-R 59- gccctgcagaaggtttcctt - 39

GATA3RT-F 59- gcgggctctatcacaaaatga -39 ( 79 bp )

GATA3RT-R 59- gctctcctggctgcagac-39

IFNaRT- F 59- gctgaatgacctggaagcctgtg - 39 (169 bp )

IFNaRT-R 59- gatttctgctctgacaacctccc - 39

aAmplicon size.
bSacI site in bold incorporated in the 2591F primer.
cNheI site in bold incorporated in the +55R primer.
doi:10.1371/journal.pone.0034355.t002
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were quantified. Nuclear extracts were prepared from stimulated

Jurkat T cells as described [45]. The protein content was estimated

by Bradford assay.

The nuclear extract containing 8.0 mg of protein was incubated,

with 0.5 mg non-specific oligo poly (dI-dC).poly (dI-dC) (Sigma) in

binding buffer (20% glycerol, 5 mM MgCl2, 2.5 mM EDTA,

2.5 mM DTT, 250 mM NaCl, 50 mM Tris–HCl, pH 7.5) for

10 min at 4uC in a final volume of 20 ml. Radiolabeled ds-DNA

fragments (40,000 cpm) in the presence or absence of unlabeled

probes were added to this mixture and incubated at 25uC for

25 min. The DNA–protein complexes were resolved on 5% non-

denaturing polyacrylamide gel (0.56TBE buffer at 4uC at 160 V),

autoradiography using a Kodak intensifying screen, scanned using

the Personal Molecular Imager (Bio-Rad, USA) and densitometric

analysis was done (Quantity-One program (Bio-Rad). To

determine the specificity, EMSA experiments were performed

with the known AP-4 consensus, [46] (positive) and nonspecific

(C/EBP-a, negative control) probes, [47].

Super shift assay
For the super shift analysis, the anti AP-4 antibody (5X,

Santacruz Biotechnology, CA, USA) was added to the nuclear

extract (8 mg) and incubated overnight at 4uC, Thereafter the

labeled AP-4, C & T probes were added and the complexes

formed were resolved and autoradiographed. The reaction

without antibody and without nuclear lysate was included as

control.

RNA isolation and cDNA synthesis
All RNA extractions were carried out using 1.5 ml blood sample

derived from the tuberculosis (N = 28) patients and healthy

volunteers (N = 28) using the RNeasy Blood Mini Kit (Qiagen

GmbH (Hilden, Germany) according to manufacturer’s instruc-

tions, with modification of an additional wash with Erythrocyte

Lysis buffer (EL buffer) and inclusion of on column DNAse

treatment Qiagen GmbH (Hilden, Germany). The RNA was

eluted in distilled DEPC-treated water and stored at 280uC. The

quality and quantity of the RNA was estimated by measuring the

OD at 260/ 280 nm and 260 nm using the Nanodrop (ND1000,

Nano Drop Technologies Inc. Wilmington, DE, USA). For reverse

transcription, DNA-free RNA (500 ng) from each sample was

mixed with 2 mM of Oligo-dT (100 mM stock) and DEPC-treated

water and denatured at 70uC for 10 min and immediately chilled,

in an ice bath. To this denatured mixture, reaction cocktail

containing, 16first strand buffer (56buffer), 1 mM DTT (10 mM

stock), 1 mM dNTPs (10 mM stock) and 8 U of RNAsin was

added. The mixture was incubated at 25uC for 10 min followed by

the addition of 200 U of Reverse Transcriptase (Promega). The

cocktail was incubated at 37uC for 90 min, after which the

Reverse Transcriptase was inactivated at 70uC for 10 min and the

resulting cDNA aliquots were stored at 280uC.

Real time PCR
The cDNA obtained was subjected to Real Time PCR analysis

using primer pairs for the IL-12Rb2 (IL-12mRNA-F and IL-

12mRNA-R), IL-4 (IL-4RTF and IL-4RTR) [48], IFN-a ( IFN-

aRTF and IFN-aRTR), GATA-3 (GATA-3F and GATA-3R),

[49] and for b-Actin (b Actin-F & b -Actin–R) genes respectively,

(Table 2). Intron flanking primers were designed for the IL-12Rb2,

IL-4 and GATA- 3 genes. PCR master reaction mix containing

Power SYBR Premix Ex Taq (Takara, Shiga, Japan), 0.5 mM

concentration of each primer (for b-actin, GATA-3, IFN-a) and

0.9 mM for IL-4. 100 ng of cDNA of each sample in optically clear

PCR tubes was set up. Real Time detection of transcripts was

carried out in MyIQ cycler (Bio-Rad, USA) using SYBR Green.

The cycling parameters for IL-12Rb2, IFN-a and b-actin was as

follows: denaturation at 95uC for 5 min; 40 cycles each of

denaturation at 95uC for 30 sec, annealing for 30 sec at 60uC and

extension at 72uC for 45 sec. For IL-4 and GATA-3 the

parameters were identical except for the annealing and extension

temperatures which was 60uC and 66uC for 1 min in case of

GATA-3 and IL-4 respectively. The Ct values obtained were used

for further data interpretation. The melt curve was generated with

a ramp rate of 2% in order to enable the generation of the melt

curve.

Assessment of the IL-12Rb2 mRNA expression in tuberculosis

patients was carried out. Equivalent numbers of healthy volunteers

were also included, in order to obtain the relative quantification of

the mRNA expression of IL-12Rb2 gene. For the same purpose,

the normalized expression was calculated from the threshold cycle

values (Ct) normalized to b-actin Ct values (DCt = CtIL-

12Rb22Ctb-actin) Then DDCt for each target was calculated as

DCt patient – DCt healthy volunteers. The normalized expression

of IL-12Rb2 gene relative to healthy volunteers was calculated as

2- D DCt, as described [15]. The graph was plotted relative to the

mRNA expression of the miscellaneous healthy laboratory

volunteers. For group analysis for the expression of the IL-4,

IFN-a and the GATA-3 the 2‘(2DCt) method as described was

used, [50,51].

Statistical analysis
STATA 9.2 was used (Statacorp 2003, College Station, USA).

Student’s t test with unequal variances was used to compare the

transcriptional efficiency. Non parametric Mann-Whitney test was

used to compare the differences in the mRNA expression between

the study groups using Prism 4.03 (Graph Pad Software Inc., San

Diego, CA). Fisher’s exact test was applied to establish the

relationship between the polymorphism in the promoter region

and its activity and/mRNA expression.
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