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Regulator of calcineurin 1 (RCAN1; also known as MCIP1, 
DSCR1, and calcipressin 1) regulates the activity of the calmodu-
lin-dependent serine–threonine calcium-dependent phosphatase 
calcineurin (CaN or PP2B).45 Because it is located at q21.1 on hu-
man chromosome 21, RCAN1 has been postulated to contribute 
to mental retardation in Down syndrome,43 neuronal degenera-
tion and oxidative stress in Alzheimer disease,25,38,41 and in the 
cognitive and developmental delays associated with chromo-
some 21q deletion syndrome.19 We reported that loss of RCAN1 
resulted in altered CaN signaling, impaired synaptic plasticity, 
and deficits in spatial learning.19 In addition to these cognitive 
deficits, RCAN1-knockout mice display reduced associative cued 
fear memory, which has been used as a measure of conditioned 
anxiety.6 As shown in the current study, mice that overexpress 
human RCAN1 in the brain have increased anxiety. Finally, cal-
cineurin plays an important role in circadian behavior in both the 
brain and periphery.24,46 These combined results led us to inves-
tigate circadian regulation of stress-related biochemical signaling 
pathways in mice in which RCAN1 expression was increased or 
decreased genetically.

Corticosterone is a glucocorticoid that is produced in the zona 
fascicularis of the adrenal glands and is released under stimula-
tion of the hypothalamic–pituitary–adrenal axis. The hypotha-
lamic–pituitary–adrenal axis is a critical hormonal system that 
has a well-defined pattern of circadian activity. Many functions 
of the hypothalamic–pituitary–adrenal axis are influenced by 

stress,12,48 which can alter the homeostatic release of stress-related 
neuroendocrine factors and disrupt circadian patterns.2,21-23

Various neurologic rodent models have been assessed through 
measurement of glucocorticoid levels.15,30,32,53,57 To measure gluco-
corticoids and their metabolites, various body fluids or excreta 
can be sampled.9,34 Because blood sampling may involve increased 
experimental stress and anesthetics, other sampling methods 
have been developed. Fecal corticosterone metabolite levels can 
be obtained through a minimally invasive sampling procedure in 
rats.55 The determination of these corticosterone metabolites from 
fecal samples has been found to be a practical method to monitor 
glucocorticoid production in rodents.34

Using these studies as a guide, we measured fecal corticoster-
one from RCAN1-knockout mice, transgenic mice that overex-
press RCAN1 in brain (Tg-RCAN1TG mice), and their wildtype 
littermates over a normal 24-h (12:12-h light:dark) period. Normal 
mice exhibit thigmotaxic behaviors and show preference for dark 
unexposed environments, typically entering open or exposed 
areas only after a period of exploration and familiarization. The 
elevated-plus maze measures the frequency with which an ani-
mal explores exposed areas and is considered to reflect anxiety.14 
To show that mice of comparable age to those from which we 
evaluated fecal corticosterone show the behavior expected from 
our other studies, we examined elevated-plus maze behavior in 
RCAN1-knockout and Tg-RCAN1TG mice.

Materials and Methods
Mice and genotyping. We bred male mice carrying the floxed-

CAT-RCAN1 transgene (B6;129-Tg[CMV::CAT-RCAN1]) to female mice 
carrying the enolase (neuronally active)-driven Cre recombinase 
(B6.Cg-Tg[Eno2-cre]39Jme) to generate transgenic RCAN1-overexpress-
ing mice (Tg-RCAN1TG) of both sexes. Breeding heterozygotic 
[B6;129-Rcan1tm1Eno(±)] RCAN1(±) parents resulted in the production 
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pellets to be collected directly into a container. If a mouse did not 
produce a sample within 5 min of gentle abdominal palpation, 
the mouse was placed into an unused, sterile, bedded, closed cage 
until the sample was produced (less than 15 min spent alone). The 
mouse was returned to the original homecage after collection of 
1 or 2 fecal pellets. Samples were collected every 4 h over a 24-h 
cycle, for a total of 6 time points.9 All samples were collected in 
microcentrifuge tubes (Eppendorf , Hauppauge, NY) and stored 
in a freezer at 0 °C until shipping on the day of the last sample col-
lection to the diagnostic lab for analysis. Samples were analyzed 
by the Yerkes National Primate Research Center (Biomarkers 
Core Lab, Emory University, Atlanta, GA) using a commercially 
prepared kit (TKRC1, lot 394 [expiration date, 31 August 2010], 
Coat-A-Count Rat Corticosterone, Siemens Healthcare Diagnos-
tics, Tarrytown, NY). The normal assay range reported by the 
diagnostic laboratory is 1.21 to 483.76 ng corticosterone per tube, 
with conversion to nanograms per gram of dried fecal mass of 
individual sample.

Immunohistochemistry. Mice were euthanized by using cervical 
dislocation prior to tissue harvest. Soluble protein extracts were 
prepared by homogenizing the cortical tissue samples in ice-cold 
buffer (50 mM Tris-HCl [pH 7.5], 150 mM KCl, 1 mM DTT, 1 mM 
EDTA, 1× complete protease inhibitor cocktail III [Sigma–Aldrich, 
St Louis, MO], 1× phosphatase inhibitor cocktail I [Sigma–Al-
drich]). Proteins were resolved on SDS–polyacrylamide gels, and 
immunoblotting was performed by using standard techniques. 
Protein concentrations were determined by absorbance reading at 
562 nm (Synergy 2 Plate Reader, Biotek, Winooski, VT). Total pro-
tein (20 μg) was combined with 6× SDS–PAGE buffer (final SDS 
concentration, 1%). Samples were heated at 95 °C for 5 min and 
snap-chilled before loading. Proteins were separated on Novex 
4% to 12% gradient Tris-Bis gels (Invitrogen, Carlsbad, CA) then 
transferred to PVDF blots using conventional methodology. Blots 
were blocked in 0.2% I-Block (Tropix, Foster City, CA) and then 
incubated overnight with primary antibodies at 4 °C. RCAN1 an-
tibody (prepared in-house) was diluted 1:1000; GAPDH antibody 
(Novus Biologicals, Littleton, CO) was diluted 1:5000; Antirabbit 
antibodies tagged with horseradish peroxidase (Promega, Madi-
son, WI) were diluted 1:5000. All antibodies used were diluted in 
0.2% I-Block (Tropix). Bands were resolved by using secondary 
antibodies conjugated with horseradish peroxidase and visual-
ized by using chemiluminescence (ECL+, GE Healthcare, Piscat-
away, NJ) on an imaging system (Kodak 4000MM or GE LAS4000, 
Kodak, Atlanta, GA). All chemiluminescent signals were obtained 
in the linear range of detection as confirmed by time course of 
exposures.

Elevated-plus maze. The elevated-plus maze consisted of 4 
white, equally spaced arms, 39 cm in height and 33.9 cm from the 
center of the apparatus. Two opposing arms were each enclosed 
by white walls extending 15.3 cm above the surface, and 2 arms 
were open. Individual mice, the same age as used for corticoster-
one testing, were placed in the center of the maze to start and their 
activity videorecorded (LTC0335, Bosch, Farmington Hills, MI) on 
computer for 5 min. The animals’ movements were captured and 
analyzed by using Ethovision XT software (Noldus, Wageningen, 
Netherlands). The apparatus was cleaned thoroughly with 70% 
isopropanol before each mouse was tested. The dependent vari-
able was time spent in the exposed compared with enclosed arms 
and center. Illumination levels during testing were maintained at 
a constant 195 lx.

of RCAN1 male knockout [B6;129-Rcan1tm1Eno(−/−)]mice. To this 
end, we used the Cre–lox expression system to selectively remove 
a stop codon upstream of a transgenic insert encoding the RCAN1 
protein. To selectively overexpress RCAN1 in neurons, a mouse 
strain in which Cre recombinase was under the control of the eno-
lase promoter was used. This promoter initiates expression of Cre 
in neurons at E5.5, thus enabling us to drive RCAN1 overexpres-
sion in the transgenic mice throughout development and into 
adulthood. Mice expressing enolase-driven Cre (Tg-RCAN1TG) 
overexpress RCAN1 whereas their ‘wildtype’ (that is, lacking the 
cre driver construct) transgene-bearing controls (Tg-RCAN1WT) 
express RCAN1 normally. Genotyping was performed by using 
primers corresponding to each genotype (for specific sequences, 
see references 19 and 36). All mice were approximately 6 mo of 
age at the time of sampling and have been shown to be repro-
ductively active well beyond this age. The mice originated from a 
colony that was free from common mouse pathogens, including 
Sendai virus, pneumonia virus of mice, mouse hepatitis virus, 
mouse minute virus, mouse parvovirus types 1 and 2, Theiler 
mouse encephalomyelitis virus, reovirus, epizootic diarrhea of 
infant mice, lymphocytic choriomeningitis virus, ectromelia vi-
rus, murine adenovirus types 1 and 2, murine cytomegalovirus, 
Mycoplasma pulmonis, murine Helicobacter species, fur mites, and 
pinworms. RCAN1 (−/−) (RCAN1-knockout) mice have an exon 
deletion in RCAN1 that eliminates the expression of RCAN1 pro-
tein; RCAN1(+/+) (RCAN1 WT) littermates express normal levels 
of RCAN1; nse–Cre(±) Tg-CAT::RCAN1(±) (Tg-RCAN1TG) mice over-
express RCAN1 after activation of an enolase driver that turns 
on early in embryogenesis, thereby removing a floxed–chloram-
phenicol transferase cassette upstream of the RCAN1 transgene;36 
nse-Cre (−/−) Tg-CAT::RCAN1(±) (Tg-RCAN1WT) mice lack the nse–
Cre activity needed to allow RCAN1 overexpression and continue 
to express chloramphenicol transferase from the Tg-CAT::RCAN1 
construct. To control for the presence of a genomically inserted 
transgene, Tg-RCAN1WT mice were used as controls to compare 
fecal corticosterone excretion in Tg-RCAN1TG mice. The IACUC 
approved all of the described experiments.

Housing conditions. Mice were housed in an AAALAC-ac-
credited facility and in accordance with The Guide for the Care and 
Use of Laboratory Animals.60 The mice were housed on irradiated 
corncob bedding (1/8-in.; Bed O’Cobs, The Andersons, Mau-
mee, OH) in a caging system (Innorack, Innovive, San Diego, 
CA) with 40 air changes hourly. Mouse cages were not changed 
for 6 d prior to the sampling cycle. Mice were provided water 
ad libitum by using prefilled water bottles (Aquavive, Innovive, 
San Diego, CA). The imported, nonvendor source mice were 
placed on ad libitum irradiated fenbendazole (150 ppm)-medi-
cated chow (Lab Diet 5001, Test Diet, Richmond, IN) as a routine 
quarantine precaution; this practice has been shown not to ad-
versely affect the vast majority of research, including behavioral 
studies.42,61 All mice were provided nesting pads (Nestlets, An-
care, Bellmore, NY) in each cage as enrichment. The mice were 
maintained under a 12:12-h light:dark cycle, at 68 to 74 °F (20.0 
to 23.3 °C) and 30% to 70% relative humidity, and with 10 to 15 
fresh room air changes hourly.

Fecal sample collection and analysis. Individual fecal samples 
were collected from 40 RCAN1 transgenic, transgenic control, 
knockout, and wildtype mice by using gentle manipulation. Mice 
were picked up by the base of the tail and placed on a wire cage 
grid, while the hindquarters were lifted slightly to allow fecal 
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areas (P = 0.044) compared with wildtype controls (Figure 3 A), 
indicating less anxiety in RCAN1-knockout mice. By comparison, 
RCAN1-overexpressing mice spent significantly more time in 
the closed portion (P = 0.006) and less time exploring the open 
arms (P = 0.028) than did wildtype controls, thereby indicating 
increased anxiety in RCAN1-overexpressors (Figure 3 B). These 
differences in elevated-plus maze performance are not explained 
by locomotor differences because both experimental and con-
trol genotypes travelled equivalent total distances during testing 
(data not shown).

Statistical analysis. To assess differences in fecal corticosterone 
over the 24-h testing period, 2-way repeated-measure ANOVA 
was used, with time of day and genotype as dependent variables. 
To assess the overall corticosterone differences between geno-
types, one-way ANOVA or Mann–Whitney and posthoc t tests 
were carried out (Tukey least significant difference procedure). 
For elevated-plus maze behavior experiments, Student t test were 
applied to the behavior data as appropriate. All statistical tests are 
2-sided at a significance level of 0.05. Data on graphs are given as 
mean ± 1 SD. Outliers were identified by using standard Gibbs 
sampling. All data were analyzed by using SPSS software (SSPS, 
Somers, NY).

Results
Feces were collected from RCAN1-knockout and wildtype mice 

6 times over a 24-h time period for measurement of corticoste-
rone. Wildtype mice excreted corticosterone in a cyclic pattern 
over the collection period (Figure 1 A), with a peak at the 2330 
time point and a nadir at the 0430 time point, consistent with pre-
vious studies.9 RCAN1-knockout mice excreted corticosterone in 
an amount and pattern indistinguishable from that of controls  
(P > 0.05, repeated-measures ANOVA; Figure 1 A). After complet-
ing the fecal collection procedure, we confirmed the absence of 
RCAN1 in RCAN1-knockout mice by using protein isolated from 
brain containing the suprachiasmatic nucleus by Western blotting 
(Figure 1 B).

We next examined whether overexpression of RCAN1 in neu-
rons could alter levels or patterns of fecal corticosterone. Patterns 
of fecal corticosterone in male mice overexpressing RCAN (Tg-
RCAN1TG) were indistinguishable from those of controls (repeat-
ed-measures ANOVA; Figure 2 A). Corticosterone levels excreted 
in feces over a 24-h period in male Tg-RCAN1WT mice (control for 
RCAN1 overexpressors; 314 ± 47 ng/µL) were slightly but sig-
nificantly (P = 0.0249, one-way ANOVA) elevated compared with 
those of male RCAN1 WT mice (control for RCAN1-knockout 
mice; 227 ± 19 ng/µL). Given that the strains used as controls in 
the current study have different genetic backgrounds,3,8 this find-
ing perhaps is not surprising. However, the differences between 
male mice within each experimental group, as defined by genetic 
background, were not significant (RCAN1-knockout compared 
with RCAN1 wildtype mice, P = 0.3475; Tg-RCAN1WT compared 
with Tg-RCAN1TG mice, P = 0.7130; one-way ANOVA). Because 
RCAN1 expression can be regulated by estrogen signaling,40 we 
also investigated whether neuronal overexpression of RCAN1 
would produce different patterns of corticosterone signaling in 
mice depending on their sex.10,58 We examined fecal corticoste-
rone in female RCAN1-overexpressing and control mice over 
24-h period. Similar to the results from RCAN1-knockout and 
male RCAN1-overexpressing mice, female RCAN1-overexpres-
sors demonstrated a circadian pattern of fecal corticosterone that 
was indistinguishable from that of wildtype female controls (P > 
0.05, repeated-measures ANOVA; Figure 2 B). In addition, overall 
levels of fecal corticosterone were approximately 70% higher in 
female Tg-RCAN1TG compared with control mice (745 ± 117 ng/
µL compared with 434 ± 52 ng/µL, P = 0.0197 [one-way ANOVA]; 
Figure 2 C). After completion of the fecal collection procedure, 
we confirmed the overexpression of RCAN1 (tagged with FLAG 
epitope) in the brain (Figure 2 D).

RCAN1-knockout mice spent more time in the open areas of 
the elevated-plus maze, (P = 0.006) and less time in the closed 

Figure 1. (A) Fecal corticosterone metabolite concentrations (mean ± 
SEM) in RCAN1 wildtype (n = 11; open circles) and knockout (n = 10; 
filled circles) mice over a 24-h collection period. No difference in average 
levels of fecal corticosterone is detected between the genotypes at any 
time point. In addition, the pattern of fecal corticosterone concentration 
is maintained between genotypes. (B) RCAN1 is absent from the brains 
of RCAN1-knockout mouse mutants. In the rodent brain, RCAN1 is ex-
pressed as 2 isoforms, RCAN1.1 (approximately 38 kDa) and RCAN1.4 
(approximately 28 kDa); GAPDH is included as a loading control. KO, 
knockout; WT, wildtype.

cm11000075.indd   89 3/23/2012   9:39:48 AM



Vol 62, No 2
Comparative Medicine
April 2012

9090

disease and Down syndrome and has recently been shown to 
be involved in the display of innate anxiety in rodents.56 In 
the current study, we hypothesized that glucocorticoid (corticos-
terone) signaling would be disrupted in RCAN1 mutant mice, 
and this abnormality might explain the observed cognitive and 

Discussion
The RCAN1 gene is located on chromosome 21 in humans 

and its corresponding homolog is located on chromosome 16 in 
mice. RCAN1 is implicated in cognitive and emotional deficits 
manifested in several neurologic disorders including Alzheimer 

Figure 2. Fecal corticosterone metabolite concentrations (mean ± SEM) in transgenic mutant mice overexpressing RCAN1 in the forebrain. (A) Wildtype 
(n = 7; open squares) and RCAN1-overexpressing (n = 5; filled squares) male mice show identical patterns of fecal corticosterone exretion over a 24-h 
collection period. (B) Wildtype (n = 6; open squares) and RCAN1-overexpressing (n = 4; filled squares) female mice show identical patterns of fecal 
corticosterone shedding over a 24-h collection period. Female mice of either genotype display significantly (P < 0.05 for both sex and time) elevated 
corticosterone levels compared with male mice of the same genotype. (C) Transgenic female RCAN1 mice display approximately 70% greater (+, P = 
0.0021) levels of average corticosterone expression over the 24-h collection period than do wildtype female mice. Bars at the bottoms of panels A 
through C indicate the lights-on (open) and lights-off (filled) portions of the photoperiod. (D) RCAN1 expression in the brains of genetically manipu-
lated RCAN mouse mutants. RCAN1 is expressed as 2 isoforms in the rodent brain, RCAN1.1 (approximately 38 kDa) and RCAN1.4 (approximately 
28 kDa). Overexpression of a FLAG-tagged isoform of RCAN1.1 by using the nse–CRE driver line (TG); note the band runs slightly higher than endog-
enous 1.4 because of the presence of the FLAG epitope. RCAN1 overexpression is strongly evident compared with that in a non-nse–CRE-expressing 
control (WT). GAPDH is included as a loading control.
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normal in RCAN1-knockout mice and that disruption of inherent 
corticosterone signaling likely does not explain the anxiety or 
cognitive phenotypes expressed in this strain.

The paraventricular nucleus triggers the stress response and 
regulates changes that lead to adrenal secretion of glucocorticoids. 
Adrenal steroidal hormones influence many facets of an organ-
ism’s homeostasis, including responses to environmental pertur-
bations. In addition to regulating energy storage in response to 
the master circadian regulator in the suprachiasmatic nucleus,9,33,44 
adrenal glucocorticoids protect the body during and after the 
stress response (here defined as the cumulative physiologic reac-
tions triggered by unpredictable events), including exposure to 
unknown environments and anxiogenic stimuli. Stress-induced 
functions of glucocorticoids include: increasing available glucose; 
improving cardiovascular tone; and inhibiting gastrointestinal, re-
productive, and immune systems.31 The circadian corticosterone 
rhythm is altered in several pathologic states, including major de-
pressive disorder,29,47 Alzheimer disease,56 and sleep deprivation,52 
and during normal aging.27,50,59 We previously reported that mice 
deficient for RCAN1 manifested severe deficits in spatial memory 
and reduced conditioned associative-fear memory.19 Behavioral 
tests such as the elevated-plus maze, open-field, and light-dark 
tests have been used as measures of anxiety.6 We found in the 
current study that RCAN1-knockout mice (age, 6 mo and older) 
display greatly reduced anxiety compared with that of control 
mice. One possible explanation for these observed learning defi-
cits and reduced expression of anxiety is altered glucocorticoid 
function due to the loss of RCAN1. However, the results of the 
current study likely dispel this explanation. RCAN1 protein is 
overexpressed in human patients with Down syndrome,16 most 
of whom have been codiagnosed with neurobehavioral disorders, 
including anxiety.7,11,35

Other mouse strains modeling neurodevelopmental and neu-
rodegenerative disorders display altered glucocorticoid signaling. 
Levels of glucocorticoids and 3α-hydroxy-5α-pregnan-20-one are 
altered among BTBR mice, an animal model of autism, compared 
with C57/J mice. This model exhibits enhanced anxiety in the 
elevated-plus maze test after tail suspension.5 In Fmr1-knockout 
mice, a model of fragile X mental retardation, elevated serum 
corticosterone levels in response to a single stressful event, 30 min 
of acute restraint, show a protracted return to baseline, indicating 
impaired negative corticosterone feedback.30 In a mouse strain 
mutant for amyloid precursor protein, a model of Alzheimer 
disease, continuous noninvasive monitoring of corticosterone 
concentrations over a 4-mo period revealed adrenocortical hyper-
activity in this model. This hyperactivity started very early (from 
day 30) in male mice and later (around day 90) in female mice. 
These changes in the activity of the hypothalamic–pituitary–
adrenal axis are thought to be linked to amyloid-β–associated 
pathologic alterations in the hippocampus, causing degenera-
tions in the negative feedback regulation of the axis and leading 
to hypersecretion of glucocorticoid. Therefore, the development 
of adrenocortical hyperactivity might be a key element in the un-
derstanding of Alzheimer disease.56

The excretion of corticosterone varies markedly between sexes, 
and most female laboratory rodents have larger adrenal glands, 
and therefore greater steroid production, than do males. Most of 
the corticosterone produced is excreted via the feces in both male 
and female mice, with no difference between the sexes in the time 
course of corticosterone excretion in urine and feces.58 In our 

anxiety-related phenotypes in this model system. When we 
assayed fecal corticosterone sampled over several times during 
a 24-h period, we found no difference in corticosterone levels be-
tween wildtype and RCAN1-knockout mice. Because RCAN1 is 
overexpressed in the brains of patients with Alzheimer disease 
or Down syndrome, we also examined whether corticosterone 
signaling was disrupted when RCAN1 was overexpressed in the 
neurons of mice.54 We found no difference in the diurnal pattern 
of fecal corticosterone in either male or female transgenic mice 
overexpressing RCAN1, although transgenic RCAN1 female mice 
had higher overall levels of fecal corticosterone than did controls. 
Together these data indicate that corticosterone signaling is 

Figure 3. (A) Compared with wildtype controls (n = 5; open squares), 
RCAN1-knockout mice (n = 7; closed squares) spend significantly more 
time (mean ± SEM) exploring the open arms (+, P = 0.006) and less time 
in the closed portion (*, P = 0.044) of the elevated-plus maze, demon-
strating decreased anxiety. (B) Compared with wildtype controls (n = 
8; open squares), Tg-RCAN1TG mice (n = 8; closed squares) spend sig-
nificantly more time (mean ± SEM) in the closed portion (+, P = 0.006) 
and less time exploring the open arms (*, P = 0.028), demonstrating an 
increased level of anxiety.
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corticosterone levels were higher in the female transgenic mice. 
These findings support the idea that the learning and memory 
deficits and reduced innate anxiety observed in RCAN1-knockout 
mice do not likely result from perturbation of circadian regulation 
of glucocorticoid secretion.
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mice that overexpress RCAN1 in the brain may be more suscepti-
ble to RCAN1-mediated signaling feedback that promotes exces-
sive estrogen–corticosterone biosynthesis. Although we observed 
differences in total corticosterone levels between the 2 strains, we 
conclude that RCAN1 overexpression itself did not affect the total 
levels or pattern of shed corticosterone in male mice.

Fecal corticosterone levels may vary between studies due to 
differences in collection methods, storage conditions, or proce-
dures.26 The metabolism and excretion of steroids differ markedly 
between sexes and species.37 Noninvasive methods permit repeat-
ed sampling of the same subject without affecting its behavior or 
its endocrine status. Stress can have disruptive physiologic effects 
in captive animals and in numerous human disorders.1,4,20,39,49,62 Be-
cause the pattern of corticosterone secretion we observed matched 
that previously reported for rats and other mouse strains,9,18,28,31 
our data probably were not affected by serial handling and sam-
ple acquisition over the 24-h collection period.

Well-defined circadian rhythms of plasma corticosterone—
those with peak levels 5 to 10 times higher than trough levels—
occur in most vertebrate species.9,13,58 Usually, the peak of hormone 
secretion occurs toward the end of the dark period in primates 
and other diurnal animals, whereas in primarily nocturnal ani-
mals such as most rodents and cats, corticosterone peaks toward 
the end of the light period,51 consistent with what we observed in 
the current study. Therefore, one should sample corticosterone at 
the same time of day if repeated measurements are made on dif-
ferent days or if different groups of animals are compared. Fecal 
corticosterone metabolite levels have been used as a noninvasive 
estimate of circadian glucocorticoid production in rats, illustrat-
ing a 7- to 9-h time shift from the plasma corticosterone while re-
flecting the circulating corticosterone levels. Our data recapitulate 
this observation.55 In our study of RCAN1 mutant mice, all groups 
showed circadian patterns typical of a nocturnal species, indicat-
ing that the RCAN1-knockout neurologic phenotype is not due to 
alterations in the diurnal secretion of corticosterone.

We found that all groups of RCAN1 mutant mice tested dis-
played similar patterns of circadian-mediated corticosterone 
excretion. RCAN1-knockout mice showed no difference in total 
fecal corticosterone compared with wildtype controls. In addi-
tion, patterns of circadian corticosterone shedding were similar 
between female Tg-RCAN1WT and their wildtype controls, but 
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