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The nonlocal means (NLM) filter has been proven to be an efficient feature-preserved denoising method and can be applied to
remove noise in the magnetic resonance (MR) images. To suppress noise more efficiently, we present a novel NLM filter based
on the discrete cosine transform (DCT). Instead of computing similarity weights using the gray level information directly, the
proposed method calculates similarity weights in the DCT subspace of neighborhood. Due to promising characteristics of DCT,
such as low data correlation and high energy compaction, the proposed filter is naturally endowed with more accurate estimation
of weights thus enhances denoising effectively. The performance of the proposed filter is evaluated qualitatively and quantitatively
together with two other NLM filters, namely, the original NLM filter and the unbiased NLM (UNLM) filter. Experimental results
demonstrate that the proposed filter achieves better denoising performance in MRI compared to the others.

1. Introduction

Magnetic resonance imaging (MRI) is one of the most
powerful imaging techniques [1] developed to study the
structural features and the functional characteristics of the
internal body parts. The visual quality of the MR images is
normally corrupted by random noise from the acquisition
process. Such a noise in MRI is mainly due to thermal noise
that is induced by the movement of the charged particles in
the radio frequency coils as well as the small anomalies in the
preamplifiers.

Noise in MRI thus limits the visual inspection and the
computer-aided analysis of these images. For example, it will
introduce uncertainties in the measurement of quantitative
parameters which hampers the estimation of the different
properties of the analyzed tissues. Therefore, denoising
should be performed to improve the image quality for more
accurate diagnosis. Time averaging of the image sequences
in parallel with acquisition is an effective acquisition-based
noise filtering mechanism. However, this greatly increases
the acquisition time and reduces the spatial resolution. In-
stead, filtering methods have been traditionally applied in the

postprocessing stages. Such filtering methods have the draw-
back that, while removing noise, they may also remove high
frequency signal components, thereby blurring the edges
in the image and introducing some bias in the quantifica-
tion process.

Several advanced image denoising methods can mitigate
these drawbacks. For instance, anisotropic diffusion filters
(ADFs) [2–4] are able to remove noise while respecting im-
portant image structures. In addition, more recently, wave-
let-based filters have been applied successfully to MR image
denoising [5–10]. Finally, a nonlocal means (NLM) filter,
first introduced by Buades et al. [11, 12], has been recently
improved and applied to MR data yielding the best results
qualitatively and quantitatively when compared to other fil-
tering techniques [13–19]. It is an efficient denoising method
with the ability to result in proper restoration of the slowly
varying signals in homogeneous tissue regions while strongly
preserving the tissue boundaries.

However, the NLM filter may suffer from potential
limitations since the calculation for similarity weights is
performed in a full-space of neighborhood. Specifically,
the accuracy of the similarity weights will be affected by
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the noise. What is worse is that many neighborhood pixels
which are remarkably similar to the central pixel are also
assigned slight weight. This would lead to bring side effect
to the denoising results. For example, image’s tissue regions
may be weakened, especially small structural details and the
distinct edge features.

Motivated by the above-mentioned problem, we inte-
grate discrete cosine transform (DCT) into NLM filter to
mitigate its limitation and propose a new filter. In the pro-
posed filter, when performing the denoising, image patches
are first transformed from time domain to frequency do-
main using DCT, and lower-dimensional frequency coef-
ficients subspace of DCT is obtained through by Zigzag
scan. Consequently, similarity weights are computed in this
subspace with robustness to noise rather than the full space.
Therefore, the accuracy of similarity weights is improved
and more similar pixels can be obtained in the search win-
dow. Finally, considering the characteristics of Rician noise in
MR image, the unbiased correcting is carried out to eliminate
the biased deviation. The proposed filter has been com-
pared with several methods presented recently, showing an
improved performance both on vision and complexity.

The rest of this paper is organized as follows: Section 2
elaborates the proposed methodology and explains the mate-
rials and quality metrics used for validation. Then, the ex-
perimental results are presented in Section 3 and the discus-
sion of experiments is presented in Section 4. Finally, the
conclusion is presented in Section 5.

2. Materials and Methods

2.1. Nonlocal Means Algorithm. In the classical NLM algo-
rithm [11], u is the discrete image with noise free, n is the
noise and v is the noisy observation of u which is defined as
v(i) = u(i) +n(i) at each pixel i. Let Ni denote an r× r square
neighborhood centered on the ith pixel and p(Ni) denote a
matrix or a patch whose elements are gray level values of v
at pixels in Ni. We also define Si as a square search-window
centered on the ith pixel. An estimator for u(i), defined in the
NLM algorithm [11], which is written as follows:

ûNLM(v(i)) =
∑

j∈Si
w
(

i, j
)

v
(

j
)

, (1)

w
(

i, j
) = 1

Z(i)
e−‖p(Ni)−p(Nj )‖2/h2

, (2)

where Z(i) = ∑

j∈Si e
−‖p(Ni)−p(Nj )‖2/h2

represents a normal-
izing term, w(i, j) denotes the family of weights that are
represented by the similarities between two pixels i and j,
which satisfy the following two conditions 0 ≤ w(i, j) ≤ 1
and

∑

j∈Si w(i, j) = 1. The similarity between two pixels i
and j depends on the intensity gray level matrixes p(Ni) and
p(Nj), which is measured by a decreasing function of the
weighted Euclidean distance ‖p(Ni)− p(Nj)‖2. h denotes
the smoothing kernel width parameter that controls the ex-
tent of averaging operations.

The success of NLM algorithm is attributed to the redun-
dancy that is available in natural images. MR images are com-
posed of plentiful repeated structure and averaging them will

reduce the random noise, so the NLM filter is very suitable
to be used as the denoising tool for reducing the noise in
MR images. However, the NLM algorithm calculates simi-
larity weights between pixels i and j by Euclidean distance in
the whole neighborhood. The accuracy of similarity weights
is inevitable vulnerable to noise, especially when the level of
noise is strong. Therefore, the process to calculate the similar-
ity weights in original NLM filter may lead to limited ac-
curacy and bring a side effect to the denoised MR image. This
would cause the image’s tissue regions to be weakened, with
respect to the edges, and fine structures.

2.2. Discrete Cosine Transform. Discrete cosine transform
(DCT) has been introduced in 1974 by Ahmed et al. [20].
It is a widely used method for image compression, and it
can also be used to reduce the dimensionality of image data.
Ahmed et al. have proved that the DCT’s performance is
very close to that of PCA’s when the data have reasonably
large values of adjacent element correlation, especially for the
image data [20, 21]. Additionally, the basis of DCT is fixed so
that the computation of DCT is data independent and can be
performed by simple matrix operation. The definition of the
DCT is

C(m,n) =α(m)α(n)
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(3)

where C(m,n) represents the DCT’s coefficients, p(x, y)
represents that the image data will be performed by DCT, r
is the width or length of p(x, y), m,n = 0, 1, 2, . . . , r − 1 and
α(m) is defined as

α(m) =
⎧

⎨

⎩

√
1/r for m = 0,

√
2/r for m /= 0.

(4)

Due to DCT’s promising characteristics, such as low data
correlation and high energy compaction, it can be used as a
very efficient method to decorrelate the image data [22]. In
Figure 1, images in the top row are subregion of T1-weighted
image, T2-weighted image, and PD-weighted image with
size 128 × 128. Corresponding images in the bottom row
are reconstructed from frequency domain with only 4095
coefficients. Note that the number of total coefficients is
16384: 128×128 and only 25% coefficients are used. In order
to select suitable DCT coefficients to reconstruct an image, a
Zigzag scan is performed by the way expressed in Figure 2.
As a result, the image’s sparse representation can be obtained
through the DCT.

2.3. Discrete Cosine Transform-Based Nonlocal Means Algo-
rithm. According to the above-mentioned content, we know
that the DCT method has excellent energy compaction
ability to pack input data into as few lower frequency coef-
ficients as possible, thus it can be used as dimensional
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Figure 1: Energy compaction characteristics of DCT. The top row: images used before applying DCT; the bottom row: images reconstructed
from only 25% coefficients.

Figure 2: Zigzag scan used for selecting coefficients to compose
subspace.

reduction technology to suppress the noise in image data
[23, 24]. Motivated from the problems of traditional NLM
method in Section 2.1, we present a new filter by integrating
the DCT technology into NLM algorithm to boost the
performance of MR image denoising.

In our method, we propose to replace the distances
‖p(Ni)− p(Nj)‖2

Gρ
in (2) by distances computed from the

DCT subspace of p(Ni) and p(Nj). Let M be the number

of pixels in the image neighborhood Ni. Also let {p(Nj)}Qj=1

be the set of all image neighborhood patches, where Q
denotes the total number of pixels in the image. Firstly, image
neighborhood blocks are transformed from time domain
to frequency domain using DCT, and lower-dimensional
frequency coefficients subspace of DCT is obtained through
by Zigzag scan. This process is presented as follows:
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where Cd(Ni) represents the coefficients in DCT subspace
of neighborhood Ni, which are ordered by Zigzag scan
sequence. Then we can derive
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where Cd(Ni)k is the kth coefficient in Cd(Ni). Finally, we
obtain the estimators with d ∈ [1,M] for our DCT-based
filter and name it as NLM-DCT filter:

ûNLM-DCT(v(i)) =
∑

j∈Si
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where Zd(i) = ∑

j∈Si e
−∑d

k=1 (Cd(Ni)k−Cd(Nj )k)2/h2
is the normal-

izing term. Note that

CM(Ni)
inverse DCT

DCT
.p(Ni) (8)

Therefore, the NLM-DCT filter with d = M is equivalent to
the original NLM filter.

2.4. The Special Nature of the MR Images. The magnitude
MR image is computed from the real image and imaginary
image which contain Gaussian distributed noise, and the
noise contained in the magnitude MR image follows a Rician
distribution [25, 26]. The squared magnitude MR image (the
value of each pixel in the image is the square of the value of
the corresponding pixel in the original magnitude image) has
a noise bias which is equal to 2σ2 and is signal independent
[7]. In concrete, for a given MR magnitude image v,

E
(

v2) = u2 + 2σ2, (9)

where u represents the noise-free image of v; v2 and u2

represent the squared images of v and u, respectively.
To avoid such bias, Manjón et al. [15] and Wiest-Daesslé

et al. [16] recently proposed a Rician-adapted version of the
NLM filter. These two approaches are very similar. We used
the correction scheme proposed by Manjón et al., which
provides a slightly better correction of the imaged object
in application. Manjón et al. [15] proposed to correct the
unbiased intensity value as

ûUNLM(v(i)) =
√

max
(

(ûNLM(v(i)))2 − 2σ2, 0
)

, (10)

where ûNLM(v(i)) denotes performing NLM denoising for
pixel i of noisy image v.

Thus, our proposed filter with the correction scheme
defined by Manjón et al. to perform unbiased denoising as
(11) and name it as UNLM-DCT filter

ûUNLM-DCT(v(i)) =
√

max
(

(ûNLM-DCT(v(i)))2 − 2σ2, 0
)

.

(11)

2.5. Materials. The well-known BrainWeb phantom [27–29]
was used to evaluate the proposed approach in experiments.
This database is widely used to test the performance of the
denoising algorithms for MR images. Thus, it is convenient
to compare the proposed filter with other denoising algo-
rithms. In this paper, three images were simulated: T1-
weighted MR image, T2-weighted MR image, and proton

density-weighted (PD-weighted) MR image. They were
simulated using SFLASH sequence, and each image contains
217 × 181 pixels. The performance of the denoising tech-
niques is presented for these images with various Rician noise
levels of the maximum of image intensity. The Rician noise
was built from white Gaussian noise in the complex domain:

vr(i) = u(i) + n1(i),n1(i) ∼ N(0, σ),

vi(i) = n2(i),n2(i) ∼ N(0, σ),
(12)

where u is the original image and σ is the standard deviation
of the added white Gaussian noise. Finally, the noisy image is
computed as follows:

v(i) =
√

vr(i)
2 + vi(i)

2. (13)

Several levels of noise were added: 3%, 6%, 9%, 12%,
15%, and 18%. The first level (3%) represents the standard
deviation of the added zero-mean white Gaussian noise,
which is (3/100)t, where t is the value of the brightest tissue
in the image. For T1-weighted image, T2-weighted image
and PD-weighted image, t is 150, 250, and 255, respectively.
Figure 3 shows examples of the three images. The following
experiments are all performed on these images.

2.6. Quality Measure. There are some criteria used to test the
performance of the denoising methods. In the following, we
will use three criteria to quantify the performance of each
method: the peak signal noise ratio (PSNR), the residual
image, and the visual evaluation.

The PSNR was computed as

PSNR = 10 log10
Max2

MSE
, (14)

where Max is the maximum of original image and noisy
image, and MSE represents the mean square error estimated
between the noise-free image and the denoised image:

MSE = 1
Q

Q
∑

i=1

(u(i)− û(i))2, (15)

where u(i) and û(i) are the pixel values at position i of the
original image and the denoised image, respectively. Q de-
notes the number of the pixels in each image.

The residual image is obtained by subtracting the
denoised image from the noisy image [15]. It is required to
verify the traces of anatomical information removed during
denoising. Hence, this reveals the excessive smoothing and
the blurring of small structural details contained in the
image.

3. Results

3.1. Comparison of Weights Distribution. Figure 4 shows the
comparison of weights distribution between the NLM fil-
ter and the NLM-DCT filter. Figure 4(a) shows noise-free
images; Figures 4(b) and 4(c) show the weights distribution
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(a) T1-weighted image (b) T2-weighted image (c) PD-weighted image

(d) 6% Rician noise corrupted T1-weighted
image

(e) 6% Rician noise corrupted T2-weighted
image

(f) 6% Rician noise corrupted PD-weighted
image

Figure 3: Samples of MR images with Rician noise. (a) to (c) are original images from the BrainWeb Database, (d)–(f) are noisy images of
(a)–(c) with 6% Rician noise added.

of Figure 4(a) obtained by NLM and the UNLM. Addition-
ally, Figure 4(d) shows the result of Figure 4(a) corrupted
by noise with standard variance 25; Figures 4(e) and 4(f)
display the weights distribution of Figure 4(d) produced
by NLM and NLM-DCT, respectively. In this experiment,
the parameters are assigned values as follows: the size of
neighborhood patch is 7× 7, the search window is the entire
image with size of 41 × 41 and 10 coefficients selected by
Zigzag scan were used to compose the lower DCT subspace
of neighborhood.

3.2. Influence of the DCT Subspace Dimensionality. Figure 5
illustrates the influence of the DCT subspace dimensionality
parameter d for the denoising effect of the proposed filter
under the condition of various Rician noise levels. Figures
5(a), 5(b), and 5(c) are the experimental results of the
proposed filter on T1-weighted images, T2-weighted image,
and the PD-weighted image, respectively. In this experiment,
the sizes of search window and the neighborhood are 11×11
and 5 × 5 as same as the parameter setting in manuscripts

[15, 19], which seems a reasonable value for medical images
denoising. The value of parameter h is selected to obtain the
best PSNR by exhaustion method.

In each graph, the PSNR of the denoised image is plotted
against the DCT subspace dimensionality. The six curves are
corresponding to the six input noise levels, which have a very
characteristic shape around the optimal choice of d(dopt):
steeply increasing PSNR for d < dopt, a knee around d = dopt

and flat or gradually declineing PSNR for d > dopt. The solid
green circles in Figure 5 represent the curves’ knee.

3.3. Comparison with PSNR. Table 1 shows a comparison of
the experimental results in PSNR. The data located at the
“Noisy” row is the PSNR value of noisy images with the noise
levels 3%, 6%, 9%, 12%, 15%, and 18%, respectively; the
data lied in bracket “()” is the value of parameter h and
d. For example, (34.38) means h = 122.9677 and (34, 17)
expresses h = 81, d = 17. For all methods, the search
window size is fixed to 11 × 11 and the neighborhood size
is fixed to 5 × 5. The h is searched to obtain the best PSNR.
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(a) Noise free image (b) NLM filter (c) Proposed filter

(d) Noisy image, σ = 25 (e) NLM filter (f) Proposed filter

Figure 4: The comparison of the weights distribution used to estimate the central pixel of the left images with the noise-free and noisy
conditions between the NLM algorithm and the proposed algorithm. (b) and (e) are the similarity weights distribution images for (a) and
(d), respectively, which are calculated by the NLM filter in neighborhoods’ full space of the central pixel. (c) and (f) are also the similarity
weights distribution images for (a) and (d), correspondingly, which are obtained by the proposed filter in neighborhoods’ DCT subspace of
the central pixel. The weights distribution images are displayed with the logarithmic scale.

For the proposed method, the subspace dimensionality d is
set to dopt corresponding to the best PSNR value in Figure 5.

Figure 6 demonstrates the PSNR comparison of UNLM-
DCT, UNLM, and NLM for different images and noise
conditions more intuitively. Figures 6(a), 6(b), and 6(c) are
show the PSNR value curves of the UNLM-DCT filter and
other two filters for T1-weighted MR image, T2-weighted
MR image, and PD-weighted image, correspondingly.

3.4. Comparison by Vision and Residual Image. Figure 7
shows the qualitative comparison results of the three filters
on T1-weighted image. Figure 7(a) is the noisy image with
6% Rician noise added. Figure 7(b) is the result image of
the original NLM filter; Figure 7(c) is the result image of the
UNLM filter; Figure 7(d) is the result of the UNLM-DCT
filter. Figures 7(e), 7(f), and 7(g) are the residual images for
NLM filter, UNLM filter, and UNLM-DCT filter, respectively,
which were obtained by using the noisy image to subtract the
filtered results.

Figure 8 shows the qualitative comparison results of the
three filters on PD-weighted image with 6% Rician noise
added. Figure 8(a) displays an enlarged part of the original
MR image; Figure 8(b) displays an enlarged part of the noisy
image with 6% Rician noise added. Figures 8(c), 8(d), and
8(e) display the enlarged section of results obtained by NLM,
UNLM, and UNLM-DCT from Figure 8(b), respectively.

Figures 8(f), 8(g), and 8(h) show the residuals images of
NLM, UNLM, and UNLM-DCT.

3.5. Comparison on Running Time. Figure 9 displays the
computation times (in seconds) for the NLM filter, UNLM
filter, and the UNLM-DCT filter with different search
window sizes for the T1-weighted image. Figures 9(a), 9(b),
and 9(c) show the filters’ running time results with the
neighborhood sizes of 5× 5 and with the search window size
of 11×11, 21×21, and 31×31, respectively. Those filters are
implemented in MATLAB (Copyright The Mathworks, Inc.)
on an Intel(R) Core (TM) i5-2400 CPU @ 3.01 GHz with 4G
RAM.

3.6. Results on Real Data. To evaluate the proposed filter
on real clinical data, we apply UNLM-DCT to a real T1-
weighted sagittal MR image of the knee. Figure 10 shows the
results of the UNLM-DCT filter on this real knee MR image.
The parameters are assigned as follows: the neighborhood
size is 5 × 5, the search window size is 11 × 11, h = 4.22.1,
and d = 10.

4. Discussion

The results show that the UNLM-DCT filter outperforms
the NLM filter and UNLM filter among PSNR value, vision,
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Figure 5: Influence of subspace’s dimensional number d for the denoising effect. S is fixed to 11, r is fixed to 5, and h is set to get the
best PSNR. (a) The experiments are performed on T1-weighted images; (b) the experiments are performed on T2-weighted image; (c) the
experiments are performed on PD-weighted image.

residuals, and complexity. Therefore, we can infer that the
UNLM-DCT has stronger denoising ability.

4.1. Comparison of Weights Distribution. The results shown
in Figures 4(b) and 4(c) seem almost alike. Thus, we can
see that the NLM filter and the NLM-DCT filter all can
obtain the similarity weights accurately under the condition
of no noise pollution. In addition, it can be easily observed
from the result shown in Figure 4(e) that a mass of similar
pixels would be lost in the case of the image polluted. This
is because the similarity weights calculated in NLM filter
are not too accurate. However, from the results shown in
Figure 4(f), we can see that the NLM-DCT filter can still get
more similar pixel under the noise condition.

4.2. Influence of the DCT Subspace Dimensionality. From
these knees in Figure 5, we can see that the best d (dopt)
ranges from 3 to 25 depend on the noise levels. For example,
to the PD-weighted image, the best PSNR values were gained
at dopt = 24 with the noise level of 3% and 6%; dopt = 6 with
the noise level of 9% and 12%; dopt = 3 with the noise level of
15% and 18%. In most cases, the best results are obtained at
a relatively low DCT subspace dimensionality dopt, especially
for higher noise levels. At the same time, the PSNR declines
significantly beyond the knee whereas for lower noise levels
it is flatter. In other words, the advantages of the proposed
approach over the standard NLM algorithm increase with
higher input noise levels. The increased accuracy at lower
dopt values can be attributed to the observation that distances
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Figure 6: PSNR comparison of UNLM-DCT, UNLM, and NLM for different images and noise conditions. The proposed method
outperforms the others in almost all the cases in terms of PSNR.

computed in the lower dimensional space are likely to be
more accurate than the full-dimensional space because DCT
discards the most irrelevant dimensions. This explanation
based on the accuracy of distances is also supported by the
observation that the difference in PSNR among the proposed
filter, the UNLM filter, and the NLM filter with increasing
input noise level is shown in Figure 6.

In addition, we can see that the difference between the
results for dopt and d = 1 is around 1 to 3 dB in Figure 5.
We can also know that the difference between UNLM-
DCT and NLM seems to range from 0 to 2 db in Table 1.
Therefore, we can infer that UNLM-DCT using only the zero

DC component can provide results comparable to standard
NLM, especially when the level of noise is strong (e.g., 12%,
15%, or 18%).

4.3. Comparison with PSNR. According to the PSNR data in
Table 1, the UNLM filter and the UNLM-DCT filter achieve
better results than the original NLM filter clearly. In addition,
the UNLM-DCT filter performs better than the UNLM filter.

Furthermore, from the Figure 6 we can see that the
UNLM-DCT outperforms the others for all test images with
all noise levels in terms of PSNR. Specifically, the advan-
tages of the UNLM-DCT increase with increasing noise level.
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Table 1: Comparisons of experimental results in PSNR.

Test images Algorithms
Noise level (dB)

3% 6% 9% 12% 15% 18%

T1-weighted
MR image

Noisy 29.86 24.3 21.26 19.56 18.35 17.44
NLM (h) 32.21 (34.38) 26.73 (62.94) 23.44 (92.46) 21.14 (122.24) 19.61 (152.12) 18.36 (182.04)
UNLM (h) 32.8 (34.38) 27.46 (62.94) 24.14 (92.46) 21.9 (122.3) 20.3 (152.12) 19.02 (182.06)
UNLM-DCT
(h,d)

33.02 (34,17) 27.92(62.48,12) 24.9 (92.08,12) 22.76 (121.86,12)
21.05

(151.74,12)
20.16 (181.26,3)

T2-weighted
MR image

Noisy 30.48 25.21 22.44 20.66 19.4 18.45
NLM (h) 32.3 (34.62) 27.3 (63.02) 24.32 (92.54) 22.27 (122.3) 20.8 (152.18) 19.68 (182.06)
UNLM (h) 32.7 (34.62) 27.79 (63.02) 24.83 (92.62) 22.8 (122.36) 21.36 (152.18) 20.19 (182.06)
UNLM-DCT
(h,d)

32.77 (34.32,25) 28.13 (62.64,13) 25.53 (92.16,11) 23.73 (121.86,8) 22.49 (151.56,4) 21.56 (181.44,3)

PD-weighted
MR image

Noisy 30.52 25.23 22.43 20.61 19.31 18.33
NLM (h) 32.9 (34.54) 27.98 (63.02) 24.87 (92.54) 22.7 (122.36) 20.97 (152.18) 19.63 (182.12)
UNLM (h) 33.36 (34.54) 28.59 (63.02) 25.55 (92.62) 23.37 (122.36) 21.57 (152.24) 20.29 (182.12)
UNLM-DCT
(h,d)

33.58 (34.16, 24) 28.64 (62.72, 24) 25.76 (91.92, 6) 23.81 (121.74, 6) 22.41 (151.44, 3) 21.31 (181.32, 3)

When the noise is high (e.g., 12%, 15%, or 18%), UNLM-
DCT significantly (almost greater than 1 dB difference)
outperforms the UNLM and NLM. For low noise (e.g., 3%),
UNLM-DCT performs slightly better than UNLM for all
test images. Consequently, the distances in the DCT sub-
space become better approximations to the distances in the
full-dimensional space. In other words, the difference be-
tween the two distance computations becomes minimal,
which in turn results in very similar performance of the two
approaches.

4.4. Comparison by Vision and Residual Image. From the
Figure 7, we can see that the UNLM-DCT performs better
than the NLM and the UNLM. Although the result obtained
by the UNLM in Figure 7(c) is better than Figure 7(b) got
by the original NLM, some regions were over smoothed and
so that some useful information has been removed. On the
other hand, from the residual images, we also can verify
that the performance of UNLM-DCT is better than other
two filters. Some structural details appeared in the residual
images were gained by the NLM and the UNLM, which occur
due to low accurate of similarity weights. Hence, on results of
NLM filter and UNLM filter, the edge features are smooth-
ened. However, the residual image obtained using UNLM-
DCT does not show any traces of anatomical structures.

Figure 8 shows the results of three filters on PD-weighted
image with 6% Rician noise added. Firstly, the compar-
ison results on vision demonstrate that the UNLM-DCT
can recover more anatomical information than NLM and
UNLM. Secondly, the residual image produced by UNLM-
DCT does not contain any structural details that occur due
to oversmoothening. Hence, the UNLM-DCT can retain the
distinct edge features while at the same time preserving small
structural details.

However, there is still a little coarse on the edges in
Figures 8(c), 8(d), and 8(e). As we all know, the quality of the
NLM-based denoising result depends highly on the smooth
parameter h, and a uniform optimum h is used to denoise
the whole distorted image. The image contains low frequency

regions, middle frequency regions, and high frequency
regions. Therefore, there will be coarse edge effect in high fre-
quency region when the smooth parameter h of weight func-
tion is small. Although a big value of h can eliminate the noise
around the edges, lines, and other structure information
regions, it makes the details oversmoothing in flat regions
and middle frequency region. Thus, how to set the smooth
parameter h adaptively and locally should be considered.

4.5. Comparison on Running Time. The computational com-
plexity of NLM is O(|Ω| · |S| · M), where |Ω|, |S|, and M
are the number of pixels in the image, in the search win-
dow S, and in the neighborhood patch N , respectively. In
comparison, the complexity of UNLM-DCT has two com-
ponents. One is the cost in using DCT for each pixels’
neighborhood patch, which is O(|Ω|·M logM), and the other
one is the cost in computing the similarity weights and the
estimate for noisy pixel in a d dimensional DCT subspace,
which is O(|Ω| · |S| · d). Therefore, the total complexity for
UNLM-DCT is O(|Ω| · (|S| · d + M logM)). This should be
smaller than the UNLM cost because typically |S| �M.

From those results shown in Figure 9, we can see that
those filters’ running times are increased with the increase of
search window size; and the computation cost of NLM and
UNLM is almost the same. Moreover, the running time of
UNLM-DCT is more than NLM and UNLM when d is closed
to 25 because the UNLM-DCT contains a DCT for each
neighborhood patch. However, the complexity of UNLM-
DCT is less than NLM and UNLM under the condition
of lower DCT subspace dimensionality. For example, the
UNLM-DCT’s running time is below the UNLM when d is
smaller than 20 in Figure 9(b). Therefore, we can infer that if
larger search windows S and larger neighborhood patches N
are used, the computational savings over NLM and UNLM
increase.

4.6. Results on Real Data. There is no ground truth used to
select the filter’s parameters when applying the UNLM-DCT
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(a) T1-weighted image with 6% Rician noise
added

(b) NLM filtered image (c) UNLM filtered image

(d) UNLM-DCT filtered image (e) NLM residuals (f) UNLM residuals

(g) UNLM-DCT residuals

Figure 7: Qualitative comparison of experiment results on 6% Rician noise corrupted T1-weighted image. The quality of the proposed filter
can be noticed in both filtered image and the corresponding residuals.

to real clinical data. However, the quality of the denoising
result depends highly on their setting, especially on the
degree of filtering h and the DCT subspace dimensionality
d. Thus, how to select the values for h and d automatically is

a very significant issue in employing the UNLM-DCT filter
to improve the real clinical MR images, which should be
considered thoroughly in our future work. Now we assign
the values to h and d based on the noise’s standard deviation
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(a) Enlarged part of the original PD-
weighted image

(b) PD-weighted image with 6% Rician
noise added

(c) Part of NLM filtered image

(d) Part of UNLM filtered image (e) Part of UNLM-DCT filtered image (f) NLM residuals

(g) UNLM residuals (h) UNLM-DCT residuals

Figure 8: Qualitative comparison of experiment results on PD-weighted image. (a)–(e) are enlarged part of the experiment results with a
factor of two.

and the energy compaction property of DCT, respectively.
Figure 10 shows the results of the UNLM-DCT filter on
a real T1-weighted sagittal MR image of the knee. In this
experiment, h = 4.22.1, which is assigned according to the
estimated noise standard deviation of the knee MR image
(the estimated noise standard deviation is 4.2, and it is
calculated from the background of the squared magnitude
knee MR image by Nowak’s method [7]). With respect to

the DCT subspace dimensionality, the PSNR curves shown
in Figure 5 demonstrate that the optimal choice of d (dopt) is
relative to the noise’s level. They also indicate that the results
of UNLM-DCT are not worse than NLM and UNLM for
some chosen d. Therefore, we recommend selecting the value
of d adaptively according to the energy compaction property
of DCT (it is shown in Figure 1) and the estimated noise
standard deviation of real MR data. For example, we use
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(a) Neighborhood size: 5 × 5 (M = 25), search window size: 11 × 11
(S = 121)
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(b) Neighborhood size: 5 × 5 (M = 25), search window size: 21 × 21
(S = 441)
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(c) Neighborhood size: 5 × 5 (M = 25), search window size: 31 × 31
(S = 961)

Figure 9: Computation times (in seconds) for the NLM filter, UNLM filter, and the UNLM-DCT filter. All methods were coded in MATLAB.
The T1-weighted image is 181× 217.

the Zigzag scan to select only 25% low frequency coefficients
to compose the DCT subspace: d = (5 × 5) × 0.25 = 10. In
addition, the neighborhood size and the search window size
still are 5× 5 and 11× 11, respectively.

The results shown in Figure 10 demonstrate that almost
no anatomical information can be noticed in the residuals
image and no artifacts are introduced in the denoised image.

5. Conclusion

This paper presents an improved NLM filter with prepro-
cessing for MR images. Validation was performed on the

BrainWeb dataset [27–29] and a real T1-weighted knee MR
image, which showed an improved performance for different
image types and levels of noise.

The contributions of the proposed filter mainly include
calculating similarity weights in DCT subspace to reduce the
disturbance of the noise for more accurate computation of
the similarity and for much less computation complexity
than the original NLM filter. Comparative experiments were
performed on simulated MR image from the BrainWeb
dataset and a real knee MR image to compare and analyze the
proposed filter with the original NLM filter and the UNLM
filter. Moreover, experimental results demonstrated that, by
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Original image

(a)

Denoised image

(b)

Residuals image

(c)

Figure 10: UNLM-DCT filter on a real T1-weighted sagittal MR image of the knee with an estimated noise standard deviation of 4.2. From
left to right: original image, denoised image, and the difference image between them. Whole image is shown on top, and a detail of the
rectangular region with red border is exposed on bottom.

using the proposed UNLM-DCT filter, the noise bias can be
corrected and the original information can be successfully
restored.

In conclusion, the obtained results suggest that the appli-
cation of the proposed filter may benefit many quantitative
techniques that rely on good quality of the data. In this sense,
applications such as segmentation, tractography, or relaxom-
etry may take advantage from the enhanced data produced
after the application of the proposed filter.
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