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We developed a novel method to study dopaminergic neurotransmission using positron emission
tomography (PET) with [1-11C]arachidonic acid ([1-11C]AA). Previous preclinical studies have shown
the utility of [1-11C]AA as a marker of signal transduction coupled to cytosolic phospholipase A2

(cPLA2). Using [1-11C]AA and [15O]water PET, we measured regional incorporation coefficients K* for
AA and regional cerebral blood flow (rCBF), respectively, in healthy male volunteers given the D1/D2

agonist (10 or 20 lg/kg subcutaneous) apomorphine. We confirmed a robust central dopaminergic
response to apomorphine by observing significant increases in the serum concentration of growth
hormone. We observed significant increases, as well as decreases in K* and increases in rCBF in
response to apomorphine. These changes remained significant after covarying for handedness and
apomorphine dosage. The magnitude of increases in K* was lower than those in our previous animal
experiments, likely reflecting the smaller dose of apomorphine used in the current human study.
Changes in K* may reflect neuronal signaling downstream of activated D2-like receptors coupled to
cPLA2. Changes in rCBF are consistent with previous studies showing net functional effects of D1/D2

activation. [1-11C]AA PET may be useful for studying disturbances of dopaminergic neurotransmis-
sion in conditions such as Parkinson’s disease and schizophrenia.
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Introduction

Neuroimaging studies of dopaminergic function in
the human brain predominantly rely upon the
demonstration of receptor localization or measure-
ment of dopamine synthesis/transport (Cropley et al,
2006; Elsinga et al, 2006; Volkow et al, 2009). These
methods have helped to understand synaptic mecha-

nisms relevant to dopaminergic neurotransmission
in healthy subjects and in disease states. However,
these approaches do not provide information on
dopamine receptor-initiated signaling events in the
brain, which might be useful for understanding
physiologic mechanisms underlying normal dopa-
mine function, as well as perturbations in disease
states such as schizophrenia and Parkinson’s disease
(Brooks and Piccini, 2006; Hirvonen and Hietala,
2011; Dolan et al, 1995). The ability to study specific
in vivo signal transduction mechanisms underlying
dopamine neurotransmission might be useful in the
development of pharmacological manipulations that
target disease-specific abnormalities in dopamine
pathways (Nikolaus et al, 2007).

We have reported on a quantitative autoradiogra-
phy method in unanesthetized rodents designed to
study signal transduction through dopaminergic
D2-like receptors in response to a pharmacological
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challenge with apomorphine, a D1/D2 receptor
agonist and have shown that this signaling can be
prevented by pretreatment with the D2 receptor
antagonist, raclopride (Bhattacharjee et al, 2005,
2006, 2007, 2008a, b; Hayakawa et al, 1998, 2001).
This method takes advantage of the coupling of
D2 receptors through a G-protein mechanism to
Ca2 +-dependent cytosolic phospholipase A2 (cPLA2),
which upon receptor activation, selectively releases
the polyunsaturated fatty acid, arachidonic acid (AA,
20:4n-6) from membrane phospholipids (Clark et al,
1991; Rapoport, 2001, 2003; Vial and Piomelli, 1995).
After cPLA2 activation, unesterified AA in the
plasma is rapidly taken up by the brain to replace
the AA that was released from membrane phospho-
lipids. This replacement can be quantified as an
incorporation coefficient K* for AA, equal to brain
radioactivity divided by integrated plasma radio-
activity owing to intravenously injected radiolabeled
AA (Robinson et al, 1992). The incorporation
coefficient K* is proportional to cPLA2-mediated
release of AA from synaptic membrane phospho-
lipids and is independent of changes in regional
cerebral blood flow (rCBF) (Chang et al, 1997;
Robinson et al, 1992), thereby making it a valid
neuroimaging marker of cPLA2 activation during
changes in baseline functional activity or neuro-
receptor-mediated signal transduction involving AA.

We have extended this method in human subjects,
using positron emission tomography (PET), to quan-
titatively study brain signal transduction involving
AA, at rest and after visual stimulation (Esposito
et al, 2007; Giovacchini et al, 2002, 2004). In this
study, we used PET with [1-11C]AA to test the hypo-
thesis, based in part on preclinical imaging after
apomorphine (Bhattacharjee et al, 2008b), that
regional changes in the incorporation of AA in
the brain can be detected after a pharmacological
challenge with apomorphine. Apomorphine is a
mixed D1/D2 receptor agonist the affinity of which
for D2-like (D2, D3, D4) receptors is 10 times higher
than that for D1-like (D1 and D5) receptors (Scarselli
et al, 2001). However, because D1 receptors are
not coupled to cPLA2 activation, apomorphine is
believed to release AA from membrane phospho-
lipids solely through a D2-like coupled mechanism
(Bhattacharjee et al, 2005, 2006, 2008b; Nilsson et al,
1998; Vial and Piomelli, 1995).

Our secondary aim was to identify apomorphine-
induced changes in rCBF, as a measure of changes in
functional activity, using 15O-water PET. A previous
PET study in healthy volunteers scanned twice
before and after 10 mg/kg subcutaneous apomor-
phine, while performing a cognitive task, revealed
that apomorphine increased rCBF in the anterior
cingulate, ventral motor cortex, and the dorsolateral
prefrontal cortex, while decreasing rCBF in the retro-
splenial cingulate region (Kapur et al, 1994). These
regions are believed to form a functional network
modulated by the dopaminergic system. Similarly, in
a study on normal volunteers, 10 mg/kg apomorphine

compared with saline injection increased rCBF in the
anterior cingulate and prefrontal cortices without
any observed reductions in rCBF (Grasby
et al, 1993). In another study, schizophrenic patients
performing a cognitive task displayed significantly
enhanced rCBF in the anterior cingulate cortex
relative to controls after pharmacological challenge
with apomorphine (Dolan et al, 1995).

Taken together with these previous findings, we
reasoned that measuring AA incorporation and rCBF
in response to apomorphine in healthy volunteers
during a ‘resting state’ would delineate the regional
anatomic distribution of signal transduction coupled
to cPLA2 through D2-like receptors, as well as
neuronal activity, initiated by stimulation of D1/D2

receptors.

Materials and methods

Participants

Research participants in this study were recruited as part
of a clinical protocol (protocol number: 06-M-0246)
approved by the Combined Neuroscience Institutional
Review Board and by the Radiation Safety Committee of
the National Institutes of Health (NIH). Subjects were
healthy adult male volunteers (N = 12, age range 23 to 52
years; mean 32 years) without a significant history of
psychiatric illness. All participants provided written
informed consent before enrolment in this study. Nine of
the participants were right handed, whereas three were left
handed. Exclusion criteria included current history of
smoking, use of recreational drugs, hypertension, signi-
ficant neurologic illness, head trauma with loss of
consciousness, metabolic, endocrine, or connective tissue
disease, abnormal renal, liver, or pulmonary function,
blood dyscrasias, malignancy, stimulant pharmacotherapy
within 1 month of the study, or any history of use of
antipsychotic medication. Participants were instructed not
to use nonsteroidal antiinflammatory drugs (1 week) and to
avoid alcohol (48 hours) or caffeine (24 hours) before the
PET scan. Participants were admitted to the NIH Clinical
Center the day before the PET study and were premedi-
cated with trimethobenzamide (300 mg p.o. q.i.d.) to
prevent apomorphine-induced nausea (Bowron, 2004).

Positron Emission Tomography Scanning

Here, [1-11C]AA was synthesized as reported previously
(Chang et al, 1997; Channing et al, 1992). The tracer was
97.6% pure on high-performance liquid chromatography,
and its specific activity exceeded 3,700MBq (100mCi)/
mmol. On the day of PET imaging, an indwelling radial
artery catheter was inserted under local anesthesia in the
nondominant hand and an ante-cubital venous catheter
inserted in the contralateral arm. The subject’s head was
secured in a thermoplastic face mask fixed to the scanner
bed. Scanning was performed using an Advance Tomo-
graph (GE Healthcare, Waukesha, WI, USA), which
acquires 35 simultaneous slices with 4.25-mm separation
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and has in-plane and axial resolutions of 6 to 7 mm. Scans
were performed parallel to the orbitomeatal line and were
conducted in a quiet, dimly lit room, with the subject’s
eyes open and ears unoccluded.

For each subject, two separate PET scans were acquired
on the same day with an interval of 1.5 hours between each
session. In the first session, a transmission scan was
initially performed for attenuation correction. After the
transmission scan, B0.15 mL of saline vehicle was injected
subcutaneously. Three minutes later, 370MBq (10mCi) of
15O-water was injected as an intravenous bolus. A
60-second scan in the three-dimensional mode started
automatically when the bolus reached the brain, detected
by a threshold of count increase. Concurrent to PET
scanning, arterial input function was measured continu-
ously using an automated blood counter (Herscovitch et al,
1983). To quantify regional values of K* for AA, 15 minutes
after the 15O-water injection, 920±115MBq (24.9±3.1mCi)
of 1-11C-AA was infused intravenously for 1 minutes at a
constant rate. Serial dynamic three-dimensional scans
(30 seconds to 5 minutes) were performed for 1 hour. Radial
artery blood (1 to 3 mL) was sampled manually at fixed
times, and radioactivity in whole blood and plasma
measured using a g-counter. The second PET session was
identical to the first but was performed after injecting
apomorphine (4 subjects with 20 mg/kg subcutaneous, 8
subjects with 10 mg/kg subcutaneous; see the ‘Results’
section) in place of saline vehicle after a second transmis-
sion scan. Subjects were allowed to get off the bed in
between the two scanning sessions.

Coregistration to Magnetic Resonance Images

For each subject, the original PET image of 1-11C-AA
injection was registered to the 15O-water image to correct
for motion between the two scans, using a six-parameter
transformation and a mutual information cost function
(Giovacchini et al, 2004; Jenkinson and Smith, 2001). The
[15O]water and magnetic resonance imaging images of the
individual subject were then coregistered using the same
six-parameter algorithm. The product of the two trans-
formation matrices was used to bring the dynamic image
of [1-11C]AA into the magnetic resonance imaging space
where correction for partial volume effect (PVE) and
modeling took place. Partial volume correction was
performed by implementing the magnetic resonance imag-
ing-based three-compartment model described by Muller-
Gartner et al (1992). Details of procedures adopted for
motion correction of images, generation of plasma time–
activity curves, and partial volume correction have been
described previously (Giovacchini et al, 2002, 2004).

Modeling

On a pixel-by-pixel basis, rCBF images were generated
using the [15O]water scan and continuous arterial blood
samples. Parametric images of K* for AA (incorporation
coefficient of plasma AA into the brain tissue, mL/min per
cm3 of the brain) and of Vb (cerebral blood volume, (mL of
blood)/(cm3 of brain)) were generated using dynamic

images of [1-11C]AA and arterial blood input, by the
following equation (Giovacchini et al, 2002),

Ciðt � DtÞ ¼ VbCbðtÞ þ K �
Zt

0

CpðsÞdsþ CCO2
ðtÞ

where Ci(t), Cb(t), and Cp(t) are pixel, whole-blood, and
plasma 1-11C-AA time–activity curves, respectively; CCO2

(t)
is the predicted brain tissue concentration of [11C]CO2;
and Dt is the delay between the brain and blood curves
derived using a tri-exponential function. Tissue [11C]CO2

concentration was computed for each subject by measuring
plasma [11C]CO2 concentration and applying a one-tissue
compartment model with published values of the gray
matter influx rate constant (K1) and the distribution volume
for CO2 (Brooks et al, 1984). Calculations were applied to
the reconstructed PET with correction for PVE (Giovacchini
et al, 2002; Ibanez et al, 1998).

Positron Emission Tomography Data Analysis

The rCBF and K* images were realigned and spatially
normalized into standard stereotactic space and smoothed
to full-width at half-maximum of 10� 10� 10 mm3 in the x,
y, and z planes. The image data were analyzed using
Statistical Parametric Mapping (SPM5; Wellcome Depart-
ment of Cognitive Neurology, London, UK). To examine the
differences in rCBF and K* between the saline and
apomorphine conditions, whole-brain voxel-by-voxel
group differences between the two conditions were
performed. Baseline age was included as a covariate. In a
secondary analysis, we also included handedness (right or
left) and apomorphine dose (i.e., 10 or 20mg/kg subcuta-
neous) as covariates. To reduce the risk of type-I error
caused by multiple comparisons, significant effects for
each contrast are reported at a statistical threshold of
Pp0.005 in regions with a spatial extent > 20 voxels.
Furthermore, only changes in K* or rCBF that exceeded
±2% from baseline are reported.

Measurement of Serum Growth Hormone

Arterial blood samples (2 mL) were collected at baseline on
the morning of the PET scan (G0), as well as 30 and
60 minutes after saline (G1 and G2, respectively) and
apomorphine (G3 and G4, respectively) injections, for
measurement of serum growth (GH) hormone concen-
trations. Serum samples were assayed for GH concentra-
tion using a chemiluminiscent immunometric assay
(IMMULITE 2500, Siemens USA, Deerfield, IL, USA) as
per the manufacturer’s instructions.

Results

Apomorphine Induced Changes in Brain Incorporation
Coefficient K* of Arachidonic Acid

After pharmacological challenge with apomorphine,
we observed significant increases in the regional
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incorporation coefficients K* of AA in distinct brain
regions relative to the saline condition. Affected
regions included the left superior medial frontal
gyrus (Brodmann area (BA) 6), right superior frontal
gyrus (BA 8), right superior temporal gyrus (BA 38),
right precentral gyrus/motor cortex (BA 4), right
fusiform gyrus (BA 20), brainstem, and the right
cerebellar hemisphere (Figure 1, Table 1).

Apomorphine-induced decreases in K* for AA
were observed in the left superior frontal gyrus

(BA 6), right precentral gyrus/motor cortex (BA 4),
right paracentral lobule (BA 5), right inferior parietal
lobule (BA 40), left inferior frontal gyrus (BA 44), left
hippocampus, left middle frontal gyrus (BA 46), right
anterior cingulate gyrus (BA 32), right superior
frontal gyrus (BA 10), right fusiform gyrus (BA 20),
right superior temporal gyrus (BA 38), and regions
within bilateral cerebellar hemispheres (Figure 1,
Table 1). The observed changes in apomorphine-
induced incorporation coefficients K* of AA

Figure 1 Representative differences in rCBF (top) and K* (bottom) in the brain after apomorphine challenge (relative to saline
vehicle). Red and blue regions indicate significant increases and decreases, respectively. rCBF, regional cerebral blood flow.
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remained significant even after covarying for subject
handedness and apomorphine dosage.

Apomorphine Induced Changes in Regional Cerebral
Blood Flow

We observed significant increases in rCBF after
administration of apomorphine relative to the saline
condition, in the right fusiform gyrus (BA 20), right
parahippocampal gyrus (BA 35), right insula, as
well as in bilateral cerebellar hemispheres (Figure 1,

Table 2). The observed changes in apomorphine-
induced rCBF remained significant even after covary-
ing for subject handedness and apomorphine dosage.

Serum Growth Hormone Concentration

The mean serum GH concentration at baseline (G0)
was 0.16 ng/mL (range < 0.1 to 0.6 ng/mL). The mean
serum GH concentrations after 30 minutes (G1) and
60 minutes (G2) after injection of saline vehicle were
0.3 ng/mL (range < 0.1 to 0.9 ng/mL) and 2.9 ng/mL

Table 1 Local maxima within areas of significant differences in incorporation coefficient K* for arachidonic acid after apomorphine
challenge

Region Side X Y Z t-value P
uncorrected

Tissue
volume (mL)

Change from
baseline %

mL/min per cm3

K* before
APO (SD)

K* after
APO (SD)

Decrease in K* after apomorphine
Cerebellum L �26 �30 �34 4.99 < 0.001 142 9.26 61.51 (4.43) 55.81 (4.35)
Cerebellum R 12 �60 �26 4.62 < 0.001 732 10.12 74.68 (5.46) 67.12 (4.22)
Primary motor cortex (4) R 24 �28 60 4.56 < 0.001 106 9.79 65.09 (4.10) 58.72 (4.83)
Paracentral lobule (5) R 16 �26 48 4.08 < 0.001 74 9.70 63.70 (5.60) 57.52 (5.66)
Superior frontal gyrus (6) L �20 4 66 3.98 < 0.001 142 7.94 76.03 (7.01) 69.99 (6.09)
Inferior parietal lobule (40) R 42 �48 38 3.69 < 0.001 302 8.45 65.68 (6.35) 60.13 (5.79)
Cerebellum L �56 �58 �26 3.68 < 0.001 374 8.50 69.85 (6.84) 63.91 (6.59)
Inferior frontal gyrus (44) L �34 12 32 3.61 < 0.001 70 9.15 65.86 (8.55) 59.83 (4.63)
Hippocampus L �22 �36 0 3.58 0.001 64 7.12 72.06 (6.82) 66.93 (5.63)
Cerebellum R 28 �32 �38 3.53 0.001 154 9.49 62.49 (6.60) 56.56 (4.00)
Cerebellum L �16 �56 �36 3.46 0.001 114 8.79 62.05 (4.49) 56.59 (3.59)
Middle frontal gyrus (46) L �40 22 24 3.30 0.001 68 6.86 72.19 (6.24) 67.24 (4.47)
Anterior cingulate gyrus (32) R 6 16 32 3.16 0.002 56 9.04 66.99 (3.67) 60.93 (4.87)
Superior frontal gyrus (10) R 6 66 12 3.13 0.002 54 6.94 70.35 (4.61) 65.47 (3.58)

Increase in K* after apomorphine
Superior medial frontal gyrus (6) L �6 4 76 4.28 < 0.001 158 6.41 64.82 (5.33) 69.26 (3.75)
Cerebellum R 30 �70 �16 3.98 < 0.001 318 5.21 72.96 (7.11) 76.97 (4.40)
Fusiform gyrus (20) R 52 �42 �20 3.95 < 0.001 134 4.70 63.49 (6.13) 66.61 (5.98)
Brain stem R 4 �34 �32 3.60 0.001 64 6.05 53.98 (4.17) 57.45 (3.25)
Primary motor cortex (4) R 56 2 50 3.60 0.001 128 4.06 71.80 (3.12) 74.83 (3.27)
Superior frontal gyrus (8) R 20 50 40 3.55 0.001 82 4.02 67.28 (4.44) 70.10 (6.11)
Superior temporal gyrus (38) R 46 12 �12 3.28 0.001 68 4.48 63.65 (3.85) 66.64 (5.01)
Fusiform gyrus (37) R �36 �62 �14 3.17 0.002 40 3.50 63.29 (3.03) 65.59 (5.70)
Superior temporal gyrus (38) R 52 20 �20 3.11 0.002 40 5.49 67.56 (5.63) 71.48 (6.82)

APO, apomorphine.
Coordinates for peak voxels are in stereotactic space and Brodmann numbers are in parentheses.

Table 2 Local maxima within areas of significant differences in rCBF after apomorphine challenge

Region Side X Y Z t-value P
uncorrected

Tissue
volume (mL)

Change from
baseline %

mL/100g per min

rCBF before
APO (SD)

rCBF after
APO (SD)

Increase in rCBF after apomorphine
Fusiform gyrus (20) R 52 �44 �20 4.10 < 0.001 220 12.58 50.03 (4.10) 57.23 (3.96)
Cerebellum L �4 �48 �30 3.53 0.001 318 12.43 45.69 (4.22) 51.82 (4.98)
Brainstem R 4 �40 �50 3.40 0.001 82 14.94 48.09 (5.46) 56.54 (4.39)
Insula R 44 14 12 3.31 0.001 120 12.72 55.61 (6.17) 63.72 (7.18)
Parahippocampal
gyrus (35)

R 28 �16 �28 3.22 0.001 66 12.97 48.99 (3.39) 56.30 (4.98)

Insula R 40 �2 14 3.11 0.002 74 11.67 49.27 (3.60) 55.78 (4.74)
Cerebellum L �42 �58 �24 2.98 0.003 48 11.45 62.66 (3.57) 70.76 (4.24)

APO, apomorphine; rCBF, regional cerebral blood flow.
Coordinates for peak voxels are in stereotactic space and Brodmann numbers are in parentheses.
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(range 0.1 to 19.1 ng/mL), respectively. After admin-
istration of apomorphine, mean serum GH concen-
trations at 30 minutes (G3) and 60 minutes (G4) were
13.4 ng/mL (range 0.1 to 53.8 ng/mL) and 11.9 ng/mL
(range 2.1 to 37.0 ng/mL), respectively (Table 3). The
increase in serum GH concentration following
apomorphine was significantly greater than follow-
ing saline (P = 0.008, paired samples t-test).

Tolerability and Dosage of Apomorphine

All research participants whose PET data were used
in this analysis completed the protocol without any
adverse events (n = 12). During the course of the
study, one participant could not complete the
protocol owing to bradycardia and hypotension
immediately after the administration of apomor-
phine (20 mg/kg subcutaneous). This participant
responded well to intravenous hydration with a
restoration of vital signs to baseline and was
discharged home without any residual side effects.
In the light of this adverse event, we sought approval
from the Institutional Review Board to perform sub-
sequent PET studies with a lower dose of apomor-
phine (10 mg/kg subcutaneous; n = 8). We confirmed
that there were no significant differences in the
magnitude of serum GH increase in response to
apomorphine between individuals receiving the
higher relative to lower dose (independent samples
t-test). Therefore, the results presented above include
data from these subjects, as well as from the four
participants who were previously studied after
injection of 20 mg/kg subcutaneous apomorphine.

Discussion

We have developed a novel PET method using
11C-labeled AA and have used it for the first time
in humans to visualize in vivo dopaminergic neuro-
transmission in the resting state. Consistent with our
expectation based on animal studies (Bhattacharjee
et al, 2008b), we observed measurable increases in
the incorporation coefficient K* for AA in response
to apomorphine in several brain regions. While
interpreting the regional distribution of changes in
K*, we believe that the increases and decreases in
incorporation of AA reflect neuronal signaling events
downstream of the activated D2 receptors that are
coupled to cPLA2 (Bhattacharjee et al, 2005; Vial

and Piomelli, 1995). These changes likely reflect
consequences of direct D2 activation and of dop-
aminergic modulation of other neurotransmitter
circuits such as those including glutamatergic and
histaminergic synapses (Esposito et al, 2007). Con-
sistent with this hypothesis, studies have shown that
glutamate acting at N-methyl-D-aspartate receptors
evokes AA release from different neuronal cell types
(Dumuis et al, 1988; Lazarewicz et al, 1988; Sanfeliu
et al, 1990) and in the intact rat brain (Basselin et al,
2006). Conversely, it has been shown that dopamine
can excite histamine neurons through D2 receptor
activation (Haas et al, 2008; Traiffort et al, 1992).
Consistent with these observations, in a previous
study in rats that examined the brain AA signal after
D2-like receptor activation by apomorphine, we sug-
gested that changes in K* reflect direct and indirect
downstream effects in circuits containing D2-like
receptors or other types of cPLA2-coupled receptors,
such as NMDA, serotonergic 5-HT2A/2C, and choli-
nergic muscarinic M1,3,5 receptors (Basselin et al,
2005, 2006; Bayon et al, 1997; DeGeorge et al, 1991;
Felder et al, 1990). Another important consideration
in the interpretation of regional changes in K* is the
possible opposing effects of D1 and D2 receptor
stimulation on cPLA2-mediated release of AA. It
has been shown that although D2 receptor activation
potentiates AA release induced by the calcium
ionophore A23187 or the purinergic agonist ATP,
D1 receptor stimulation has the opposite effect
(Schinelli et al, 1994).

Although our current results represent a substan-
tial extension of our previous preclinical observa-
tions in unanesthetized rodents, the magnitude of
apomorphine-induced increases in K* that we
observed in this human study is considerably lower
than those in animal experiments (Bhattacharjee et
al, 2008b). The most likely explanation for these
differences is the different doses of apomorphine
administered in animal relative to human studies.
We injected 0.5 mg/kg of apomorphine intraperito-
neally in rodent experiments, whereas in the current
human volunteer study, the dose of apomorphine
that we determined could be safely administered was
10 to 20 mg/kg subcutaneous. The considerably high-
er dose of apomorphine challenge used in animal
studies likely resulted in a much better signal:noise
ratio than in this human study. This is an important
consideration that must be taken into account in the
interpretation of our current results. The dose-limit-
ing considerations in the use of apomorphine as a

Table 3 Mean serum growth hormone (GH) concentrations measured at baseline (G0), 30 and 60 minutes following saline (G1 and
G2, respectively) and apomorphine (G3 and G4, respectively)

Baseline;
(G0) ng/mL

30 minutes after saline
injection (G1) ng/mL

60 minutes after saline
injection (G2) ng/mL

30 minutes after apomorphine
injection (G3) ng/mL

60 minutes after apomorphine
injection (G4) ng/mL

0.16 ( < 0.1–0.6) 0.3 ( < 0.1–0.9) 2.9 (0.1–19.1) 13.4 (0.1–53.8) 11.9 (2.1–37.0)

Numbers in parentheses represent the range (minimum–maximum ng/mL) of serum GH concentration at each time point.
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pharmacological challenge in healthy human sub-
jects may thus also limit our ability to derive accurate
quantitative estimates of D2 receptor-mediated AA
release in the paradigm we used in these studies.

Our findings of increases in rCBF in response to
apomorphine are consistent with previous [15O]water
PET investigations (Kapur et al, 1994; Grasby et al,
1993). Although the regional pattern of changes in
rCBF after apomorphine were distinct from those
in K* in most regions, suggesting that these were
associated with altered activity of neurons not
involving cPLA2 activation, we observed concomitant
increases in K* and rCBF in the right fusiform gyrus,
suggesting a close coupling of neuronal activity
and cPLA2-initiated signal transduction in this brain
region. However, this coupling does not reflect the
effect of altered rCBF on K* for AA, since K* has been
shown to be blood flow independent (Chang et al,
1997; Esposito et al, 2008). Our findings are also
comparable to a previous fluorodeoxyglucose PET
study that showed increased glucose metabolism in
the posterior frontal and inferior parietal regions after
apomorphine (Cleghorn et al, 1991).

Consistent with previous studies, we did not
observe any significant change in rCBF in the stria-
tum (Grasby et al, 1993; Kapur et al, 1994). Similarly,
no change in K* was seen in this region, which has a
very high density of dopamine receptors. To explain
this apparent paradox, Kapur et al, (1994) have
suggested that although receptor-binding studies
pinpoint regions with high receptor density (Farde
et al, 1986; Sedvall et al, 1986; Sedvall, 1990), studies
identifying functional effects of dopaminergic drugs,
such as ours, map the regions where receptor binding
in such regions leads to downstream functional
effects. Therefore, it is plausible that activation of
D1/D2 receptors at striatal sites produces modulated
neuronal firing and cPLA2-mediated AA release in
the extrastriatal brain regions identified in our study.
Supporting this idea, our observed increases in K*
occurred in regions receiving rich projections
from the striatum, including the motor cortex and
mesial frontal cortex (Alexander and Crutcher, 1990).
We also found predominantly right hemispheric
increases in K* after apomorphine. Although our
study sample included both right- and left-handed
individuals, this observation is consistent with the
reported hemispheric asymmetry within the dopami-
nergic system in healthy individuals (Cannon et al,
2009; Tomer et al, 2008; Vernaleken et al, 2007).

Besides the single subject who experienced brady-
cardia and hypotension after 20 mg/kg subcutaneous
apomorphine, and who responded to intravenous
hydration, no serious adverse events were observed
in response to apomorphine at the doses used in
this study (10 to 20mg/kg subcutaneous). Previous
studies have reported minor side effects including
somnolence, nausea, dizziness, and hallucinations
in response to apomorphine (Aymard et al, 2003;
Bowron, 2004; Menon and Stacy, 2007). To prevent
apomorphine-induced nausea during the PET proto-

col, we premedicated study participants with the
antiemetic trimethobenzamide (Bowron, 2004). This
medication was well tolerated without any side
effects and completely prevented nausea during the
course of the scanning procedure.

To confirm a robust central response to apomor-
phine, we assayed serum concentration of GH at
baseline and at 30 and 60 minutes after injection of
saline vehicle and apomorphine. Consistent with
previous reports, we observed significant increases in
serum GH levels in response to apomorphine relative
to saline vehicle (Aymard et al, 2003; Kapur et al,
1994). Therefore, this finding suggests that the changes
in K* and rCBF observed after apomorphine were
induced by a measurable central effect of the drug.

Some important differences between this investi-
gation and previous PET studies of dopaminergic
neurotransmission merit consideration in inter-
preting our results. Unlike other studies, we did
not include a cognitive task in our PET paradigm
(Grasby et al, 1993; Kapur et al, 1994), choosing
instead to measure the PET signals in a true resting
state. Cognitive tasks have been used in previous
PET studies of dopaminergic function to standardize
the behavioral state and thereby reduce intrasubject
and intersubject variability in rCBF. However, we
chose not to use a cognitive task in our PET protocol,
to avoid task-induced activations of brain regions
that might in turn influence changes in K* and rCBF.
However, this may have reduced the signal:noise
ratio of our observations by increasing the baseline
variance in neuronal activity. Another factor to be
considered is that, in the interests of subject safety
and to prevent apomorphine-induced nausea, we
premedicated our study participants with trimetho-
benzamide. There is some suggestion that benza-
mides possess presynaptic and postsynaptic actions
on dopaminergic systems (Elliott et al, 1977). It is
unclear to what extent this medication may have
influenced our PET results. An additional caveat that
must be considered in the interpretation of our
findings is that with the relatively small number
(N = 12) of subjects, our PET results reported at a
significance threshold of P < 0.005 and a spatial
extent > 20 voxels, are uncorrected for multiple
comparisons. Given that this was an exploratory
analysis, and our principal aim was to evaluate the
feasibility of the [1-11C]AA PET method to study
brain dopaminergic function, we chose to present all
observed regional differences without correction for
multiple hypotheses testing. Although this may have
increased the risk of type-I error, we believe that our
approach now allows for further directed analyses of
changes in specific brain regions and testing a priori
hypotheses on dopaminergic function in health and
disease states.

In summary, we used [1-11C]arachidonate PET in a
study of healthy human subjects to show measurable
effects on regional brain AA incorporation and
rCBF in response to pharmacological challenge with
apomorphine, a D1/D2 receptor agonist. Our study
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shows the feasibility of this strategy to visualize
in vivo signal transduction events accompanying
dopaminergic neurotransmission. Future studies
testing the utility of this method in studying per-
turbations in brain dopaminergic function in disease
states such as Parkinson’s disease and schizophrenia
are warranted.
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