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We report that type I interferons (IFNs) upregulate latent membrane protein 1 (LMP-1) expression by direct activation of the
ED-L1 promoter in several Epstein-Barr virus (EBV)-carrying Burkitt’s lymphoma lines. In EBV-infected primary B cells, IFN-«
transiently upregulates LMP-1 mRNA, but not protein levels, followed by downregulation of both, suggesting a novel antiprolif-
erative mechanism of type I IFNs. Furthermore, our results may explain the expression of LMP-1 in memory B cells of systemic

lupus erythematosus patients.

pstein-Barr virus (EBV) is a ubiquitous gammaherpesvirus as-

sociated with a wide variety of neoplasms, including Burkitt’s
lymphoma (BL), nasopharyngeal carcinoma, posttransplant lym-
phoproliferative disease, and Hodgkin’s disease. Only a subset of
viral genes is transcribed from latent episomal EBV genomes in
lymphoblastoid cell lines (LCLs) and in EBV-associated neo-
plasms. Besides EBV-encoded RNAs (EBERs) and BamHI-A tran-
scripts, in type I latency only EBV nuclear antigen 1 (EBNA-1) is
expressed, while in type III latency all six EBNAs and three EBV-
encoded latent membrane proteins (LMPs) are expressed. In type
II latency, which is observed in Hodgkin T cell and NK cell lym-
phomas, in the lymphoid tissues of healthy virus carriers and in-
fectious mononucleosis patients one or all of the LMPs are ex-
pressed in addition to the type I latency gene products (39).
LMP-1 plays a central role in EBV biology, since it acts in part as a
constitutively active CD40 receptor analog and is essential for B
cell proliferation and transformation by EBV (24). In type III la-
tency, EBNA-2 is the major transactivator of the LMP promoters,
while in type II latency, depending on the cellular context, differ-
ent cytokines (interleukin-4 [IL-4], IL-10, -13, -15, and -21) are
responsible for the activation of LMP-1 transcription (20, 26, 27,
28).

Type I interferons (IFNs) are produced in relatively large
amounts in response to pathogen sensing by the innate immune
system (46). In addition to their direct antiviral activities, these
proteins also have antiproliferative and immunomodulatory
properties. Consequently, type I IFNs find diverse clinical appli-
cation in the treatment of certain forms of cancer, as well as in the
therapy of viral infections or immunological disorders (31). On
the other hand, type I IFNs have a major pathophysiological role
in human diseases, such as systemic lupus erythematosus (SLE),
with characteristic high IFN-a levels (46).

Several interactions have been described between EBV and the
type I IFN system. EBV virions and/or EBER1 (secreted in com-
plex with lupus erythematosus-associated antigen or added exog-
enously in an in vitro-synthesized form) induces type I IFN pro-
duction in several cell types, including B cells and plasmacytoid
dendritic cells (21, 25, 38). Conversely, [IFN-« treatment of adult B
cells prior to or at the time of in vitro infection nearly completely
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prevents EBV-mediated B cell proliferation and outgrowth into
LCLs (30, 47), at least partially through the inhibition of the cap-
ping of EBV-CD21 complexes (6). However, EBV-infected B cells
become progressively resistant to the effects of type I IFNs within
a few days postinfection (30, 47), possibly through the inhibitory
effect of LMP-1 on IFN-a-induced Tyk2 and subsequent STAT2
phosphorylation (12). On the other hand, the mechanism of the
partial inhibition of B cell transformation by type I IFNs added
within the first 48 h after infection (30, 47) is still unidentified.
Furthermore, despite the observation of this complex network of
interactions, no direct effect of type I IFNs has been shown on the
regulation of latent EBV gene expression. Using EBV-positive BL
lines and freshly infected peripheral blood B cells, we show now
that type I IFNs can directly modulate LMP-1 expression.

For initial experiments, we chose the highly IFN-a-sensitive,
EBV-positive BL line Daudi (29), in which IFN-« treatment in-
hibits cell proliferation and concomitantly induces plasmacytoid
differentiation (8). Daudi cells were treated with different concen-
trations of [IFN-a, IFN-, and IFN-+y (Peprotech) for 24 h, and the
level of LMP-1 protein was analyzed by Western blotting (Fig.
1A). Type I IFNs strongly upregulated LMP-1 protein expression
in a dose-dependent manner, while IFN-+vy did not. Since the an-
tiproliferative effect of IFN-« already reaches its maximum at 0.3
ng/ml (data not shown), while LMP-1 expression is not induced
even at 0.5 ng/ml (Fig. 1A), the growth-inhibitory effect of IFN-«
on Daudi cells is not a consequence of LMP-1 upregulation.

Next, we analyzed the LMP-1-inducing effect of IFN-a on a
panel of EBV-positive BL lines, including Daudi, Salina, and
P3HRI (lines carrying a virus strain that has a deletion involving
EBNA-2, and therefore the cells use the W-promoter for the tran-
scription of the EBNAs and do not express or express only mini-
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FIG 1 Effects of IFNs on LMP-1 expression in BL lines. (A) Immunoblot analysis of LMP-1 (S12 supernatant) and -actin (AC-15 mouse anti-human B-actin
[Sigma-Aldrich]) protein expression in total cell extracts of Daudi cells left untreated or treated with the indicated amounts of IFN-c, IFN-B, or IFN-+y for 24 h.
Total cell extract of Jijoye-p79 (1) was used as a positive control for LMP-1 protein expression. (B) Immunoblot analysis of LMP-1 and B-actin protein expression
in total cell extracts of BL lines and CBM1-Ral-STO (7) left untreated (—) or treated with 10 ng/ml IFN-« (+) for 24 h. Total cell extract of CBM1-Ral-STO was
used as a positive control, while Jurkat (42) and KMH2-EBV (26) were the negative controls for LMP-1 protein expression. (C) Relative levels of LMP-1, -2A, and
ISG56 mRNAs normalized to GAPDH, quantified by real-time RT-PCR (upper panels), and immunoblot analysis of LMP-1 and B-actin protein expression
(lower panel) in Daudi cells left untreated (—) or treated with 20 ng/ml IFN-« (+) for the hours indicated. CBM1-Ral-STO was used as a positive control, and
Jurkat cells were the negative controls for LMP-1 protein expression. (D) Relative levels of the 3.5-kb LMP-1 mRNA compared to total LMP-1 mRNA, quantified
by real-time RT-PCR in Daudi left untreated (—) or treated with 20 ng/ml IFN-« (+) for 3 h. (E) Relative levels of LMP-1 mRNA normalized to GAPDH,
quantified by real-time RT-PCR in Daudi cells preincubated for 30 min without or with 50 ug/ml CHX and then left untreated or treated with 50 ng/ml IFN-«
for an additional 1 h. Primers are listed in Table 1, and PCR conditions are described in the text. CBM1, CBM1-Ral-STO cells.
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mal amounts of LMPs [1, 4, 22,23]), the type I BL lines Akata (45),
Rael (32), and Jijoye-M13 (27), the type III BL line Raji (28), and
the cord blood-derived LCL CBM1-Ral-STO, transformed with
the Rael EBV strain (7). IFN-« treatment for 24 h led to the up-
regulation of LMP-1 protein expression in Jijoye-M13 cells and
in all the BL lines carrying EBNA-2-deleted virus, while LMP-1
mRNA and protein levels did not increase in the other cell lines (Fig.
1B and data not shown). Since IFN-stimulated gene 56 (ISG56; a
well-characterized target of the IFN-a-induced IFN-stimulated gene
factor 3 [ISGF3] transactivation complex [STAT-1 and -2 and IFN
regulatory factor 9] [10]) is highly upregulated upon IFN-« treat-
ment (41), the type I IFN receptor and at least the classical ISGF3
signaling pathway are functional and cannot be responsible for the
lack of LMP-1 upregulation in type I BL lines. However, the presence
of highly methylated CpG dinucleotides at the LMP-1 regulatory se-
quences may explain the failure of LMP-1 induction in Rael cells (32,
33, 44). Furthermore, the different inducibility of LMP-1 in type I BL
cell lines and BL lines carrying an EBNA-2-deleted virus suggest that
the presence of EBNA-3 proteins and/or EBNA-LP may play a role in
the upregulation of LMP-1 by IFN-c. The failure of LMP-1 induction
in Raji and CBM1-Ral-STO cells is in line with previous observations
on the relative insensitivity of type III cells to type I IFNs (12, 30),
although upregulation of ISG56 mRNA was only partially reduced in
the type III cell lines (5- and 52-fold ISG56 upregulation after 24 h in
Raji and CBM1-Ral-STO cells, respectively [data not shown]), com-
pared to its high level of induction in all other lines (41).

To analyze the kinetics and specificity of LMP-1 upregulation,
LMP-1 mRNA and protein levels were measured together with
LMP-2A and ISG56 mRNA expression in Daudi cells treated with
IEN-afor 1, 3, 6,and 24 h (Fig. 1C). Strong (50-fold) upregulation
of LMP-1 mRNA was detected already after 1 h, with a maximum
increase of more than 200-fold after 3 h, and then progressively
decreased at 6 and 24 h. In contrast, LMP-2A mRNA was only
slightly (2.1-fold) upregulated during the kinetic analysis, while
ISG56 mRNA was rapidly and progressively upregulated to a max-
imum of 729-fold after 24 h. Upregulation of LMP-1 protein was
detected already after 1 h, with a maximum after 6 h and a lower
level after 24 h. These results show that IFN-« rapidly and specif-
ically upregulates LMP-1 through transcriptional activation and
with a kinetics different from the IFN-a-induced upregulation of
the classical target ISG56.

To analyze the role of the ED-L1 (2.8-kb mRNA [18]) and
L1-TR (3.5-kb mRNA [40]) promoters in the [FN-a-induced up-
regulation of LMP-1, the relative levels of total (2.8- and 3.5-kb
mRNAs) and 3.5-kb LMP-1 mRNA were measured with real-time
reverse transcription-PCR (RT-PCR) in Daudi cells left untreated
or treated with IFN-a for 3 h (Fig. 1D). The primers used for PCR
analysis are listed in Table 1. Total cellular RNA was isolated using
the Quick RNA miniprep kit (Zymo Research), treated with
Turbo DNase (Ambion), and then cleaned up with the RNA Clean
and Concentrator kit (Zymo Research) according to the man-
ufacturer’s instructions. One microgram of RNA was reverse
transcribed using the SuperScript VILO ¢DNA synthesis kit (In-
vitrogen) according to the manufacturer’s instructions. The relative
level of each transcript was determined with the LC FastStart DNA
Master SYBR green I kit in a LightCycler 1.2 instrument (Roche)
using the standard curve method. Each PCR mixture was initially
denatured at 95°C for 10 min and then cycled 40 times at 95°C for
85, 60°C for 55, and 72°C for 8 s. Target genes were measured and
normalized simultaneously with the endogenous control glyceral-
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TABLE 1 Primers used in real-time RT-PCR

Primer Sequence”
Total LMP-1 5'-GCAGGAGGGTGATCATCAGT-3’
5'-GTCCTCTATTCCTTTGCTCTCATG-3'
3.5-kb LMP-1 5'-TACGTAGCCGCCCTACATAAG-3’
5'-CCTCTCAAGGTCCAGGTCCAT-3’
LMP-2A 5"-CAGGCAGGCATACTGGATTC-3’
5'-CGATGAGGAACGTGAATCTAATG-3'
EBNA-2 5'-GGACACAAGAGCCATCACCT-3'
5'-CAAAGCATTCGCATAGCAGA-3'
ISG56 5'-GTGACATCTCAATTGCTCCAGAC-3’
5'-GGAGCCTGGCTAAGCAAAAC-3'
GAPDH 5'-GGAAGGTGAAGGTCGGAGTCA-3'

5'-ATGGGTGGAATCATATTGGAACA-3'

“ Sequences of forward and reverse primers are provided. The LMP-1 coding and
regulatory regions containing the primer binding sites were sequenced in Daudi cells.
Primers (Sigma-Aldrich) for LMP-1 were designed on the basis of these sequences.

dehyde-3-phosphate dehydrogenase (GAPDH). The analysis
showed that, in untreated Daudi cells 75% of LMP-1 mRNAs,
while in IFN-a-treated Daudi cells only 2.2% of LMP-1 mRNAs
were transcribed from the L1-TR promoter.

To test whether de novo protein synthesis is required for the
rapid induction of LMP-1 by type I IFNs, Daudi cells were prein-
cubated with or without cycloheximide (CHX; Sigma-Aldrich), a
protein synthesis inhibitor, for 30 min, after which the cells were
left untreated or treated with IFN-« for an additional 1 h, and
LMP-1 mRNA levels were measured (Fig. 1E). CHX treatment did
not block IFN-a-induced upregulation of LMP-1 but strongly
enhanced it, proving that LMP-1 transcription is directly induced
by type I IFN signaling.

Type I IENSs activate the classical JAK/STAT and several alter-
nate pathways, including the extracellular signal-regulated kinase
1 and 2 (ERK-1/2), p38 mitogen-activated protein kinase
(MAPK), insulin receptor substrate (IRS)—phosphatidylinositol
(PI) 3'-kinase, Jun N-terminal kinase (JNK), Crk, protein kinase
C (PKC), and NF-kB pathways (31, 35, 36, 37, 43). First, we ana-
lyzed the role of the alternate pathways by measuring LMP-1 and
ISG56 mRNA levels in Daudi cells treated with IFN-c or left un-
treated for 90 min in the presence or absence of inhibitors of
MEK1 (PD98059; Calbiochem), p38 MAPK (SB203580; Calbi-
ochem), PI 3'-kinase (wortmannin; Calbiochem), JNK-1, -2,
and -3 (SP600125; Calbiochem), PKCa, -8, -7, -6, and -¢
(Go6850; Calbiochem), NF-«kB (BAY117082 [Calbiochem]
and MG132 [Enzo]) (Fig. 2A). PD98059 did not, while all other
inhibitors slightly (SB203580, wortmannin, SP600125,
G066850, and MG132) or moderately (BAY117082) prevented
LMP-1 upregulation. SB203580, wortmannin, and MGI132
minimally inhibited, while all other inhibitors did not affect or
slightly enhanced ISG56 upregulation. These results suggest a
partial role for the NF-kB, PKC, and JNK pathways in the type
I IFN-induced transcription of LMP-1.

IFN-« activates STAT-1, -2, -3, -5, and -6 in human BL
lines, mostly through the classical JAK/STAT pathway (9, 14,
43). The tyrosine kinase inhibitor piceatannol has been re-
ported to selectively prevent the IFN-a-induced tyrosine phos-
phorylation of STAT-3 and -5, but not that of STAT-1 and -2
through the specific inhibition of Tyk2 kinase activity in the
Ramos BL and Jurkat T cell lines (43). Our analysis using Daudi
cells showed that piceatannol (Sigma-Aldrich) strongly inhib-
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FIG 2 Specific inhibition of IFN-a-induced LMP-1 mRNA upregulation by NF-«B inhibitors piceatannol and the Syk inhibitor BAY613606. (A) Fold induction
of LMP-1 and ISG56 mRNA expression normalized to GAPDH, quantified by real-time RT-PCR in Daudi cells preincubated for 45 min without inhibitor (no
inh) or with 10 uM PD98059 (PD), 5 uM SB203580 (SB), 1 uM wortmannin (WM), 10 uM SP600125 (SP), 5 uM G66850 (G6) (upper panels), 2 uM
BAY117082 (BAY), 5 uM MG132 (middle panels), 50 uM piceatannol (PIC), vehicle control (dimethyl sulfoxide [DMSO]), or 500 nM BAY613606 (SYK) (lower
panels) and then left untreated or treated with 20 ng/ml IFN-« for an additional 90 min. Primers are listed in Table 1, and PCR conditions are described in the
text. (B) Immunoblot analysis of phospho(Tyr701)-STAT-1, phospho(Tyr690)-STAT-2, phospho(Tyr705)-STAT-3, and phospho(Tyr694)-STAT-5 (all an-
tibodies obtained from Cell Signaling) expression in total cell extracts of Daudi cells preincubated for 45 min without (—) or with (+) vehicle control (DMSO)
or 50 uM PIC and then left untreated (—) or treated with 10 ng/ml IFN-« (+) for 20 min.

its phosphorylation of STAT-5, while it only slightly prevents
STAT-2 and -3 phosphorylation and does not affect STAT-1
phosphorylation upon IFN-« treatment (Fig. 2B), providing
an efficient tool for the selective analysis of the role of STAT-5
in the IFN-a-induced upregulation of LMP-1. Since piceatan-
nol is a specific inhibitor of Syk tyrosine kinase as well, the
effect of BAY613606, a highly selective inhibitor of Syk (49),
was also tested. Daudi cells were treated with IFN-« or left
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untreated for 90 min in the presence or absence of piceatannol
or BAY613606 (Sigma-Aldrich), and LMP-1 and ISG56 mRNA
levels were measured (Fig. 2A). Piceatannol strongly inhibited
while BAY613606 moderately inhibited LMP-1 upregulation,
although both compounds only slightly blocked ISG56 upregu-
lation. These results suggest that STAT-1, -2, and -3 tyrosine
phosphorylation is not needed or is not sufficient for the direct
upregulation of LMP-1 mRNA by IFN-«, while Tyk2 and Syk
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FIG 3 Effect of IFN-a on LMP-1 expression in EBV-infected peripheral blood
B cells. (A) Relative levels of LMP-1 mRNA normalized to GAPDH, quantified
by real-time RT-PCR in B95-8 virus-infected peripheral blood B cells of donor
1, left untreated (—) or treated with 30 ng/ml IFN-« (+) for 90 min, 8 or 30 h
after infection. (B) LMP-1 (left panel) and EBNA-2 (right panel) mRNA ex-
pression in B95-8 virus-infected peripheral blood B cells of donor 2, left un-
treated (—) or treated with 30 ng/ml IFN-« (+) for 90 min, 8 h after infection.
LMP-1 mRNA expression was analyzed by RT-PCR and visualized on an
ethidium bromide-stained agarose gel (Daudi cells treated with 20 ng/ml
IFN-a for 1 h were used as a positive control). Relative levels of EBNA-2
mRNA normalized to GAPDH were quantified by real-time RT-PCR. (C)
Relative levels of LMP-1 mRNA normalized to GAPDH, quantified by real-
time RT-PCR (upper panels), and immunoblot analysis (lower panels) of
EBNA-2 (only in B cells of donor 4), LMP-1 and B-actin protein expression in
B95-8 virus-infected peripheral blood B cells of donor 3, left untreated (—) or
treated with 30 ng/ml IFN-« (+) for 3 h (left panels), or of donor 4, left
untreated (—) or treated with 30 ng/ml IFN-a (+) for 24 h (right panels), 24 h
after infection. Quantification of immunoblots was performed by using Image
] software (W. Rasband, NIH, Bethesda, MD). Primers are listed in Table 1,
and the PCR conditions are described in the text. H,O, negative water control.

tyrosine kinase activities and STAT-5 tyrosine phosphorylation
may play a role in it.

In order to validate the LMP-1-inducing effect of type  IFNs in
primary B cells, peripheral blood B cells (purified by positive se-
lection with CD19 Dynabeads [Invitrogen]) of healthy adult do-
nors were infected with B95-8 virus and 8 or 30 h after infection
were left untreated or treated with IFN-a for 90 min, when LMP-1
mRNA levels were measured. In B cells of donor 1 (Fig. 3A),
IFN-« treatment upregulated LMP-1 mRNA levels by 8- and 1.8-
fold at the 8- and 30-h time points, respectively. In B cells of donor
2 at the 8-h time point (Fig. 3B), LMP-1 mRNA could be detected
only after IFN-a treatment, while EBNA-2 mRNA levels were
nearly equal in both the untreated and treated samples. To analyze
LMP-1 upregulation at the protein level, peripheral blood B cells
were treated 24 h after EBV infection with IFN-« for 3 h (donor 3)
or 24 h (donor 4), when LMP-1 mRNA and protein levels, to-
gether with the EBNA-2 protein level (only after the 24-h treat-
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ment), were measured (Fig. 3C). Three hours of IFN-a treatment
upregulated LMP-1 mRNA expression by 1.43-fold, while the
LMP-1 protein level did not change, suggesting inhibition of
LMP-1 translation. Interestingly, 24 h of IFN-« treatment mod-
erately reduced (by 46%) LMP-1 mRNA, while it strongly down-
regulated LMP-1 (by 80%) and EBNA-2 protein levels. Since these
proteins play an essential role in EBV-induced B cell transforma-
tion (24), their downregulation may explain the previously re-
ported partial inhibition of transformation by IFN-a when added
24 h postinfection (30, 47). Previous publications also reported
the downregulation of EBNAs upon type I IFN treatment in
EBV-infected peripheral blood lymphocytes (17), T cell-depleted
mononuclear cells (5, 11), and B cells (2). However, in those stud-
ies, type I IFNs were added prior to or at the time of in vitro
infection, when inhibition of EBV-mediated CD21 capping by
IFN-a (6) may completely prevent later steps of the infection.
Since viral entry and the transition to the circular form have
already occurred by 24 h postinfection (19), inhibition of these
steps cannot be responsible for the observed downregulation of
EBNA-2 and LMP-1 in our experiments, suggesting a novel
inhibitory mechanism of type I IFNs on EBV-induced B cell
transformation. According to previous publications (2'-5"),
oligoadenylates may play a role in this mechanism (17).

SLE is a complex, multifactorial disease involving genetic, epi-
genetic, and environmental risk factors, but it is now well-estab-
lished that elevated levels of type I IFNs have a central role in its
pathophysiology (46). Several lines of evidence suggest that EBV
infection also plays an important role in the pathophysiology of
SLE, possibly by antigenic cross-reactivity between viral antigens
and self-antigens, and/or the rescue of preexisting autoreactive B
cells from apoptosis (15,34). LMP-1 mRNA is the most frequently
detected latent EBV product in the increased population of EBV-
infected memory B cells in the blood of SLE patients, although it is
never detected in the blood of healthy individuals (13). Since
LMP-1 induces B cells to express B cell-activating factor (BAFF)
and a proliferation-inducingligand (APRIL), which are mediators
of B cell survival, T cell-independent antibody production, and
immunoglobulin class switching (16), LMP-1 appears to be an
important link between EBV infection and SLE. Since EBV-posi-
tive BLs originate from and therefore represent either late germi-
nal center B cells or memory B cells (3, 48), our observations on
the LMP-1-inducing effect of IFN-« in these lines and in primary
B cells may explain the expression of LMP-1 mRNA in the mem-
ory B cells of SLE patients and suggest a direct connection between
immune dysfunction and altered regulation of EBV latency in
SLE. However, the lack of IFN-a-induced LMP-1 protein upregu-
lation, despite its transcriptional induction in primary B cells, calls
for careful analysis of LMP-1 protein expression in the memory B
cells of SLE patients in future studies.

Nucleotide sequence accession numbers. The LMP-1 coding
and regulatory regions containing the primer binding sites were
sequenced in Daudi cells and deposited in GenBank/EMBL/DDJB
with accession numbers HE653895 and HE653896.
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