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Herpes simplex virus 1 (HSV-1) viral glycoproteins gD (carboxyl terminus), gE, gK, and gM, the membrane protein UL20, and
membrane-associated protein UL11 play important roles in cytoplasmic virion envelopment and egress from infected cells. We
showed previously that a recombinant virus carrying a deletion of the carboxyl-terminal 29 amino acids of gD (gD�ct) and the
entire gE gene (�gE) did not exhibit substantial defects in cytoplasmic virion envelopment and egress (H. C. Lee et al., J. Virol.
83:6115– 6124, 2009). The recombinant virus �gM2, engineered not to express gM, produced a 3- to 4-fold decrease in viral titers
and a 50% reduction in average plaque sizes in comparison to the HSV-1(F) parental virus. The recombinant virus containing all
three mutations, gD�ct-�gM2-�gE, replicated approximately 1 log unit less efficiently than the HSV-1(F) parental virus and
produced viral plaques which were on average one-third the size of those of HSV-1(F). The recombinant virus �UL11-�gM2,
engineered not to express either UL11 or gM, replicated more than 1 log unit less efficiently and produced significantly smaller
plaques than UL11-null or gM-null viruses alone, in agreement with the results of Leege et al. (T. Leege et al., J. Virol. 83:896-907,
2009). Analyses of particle-to-PFU ratios, relative plaque size, and kinetics of virus growth and ultrastructural visualization of
glycoprotein-deficient mutant and wild-type virions indicate that gD�ct, gE, and gM function in a cooperative but not redun-
dant manner in infectious virion morphogenesis. Overall, comparisons of single, double, and triple mutant viruses generated in
the same HSV-1(F) genetic background indicated that lack of either UL20 or gK expression caused the most severe defects in cy-
toplasmic envelopment, egress, and infectious virus production, followed by the double deletion of UL11 and gM.

Herpes simplex virus 1 (HSV-1) virion assembly begins in the
nucleus with the construction of viral capsids, which acquire

certain tegument proteins and then bud through the inner nuclear
membrane, forming enveloped virions within the perinuclear
space (primary envelopment). Enveloped virions fuse with the
outer nuclear membranes, allowing capsid deposition in the cyto-
plasm of cells (10, 45, 47; reviewed in reference 42). In the cyto-
plasm, viral capsids are coated with tegument proteins and acquire
final viral envelopes by budding into glycoprotein-enriched re-
gions of the trans-Golgi network (TGN) membranes (secondary
envelopment) (17, 51, 54, 56). This final virion morphogenesis
step delivers fully enveloped virions into cytoplasmic vesicles,
which are ultimately transported out of the cell (33). Secondary
envelopment of cytoplasmic capsids is facilitated by interactions
between tegument proteins and the cytoplasmic domains of viral
glycoproteins and other membrane proteins anchored in TGN-
derived membranes (17, 51, 54, 56; reviewed in references 32
and 42).

Deletion or forced retention of either gD or gH within the
endoplasmic reticulum does not cause drastic defects in cytoplas-
mic virion envelopment and egress, although both glycoproteins
are essential for viral infectivity (7, 19, 38, 55). Similarly, gB is not
required for cytoplasmic envelopment and egress, inasmuch as
gB-null viruses acquire envelopes and can be rendered infectious
after treatment with the fusogen polyethylene glycol (8, 41). How-
ever, partial deletion of the carboxyl terminus of gB was reported
to cause substantial reductions in cytoplasmic virion envelopment
and egress (9), suggesting that truncated gB may cause a dominant
negative effect. Recently, a gB-gD double mutant but not a gD-
null virus exhibited substantial defects in late stages of virus egress,
indicating that gB may cooperate with gD in facilitating virion
envelopment (34). Single or simultaneous deletion of HSV-1 gE

and gM genes did not cause any appreciable defects in cytoplasmic
virion envelopment or infectious virus production (6). Similarly,
lack of either gD or gE expression caused a mild (2- to 3-fold)
reduction in enveloped virions. However, simultaneous deletion
of HSV-1 gD and gE or gD, gE, and gI genes caused drastic accu-
mulation of unenveloped capsids in the cytoplasm. Because nei-
ther of these gene deletions alone caused similar defects, it was
concluded that gD and gE function in a redundant manner in
cytoplasmic virion egress (16). Deletion of the UL11 gene pro-
duced mild defects in cytoplasmic virion egress (27), while dele-
tion of either the gK or UL20 gene or specific mutations within
these two genes caused drastic inhibition of cytoplasmic virion
envelopment (23, 31, 41). Also, it was reported that simultaneous
deletion of HSV-1 UL11 and gM caused drastic inhibition of cy-
toplasmic virion envelopment (37). Together, these results sug-
gest that there are multiple cooperative relationships among viral
glycoproteins and membrane proteins facilitating cytoplasmic vi-
rion envelopment.

We have reported that gK and UL20 have distinct functions in
virus-induced cell fusion and cytoplasmic virion envelopment.
These functions are genetically separable, since mutations in UL20
that drastically inhibit virion envelopment do not affect virus-
induced cell fusion (24, 40). UL20 and gK function in virus-in-
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duced cell fusion by physically binding to gB and gH in infected
cell surfaces (12, 13). Their roles in cytoplasmic envelopment and
egress are not defined, but it is likely that they interact with other
viral glycoproteins and tegument proteins to facilitate virion en-
velopment. Infectious virus production is directly dependent on
the ability of viruses to assemble in the cytoplasm mature virions
containing fully glycosylated glycoproteins and spread from in-
fected to uninfected cells. Moreover, there are no known glyco-
protein mutations that inhibit virion egress without affecting cy-
toplasmic envelopment. In the study described in this report, we
determined particle-to-PFU ratios, relative plaque size (indicative
of relative virus spread), and kinetics of virus growth and con-
ducted ultrastructural visualization of glycoprotein-deficient mu-
tant and wild-type virions in the same HSV-1(F) genetic back-
ground to gain an understanding of the relative contribution of
individual viral glycoproteins in infectious virion morphogen-
esis and egress. The results show that UL20 and gK are the most
important viral determinants for cytoplasmic virion envelop-
ment, egress, and infectious virus production in comparison to
gM, gD with deletion of the carboxyl-terminal 29 amino acids
(gD�ct), gE, and UL11 alone or in various combinations.

MATERIALS AND METHODS
Cells and antibodies. African green monkey kidney (Vero) cells were
obtained from the American Type Culture Collection (Manassas, VA).
Cells were maintained in Dulbecco’s modified Eagle’s medium (Gibco-
BRL, Grand Island, NY) supplemented with 10% fetal calf serum and
antibiotics. Antibodies used include anti-HSV-1 gE monoclonal antibody
(Virusys, Sykesville, MD) and Alexa Fluor 488-conjugated goat anti-
mouse IgG monoclonal antibody (Invitrogen-Molecular Probes, Carls-
bad, CA) for the indirect immunofluorescence assays (IFAs), as well as
anti-HSV-1 gD, anti-HSV-1 gB, and anti-HSV-1 gC monoclonal antibod-
ies (Virusys, Sykesville, MD), rabbit anti-gM antibody (a gift from Joel
Baines, Cornell University, Ithaca, NY), and rabbit anti-UL11 antibody (a
gift from John Wills, Pennsylvania State University, Hershey, PA) for the
Western immunoblot assays.

Construction of HSV-1 mutant viruses. Mutagenesis was accom-
plished in Escherichia coli using the markerless two-step Red recombina-
tion mutagenesis system and synthetic oligonucleotides (36, 53) (see Ta-
ble S1 in the supplemental material) implemented on the bacterial
artificial chromosome (BAC) plasmid pYEbac102 carrying the HSV-1(F)
genome (52) (a kind gift from Y. Kawaguchi, University of Tokyo, Tokyo,
Japan). Construction of the HSV-1 mutants gD�ct (US6), �gE (US8),
�UL20, �gM1, �gE-gD�ct, and �gE-�gM1 was described previously

(36). The �gM2 recombinant virus was constructed by altering two po-
tential initiation codon sites (from ATG to CTG and ATG to ATT, respec-
tively) located 57 bp apart at the beginning of the UL10 open reading
frame (ORF) (5) (Fig. 1; see Table S1 in the supplemental material). The
�UL11 virus was constructed by changing the initiation codon from ATG
to CTG. The �gE-gD�ct recombinant virus was used as the backbone for
construction of the �gE-gD�ct-�gM2 triple mutant by altering the two
potential initiation codon sites in gM, as described above for �gM2 virus.
The �gM2-�UL11 double mutant was constructed by altering the initia-
tion codon of UL11 from ATG to CTG in the �gM2 virus.

Confirmation of the targeted mutations, recovery of infectious vi-
rus, and marker-rescue experiments. HSV-1 BAC DNAs were purified
from 50 ml of overnight BAC cultures with a Qiagen large-construct kit
(Qiagen, Valencia, CA). Using PCR test primers designed to lie outside the
target mutation site(s), all mutated DNA regions were sequenced to verify
the presence of the desired mutations in BACs. Similarly, viruses recov-
ered from infected Vero cells were sequenced to confirm the presence of
the desired mutations. Viruses were recovered from cells transfected with
BACs as we have described previously (36). To determine whether the
�UL11-�gM2 mutant virus contained any other genomic mutations, res-
cue experiments were performed with approximately 1-kbp DNA frag-
ments spanning the UL11 and gM initiation codon mutations. Vero cells
were transfected with the DNA fragments, and 24 h later, transfected cells
were infected with the �UL11-�gM2 virus. Virus stocks were prepared at
24 h postinfection (hpi) and plated at limiting dilution on Vero cells.
Approximately 10 to 15% of viral plaques appeared to be similar to wild-
type virus (data not shown). DNA sequencing of wild-type-like viral
plaques confirmed the absence of the UL11 and gM mutations.

Plaque morphology of mutant viruses and relative plaque area mea-
surements. Visual analysis of plaque morphology of mutant viruses was
performed as we have previously described (24, 27, 36, 41). Plaque area
measurements and data analysis were essentially as described previously
(36), except that photographs of viral plaques analyzed were taken at �50
magnification and 30 randomly selected plaques were imaged for each of
the mutant and wild-type viruses under consideration.

One-step viral growth kinetics. Analysis of one-step growth kinetics
was performed as we have described previously (20, 25). Briefly, nearly con-
fluent Vero cell monolayers were infected with each virus at 4°C for 1 h at
multiplicities of infection (MOIs) of 0.2 and 3. Thereafter, plates were incu-
bated at 37°C in 5% CO2 and virus was allowed to penetrate for 1 h at 37°C.
Any remaining extracellular virus was inactivated by low-pH treatment (pH
3.0), and cells were incubated at 37°C in 5% CO2. Supernatants and cell pellets
were separated at different times postinfection and stored at �80°C.

SDS-PAGE, Western immunoblotting, and indirect immunofluo-
rescence assay. Subconfluent Vero cell monolayers were infected with the
indicated virus at an MOI of 3. At 24 hpi, cells were collected by low-speed

FIG 1 Genomic map of mutated genes. (a) Prototypic arrangement of the HSV-1 genome with the unique long (UL) and unique short (US) regions flanked by
the terminal repeat (TR) and internal repeat (IR; L, long; S, short) regions; (b) expanded genomic regions of the UL10, UL11, UL20, US6, and US8 ORFs; (c) effect
of ATG mutagenesis on gM, gE, UL11, and UL20 gene expression (hatched regions), as well truncation of gD after gD�ct mutagenesis (hatched gD region).
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centrifugation, washed with phosphate-buffered saline (PBS), and pro-
cessed as described previously (21, 36). The indirect immunofluorescence
assay for the detection of gE expression was performed as described pre-
viously (36).

Electron microscopy. The ultrastructural morphology of virions
within infected cells was examined by transmission electron microscopy
essentially as described previously (22, 23, 31, 36, 41). All infected cells
processed for electron microscopy were prepared at 16 h postinfection
and visualized by transmission electron microscopy.

Preparation of cytoplasmic and extracellular virions. Cytoplasmic
virions were separated by glycerol shock treatment essentially as previ-
ously described by Sarmiento and Batterson (46), with the following mod-
ifications. Extracellular virions were prepared from supernatants of in-
fected cells. Specifically, viruses were adsorbed on wells of a 12-well plate
of nearly confluent Vero cell monolayers at 4°C for 1 h at an MOI of 1.

Afterwards, plates were incubated at 37°C in 5% CO2 for 1 h to allow the
virus to penetrate into cells. Any remaining extracellular virus was inacti-
vated by low-pH treatment (pH 3.0), and cells were incubated at 37°C in
5% CO2 for 18 h and supernatants were collected. Infected cells were
washed once with ice-cold PBS (pH 7.4), and the remaining extracellular
virus was inactivated by low-pH treatment (pH 3.0). After removing the
low-pH PBS, 900 �l of PBS (pH 7.4) was added to each well. To minimize
nuclear disruption, the glycerol concentration was gradually increased by
adding 150 �l of 90% glycerol (prewarmed to 37°C) to each well, followed
by mixing and incubation at 37°C for 5 min, which was repeated three
times to obtain a final concentration of 30% glycerol. The glycerol-treated
samples were centrifuged at 1,200 � g for 10 min at 4°C, and supernatants
were discarded. The cell pellet was suspended in 250 �l of ice-cold lysis
buffer (0.01 M Tris-HCl, pH 7.4, 1.0 mM MgCl2, and 1.0 mM CaCl) by
gentle mixing. The cell suspension was incubated on ice for 5 min and

FIG 2 Plaque phenotypes of wild-type and mutant viruses. (A) Confluent Vero cell monolayers were infected with each virus at an MOI of 0.001, and viral
plaques were visualized at 48 hpi by immunohistochemistry as described in Materials and Methods. (B) Thirty different viral plaques were randomly
selected, imaged, measured, and statistically analyzed as described in Materials and Methods. Natural log-transformed data depicted as bar graphs for each
virus are shown as geometric means with 95% confidence intervals. Tukey’s test was performed after one-way analysis of variance to examine pairwise
differences between the means for each of the 14 viruses. Viruses that were significantly different from each other (P � 0.05) are labeled with different
capital letters (A, B, C, D, E, F, and G).
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centrifuged at 700 � g for 10 min at 4°C to separate the nuclei and cellular
debris from the cytoplasmic fraction. The supernatant (cytoplasmic frac-
tion) was carefully transferred to new 1.5-ml tubes and used for TaqMan
real-time PCR as described previously (49, 50).

Q-PCR. Quantitative PCR (Q-PCR) was utilized to derive the number
of viral genomes within cytoplasmic and extracellular samples that re-
mained protected after DNase treatment, as described previously for Ka-
posi’s sarcoma-associated herpesvirus (KSHV) (49, 50). Specifically, the
primers and probe (6-carboxytetramethylrhodamine [TAMRA]) for the
real-time PCR were designed to detect HSV-1 US6 (gD). Cytoplasmic and
extracellular fractions were collected at 18 hpi, and 100 �l of each suspen-
sion was used for the extraction of viral DNA. The cytoplasmic and extra-
cellular suspensions were treated with Turbo DNase I (Ambion, Inc.) for
1 h at 37°C. Viral DNA was extracted using a DNeasy blood and tissue kit
(Qiagen, Inc.) as per the manufacturer’s instructions. Equal volumes of
viral DNA were used for TaqMan PCR analysis. Purified HSV-1 bacterial
artificial chromosome (YE102) DNA was used to generate the standard
curve. Samples were also tested, and genome numbers were determined
using validated standards provided by the Path-HSV1-genesig real-time
PCR detection kit for human herpesvirus 1 (herpes simplex virus 1)
(PrimerDesign, Ltd., South Hampton, United Kingdom).

RESULTS
Construction and molecular analysis of recombinant viruses.
We showed previously that recombinant viruses carrying a dele-
tion of the carboxyl terminus of gD (gD�ct) and the entire gE gene
or gE and gM were able to efficiently acquire cytoplasmic enve-
lopes (36). To compare the relative roles of UL20, gM, gE, gD, and
UL11 in cytoplasmic envelopment and virion egress, we generated
additional mutant viruses lacking expression of one or more of
these genes (Fig. 1). All mutant viruses were produced using the
two-step Red recombination mutagenesis system (53) imple-
mented on the pYEbac102 bacterial artificial chromosome carry-

ing the entire HSV-1(F) genome (52), as described in Materials
and Methods. Further characterization of the gE and gM double-
null virus produced earlier (36) suggested that a second initiation
codon located 19 amino acids downstream from the first initiation
codon can be utilized to produce a truncated gM (data not
shown). Therefore, to ensure a complete lack of gM expression,
the mutant virus �gM2 was created by altering both initiation
codons, and both versions of the mutated gM genes were used to
sequentially construct the desired set of mutations. The gM and
UL11 defects were readily rescued by DNA fragments overlapping
the corresponding mutations, as evidenced by the appearance of
more than 10% viral plaques that were similar to wild-type
plaques. Moreover, DNA sequencing of selected rescued viruses
revealed the presence of wild-type gM and UL11 sequences (data
not shown). The triple mutant virus gD�ct-�gM2-�gE was gen-
erated from the previously characterized gD�ct-�gE mutant virus
(36). Overall, these results suggest that there were no spurious
nucleotide changes elsewhere in the viral genomes of viruses con-
taining the gD�ct, gE, gM, and UL11 mutations.

Recovery and plaque morphologies of infectious viruses pro-
duced by HSV-1 BAC DNAs. To generate virus stocks from the
mutant BAC genomic constructs, individual BAC DNAs were
transfected into Vero cells and initial virus stocks were recovered
and characterized as detailed in Materials and Methods. The
plaque morphologies of all mutant and wild-type viruses were
examined in Vero cells. As expected, the HSV-1(F) wild-type virus
produced the largest plaques, while the �UL20 mutant produced
the smallest plaques, consisting of less than 5 cells (Fig. 2A). De-
letion of UL11 and gM (�UL11-�gM2 virus) caused the produc-
tion of viral plaques that were 4- to 5-fold larger than those of
�UL20 virus. Deletion of either gE, the carboxyl terminus of gD

TABLE 1 Comparison of wild-type and mutant virus replication

MOI and mutant virus

Viral titera

0 hpi 24 hpi 48 hpi

MOI, 0.2
Wild type 6.00 � 101 � 28.3 1.67 � 107 � 9.02 � 105 1.63 � 107 � 6.11 � 105

�gE 4.00 � 101 � 0.00 8.67 � 106 � 1.16 � 106 2.31 � 107 � 1.35 � 106

gD�ct 2.00 � 101 � 0.00 2.88 � 106 � 1.68 � 105 1.56 � 107 � 8.72 � 105

gD�ct-�gE 3.00 � 101 � 14.1 5.67 � 105 � 4.37 � 104 6.53 � 106 � 1.12 � 106

�gM2 2.00 � 101 � 0.00 4.27 � 106 � 7.69 � 105 4.80 � 106 � 6.11 � 105

�gM2-�gE 1.00 � 101 � 14.1 4.07 � 106 � 5.21 � 105 9.20 � 106 � 5.03 � 105

gD�ct-�gM2-�gE 3.00 � 101 � 14.1 5.73 � 105 � 5.93 � 104 2.55 � 106 � 1.55 � 105
�UL11 1.00 � 101 � 14.1 4.53 � 105 � 4.16 � 104 1.14 � 107 � 1.44 � 106

�UL11-�gM2 2.00 � 101 � 0.00 1.13 � 105 � 1.62 � 104 1.64 � 106 � 8.00 � 104

�UL20 4.00 � 101 � 28.3 3.81 � 104 � 6.22 � 102 6.13 � 104 � 2.31 � 103

MOI, 3.0
Wild type 4.60 � 102 � 84.8 1.03 � 107 � 8.97 � 105 7.61 � 106 � 2.39 � 106

�gE 2.50 � 102 � 42.4 1.27 � 107 � 1.43 � 106 8.55 � 106 � 3.76 � 106

gD�ct 2.40 � 102 � 28.3 3.99 � 106 � 3.15 � 105 4.40 � 106 � 5.77 � 105

gD�ct-�gE 1.80 � 102 � 56.6 3.40 � 105 � 2.31 � 104 3.60 � 106 � 6.43 � 105

�gM2 1.60 � 102 � 56.6 4.73 � 106 � 5.21 � 105 4.73 � 106 � 7.33 � 105

�gM2-�gE 7.00 � 101 � 14.1 7.13 � 106 � 1.10 � 106 7.13 � 106 � 8.51 � 105

gD�ct-�gM2-�gE 1.50 � 102 � 14.1 3.17 � 106 � 1.89 � 105 2.43 � 106 � 1.30 � 105

�UL11 3.80 � 102 � 28.3 1.99 � 107 � 4.81 � 105 2.41 � 107 � 1.33 � 105

�UL11-�gM2 ND ND ND
�UL20 2.70 � 102 � 14.1 1.34 � 105 � 2.34 � 103 1.61 � 105 � 3.51 � 103

a Viral titers were determined at different times after infection of Vero cells at an MOI of 0.2 or an MOI of 3.0. The experiment was performed a second time, and the titers obtained
were averaged, with the standard deviation calculated for each time point. ND, not done.
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(gD�ct), or gM (�gM2) alone did not drastically reduce the aver-
age plaque size, while simultaneous deletion of gD (gD�ct), gM
(�gM2), and gE (�gE) reduced average plaque sizes to the same
extent as deletion of UL11 alone (Fig. 2A). To better assess the
virus plaque sizes produced by individual mutant viruses, ran-
domly chosen viral plaques were measured and statistically ana-
lyzed as described in Materials and Methods. This analysis con-
firmed that the most drastic reduction in average viral plaque sizes
was produced by �UL20, followed by the �UL11-�gM2, �UL11-
�gM1, �UL11, and gD�ct-�gM2-�gE viruses (Fig. 2B).

Replication characteristics of HSV-1 mutants. To examine
the effect of the various engineered mutations on virus replication,
Vero cells were infected at an MOI of either 0.2 or 3.0 with either
the wild-type or each mutant virus, and viral titers were obtained
at 24 and 48 hpi (Table 1). At an MOI of 0.2, �UL20 replicated
approximately 3 log units less efficiently at both 24 and 48 hpi than
the HSV-1(F) virus. All other mutant viruses achieved titers that
were approximately 1 log unit or higher than the �UL20 virus titer
at 24 hpi and 48 hpi (Table 1). Similar results were obtained when
an MOI of 3.0 was used, with the exception that all mutant viruses
other than �UL20 virus replicated more efficiently at the high
MOI than at the low MOI, with viral titers approaching those
produced by the HSV-1(F) wild-type virus at 48 hpi (Table 1).

Protein expression profiles of viral mutants. To confirm that
the engineered gene mutations resulted in lack of expression of the

relevant protein and to investigate whether deletion of one or
more viral glycoproteins affected the synthesis of other viral gly-
coproteins, all mutant viruses were tested for the expression of gB,
gC, gD, gE, gM, and UL11. As expected, all mutant viruses con-
taining the �gM2 mutation failed to express gM (Fig. 3). The
�gM1 virus expressed a truncated gM glycoprotein migrating in a
manner consistent with the deletion of 19 amino acids from the
amino terminus of gM, as previously reported by others (5) (data
not shown). The �UL11 mutation caused a lack of UL11 expres-
sion for all recombinant viruses containing this mutation. The
gD�ct deletion caused the appearance of a truncated gD migrat-
ing with the expected apparent molecular mass, as we have re-
ported previously (36). Mutant viruses unable to produce gM and
gE or gM, gE, and gD�ct (DME2) appeared to express substan-
tially smaller amounts of gB in than all other viruses tested, while
all viruses synthesized equivalent levels of gC. In addition, the
gD�ct-gE or gM-gE-gD�ct viruses showed substantial reductions
in the relative production of the UL11 protein (Fig. 3). The ex-
pression of gE was tested by indirect immunofluorescence, since
the available antibody did not react strongly enough in immuno-
blots. IFA results showed that gE was not expressed in cells in-
fected with viruses specifying the �gE mutation, while gE expres-
sion was unaffected by any of the other gene deletions (Fig. 4).

Ultrastructural characterization of wild-type and mutant vi-
ruses. The ultrastructural phenotypes of all viruses relative to the
wild-type parental virus were investigated at 16 hpi utilizing trans-
mission electron microscopy and visually examining more than 50
individual virus-infected Vero cells. As expected, the wild-type
virus did not exhibit any apparent defects in cytoplasmic virion
envelopment or egress, as evidenced by the presence of fully en-
veloped virions intracellularly and extracellularly (Fig. 5). Ultra-
structural visualization of Vero cells infected with the different
mutant viruses revealed a diverse range of cytoplasmic defects in
virion envelopment. The most pronounced effects were produced
by the �UL20 and �UL11-�gM2 viruses, which produced nu-
merous unenveloped capsids. In contrast, the DME2 virus pro-
duced fully enveloped virions that were excreted out of infected
cells (Fig. 5).

Quantification of relative efficiency of infectious virus pro-
duction and egress from infected cells. The number of virus par-
ticles (enveloped and unenveloped capsids) can be indirectly esti-
mated by determining the number of viral genomes obtained after
DNase I treatment (see Materials and Methods). The �UL20 virus
infection resulted in the least efficient production of infectious

FIG 3 Western immunoblot analysis of glycoproteins specified by mutant
viruses. �-gB, �-gC, �-gD, �-gM, and �-UL11 denote antibodies specific for
each protein.

FIG 4 Immunofluorescence detection of gE expression. Vero cells were infected at an MOI of 1 with the viruses indicated, and gE expression was detected by
indirect immunofluorescence at 24 hpi. (Top row) Phase-contrast micrographs of infected cells treated with anti-gE MAb; (bottom row) fluorescent micrographs
of the same infected cells. All mutant viruses containing the ATG-to-CTG mutations in gE (�gE) failed to react with anti-gE antibody, while viruses expressing
the wild-type gE reacted with anti-gE antibody.
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virus within cells, followed by infection with the �UL11-�gM2
virus. All other viruses produced infectious virions with interme-
diate efficiencies ranging between those of virus strains HSV-1(F),
�UL20, and �UL11-�gM2 (Table 2). As expected, particle/PFU
ratios in supernatants of infected cells were much lower than those
obtained from the cytoplasmic fraction of infected cells for all
viruses, with the exception of the �UL20 virus, which produced
high numbers of noninfectious virion particles in the supernatant.

DISCUSSION

Mature virions acquire their viral envelopes by budding into
cytoplasmic membranes originating from the TGN. Multiple
interactions between the cytoplasmic portions of viral glyco-
proteins and tegument proteins facilitate cytoplasmic virion
envelopment (reviewed in references 32 and 42) (Fig. 6). The
fact that lack of expression of UL11, gD, gE, or gM alone does
not drastically affect cytoplasmic virion envelopment has led to
the hypothesis that the cytoplasmic portions of glycoproteins
gD, gM, and gE and membrane-associated protein UL11 func-
tion in a redundant manner to facilitate virion envelopment
(16, 32, 37, 42). To directly test this hypothesis and compare
the relative importance of viral glycoproteins and membrane
proteins in virion envelopment, we generated a set of mutant
viruses carrying one or multiple mutations in viral glycopro-
teins gD, gE, and gM and in UL11 and compared them to
viruses lacking expression of UL20. The results presented
herein show that lack of expression of the UL20 (or gK) gene
causes the most severe inhibition of cytoplasmic virion envel-
opment in comparison to that for all other viruses lacking ex-
pression of one or more of the gD, gE, gM, and UL11 genes.

Previously, we reported that a recombinant virus lacking ex-
pression of gE (�gE) and expressing a truncated version of gD
(gD�ct) did not exhibit any major defect in cytoplasmic virion
envelopment (28). These results suggest that gE and gD do not
appear to function in a redundant manner to facilitate cytoplas-
mic virion envelopment, despite their known interactions with

FIG 5 Ultrastructural morphology of wild-type and mutant viruses. Electron micrographs of Vero cells infected with different viruses at an MOI of 3 and
processed for electron microscopy at 16 hpi are shown. Enlarged sections of each micrograph are included as insets in each panel. The nucleus (n), cytoplasm (c),
and extracellular space (e) are marked. Representative virions are marked with black arrowheads.

TABLE 2 Determination of viral particle-to-PFU ratios

Virus

No. of particles/PFU

Overall defectaCytoplasm Supernatant

Wild type 109 6 �
�gE 425 4 ��
gD�ct 381 10 ��
gD�ct-�gE 855 218 ���
�gM2 2,355 4 ��
�gM2-�gE 417 9 ��
gD�ct-�gM2-�gE 1,779 12 ���
�UL11 590 60 ���
�UL11-�gM2 3,460 70 ����
�UL20 8,509 1,702b �����
a Takes into account data from Q-PCR, replication kinetics, and plaque size
quantification.
b Cells infected with HSV-1 �UL20 display a more apoptotic phenotype than cells
infected with wild-type virus, leading to release of more viral particles into the
supernatant.
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tegument proteins and the membrane-associated protein UL11
(18, 30, 32, 36, 43, 48, 57) (Fig. 6). Deletion of the gM gene
resulted in a reduction in the average size of viral plaques pro-
duced (5) and an increase in the accumulation of unenveloped
capsids in the cytoplasm of HSV-1-infected cells (6, 39). Sim-
ilar results have been reported for the alphaherpesviruses pseu-
dorabies virus (PRV) and equine herpesvirus 1 (EHV-1) (15,
44). These defects in cytoplasmic virion envelopment are asso-
ciated, at least in part, with the interactions between gM and
the major tegument protein UL49 demonstrated for PRV (26)
and HSV-1 (48) (Fig. 6). We show here that simultaneous de-
letion of the carboxyl terminus of gD and the entire gM and gE
genes causes mild reductions in average plaque size, cytoplas-
mic virion envelopment, and infectious virus production in
comparison to those for the virus carrying the gD�ct and �gE
mutations combined, suggesting that gM does not play a sig-
nificant redundant role with gD and gE in these events. Direct
comparison with the �UL20 virus reveals that deletion of the
UL20 gene is substantially more deleterious to infectious virus
production than the combined effect of the gD�ct, �gM2, and
�gE mutations.

Lack of gM expression caused decreased synthesis of gB, while
deletion of the carboxyl-terminal 29 amino acids of gD (gD�ct)
caused decreased synthesis of UL11. It was recently shown that the
carboxyl terminus of gE interacts with UL11, causing their coin-
corporation into virion particles (48). gD and gH have been
shown to bind to gB and modulate its fusogenicity (1–4, 14, 28).
We have shown that gK and UL20 interact with both gB and gH
(8). We have recently found that UL20 interacts with gM (V. N.
Chouljenko and K. G. Kousoulas, unpublished data), suggesting
that that the gK-UL20 and gM-gN complexes interact (Fig. 6).

Virion tegument protein VP22 (UL49) interacts with cytoplasmic
domains of gD, gE, and gM, as well as its tegument partner, VP16
(UL48) (11, 18, 26). Moreover, VP16 binds to the carboxyl termi-
nus of gH (29). Collectively, these results suggest that there are
multiple interactions among viral glycoproteins and tegument
proteins and that deletion of one or more viral proteins may indi-
rectly affect the functions and stability of other interacting pro-
teins.

Lack of expression of both the UL11 and gM genes inhibited
cytoplasmic virion envelopment in Vero cells to a lesser extent
than in other cells, while a similar deletion in PRV caused drastic
inhibition of infectious virus production (35, 37). Therefore, it
was of interest to generate a similar mutant virus in the HSV-1(F)
genetic background to directly compare it with other mutant vi-
ruses. Simultaneous deletion of the HSV-1(F) UL11 and gM genes
caused a substantial reduction in cytoplasmic virion envelopment
and infectious virus production which was greater than that ob-
served in the case of the gD�ct-�gM2-�gE triple mutant virus.
However, the �UL11 and �gM2 defects were markedly less severe
than the �UL20 defect, suggesting that UL20 and its interacting
partner, gK (21, 24), play more important roles that gD, gM, and
gE alone or in combination. Recently, it was reported that gB may
function with gD in a redundant manner to facilitate cytoplasmic
virion envelopment (26). Therefore, lack of gK or UL20 may affect
the binding ability of gB, gD, and gH to bind to tegument proteins.
Alternatively, gK and UL20 may directly bind to tegument pro-
teins, facilitating cytoplasmic virion envelopment. Additional ex-
periments are needed to discern the functions of gK and UL20 in
cytoplasmic virion envelopment, egress, and infectious virus pro-
duction.

FIG 6 Diagrammatic description of glycoprotein-tegument protein interactions during cytoplasmic virion envelopment at TGN-derived vesicles. (Right) The
different steps in virion egress from infected cells: I, budding of nuclear capsids into perinuclear spaces; II, deenvelopment at the outer nuclear membrane and
release of capsids into cytoplasm; III, secondary envelopment at TGN membranes; IV, extracellular transport of enveloped virions. Glycoproteins are shown as
black bars being synthesized in the endoplasmic reticulum and transported via vesicles to the Golgi apparatus and expressed on infected cell surfaces. (Left)
Interactions of tegumented capsids with the carboxyl termini of glycoproteins and membrane proteins: UL49 (VP22) is shown to interact with gD, gM, and gE;
UL48 (VP16) interacts with gH and VP22; UL21 and UL16 interact with UL11 (reviewed in references 32 and 42). UL20, UL11, gK, gM, and gE are shown within
a brown sphere to highlight their potential cooperative relationships in infectious virion morphogenesis.
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