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Metacognition is usually construed as a conscious, intentional process whereby people reflect upon
their own mental activity. Here, we instead suggest that metacognition is but an instance of a larger
class of representational re-description processes that we assume occur unconsciously and automati-
cally. From this perspective, the brain continuously and unconsciously learns to anticipate the
consequences of action or activity on itself, on the world and on other people through three predictive
loops: an inner loop, a perception–action loop and a self–other (social cognition) loop, which
together form a tangled hierarchy. We ask what kinds of mechanisms may subtend this form of enac-
tive metacognition. We extend previous neural network simulations and compare the model with
signal detection theory, highlighting that while the latter approach assumes that both type I (objective)
and type II (subjective, metacognition-based) decisions tap into the same signal at different hierarch-
ical levels, our approach is closer to dual-route models in which it is assumed that the re-descriptions
made possible by the emergence of meta-representations occur independently and outside of the first-
order causal chain. We close by reviewing relevant neurological evidence for the idea that awareness,
self-awareness and social cognition involve the same mechanisms.
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1. INTRODUCTION
There is undoubtedly a relationship between awareness
and metacognition, for our common understanding
of conscious knowledge is simply that it is knowledge
that we know we possess. Congruently, it is precisely
in those cases where our behaviour is guided by knowl-
edge we do not know we possess that we speak of
unconscious knowledge. Colloquially, thus, metacogni-
tion, or ‘cognition about cognition’, appears to be
fundamental to our understanding of consciousness.
However, metacognition is usually construed as a
controlled, intentional process whereby people inten-
tionally and effortfully reflect upon their own mental
activity. Here, we would instead like to suggest that
metacognition is but an instance of a larger class of
representational re-description processes [1] that, we
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assume, occur unconsciously, automatically and
continuously. From this perspective, the brain is con-
tinuously and unconsciously learning to anticipate
the consequences of action or activity on itself, on the
world and on other people. In so doing, we shall argue,
it learns to represent its own activity to itself, so develop-
ing systems of meta-representations that characterize the
manner in which first-order representations are held.
Such systems of meta-representations both enable
conscious experience (for it is in virtue of such meta-
representations that the agent ‘knows that it knows’)
and define its subjective character (for each agent’s
meta-representations will be idiosyncratic, shaped by
its experience with the world and with others).

To support these ideas, we begin by discussing the
relationships between consciousness and metacogni-
tion. Next, we ask what kinds of mechanisms are
necessary to subtend it. We argue that signal detection
theory (SDT), as applied to the study of conscious-
ness, has a descriptive character that we should like
to see replaced by a mechanistic account. We propose
such an account in the next section, based on the
neural network models we initially introduced in two
This journal is q 2012 The Royal Society
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previous papers [2,3]. Next, we analyse the perform-
ance of such models through signal detection analysis,
explore their implications for our understanding of con-
sciousness and overview relevant neurological evidence.
We close by suggesting that consciousness is something
that the brain learns to do rather than a static property of
certain neural representations and not others. This we
call the ‘Radical Plasticity Thesis’.
2. METACOGNITION
Metacognition covers a lot of ground. It has been var-
iously construed as the ability to reflect upon one’s
own mental activity (‘cognition about cognition’), as
awareness of possessing task-relevant knowledge
(so-called judgement knowledge [4]) or as the intro-
spective mechanism that lies at the core of perceptual
awareness (i.e. sensory metacognition). A number of
recent papers have addressed both the neurobiological
underpinnings of metacognition [5–7], as well as its
functions and mechanisms [8,9].

The complex relationship between consciousness,
self-awareness and metacognition is the object of an
ongoing debate ([10,11]; see also [8] for an overview).
In a nutshell, the argument hinges on whether metacog-
nition is taken to be a precondition or a consequence of
consciousness. Contemporary theories of conscious-
ness, in this respect, roughly fall into one of two
categories: those that see capacity for metacognition as
a consequence of content becoming conscious and
therefore available to higher-order processes and intro-
spection (so-called ‘fame-in-the-brain’ approaches),
and those that assume that some form of metacognition
is a necessary prerequisite for consciousness.

‘Fame in the brain’ theories, introduced by Dennett
[12,13], typically assume that consciousness occurs
whenever particular conditions are fulfilled, such as
stability and strength or complexity of a knowledge
representation, which can result from processes such
as re-entrant processing and/or from synchrony of
neural processing. Essentially, it is assumed that the
brain is a large dynamical system in which stable,
attractor states come in and out of existence as a
result of continuously operating global constraint satis-
faction processes. The main functional consequence of
such states is that the information they convey then
becomes available to the global workspace [14–16]
for further information processing, such as cognitive
control or conscious access. However, one problem
with ‘fame-in-the-brain’ proposals is that there is no
particular property of the information contained in con-
scious representations, apart from strength, stability or
complexity, that sets it qualitatively apart from infor-
mation contained in unconscious representations. All
information remains first-order information in the
system, and some of that information somehow gives
rise to conscious awareness of it.

As an alternative point of view, approaches that take
higher-order or meta-representations as a prerequisite
for consciousness hold that in order for content to
become conscious, a system needs to be able to rep-
resent its internal states to itself. In other words, for
a system to be conscious of its internal states, said
internal states have to become available to inspection,
Phil. Trans. R. Soc. B (2012)
in addition to serving their first-order functions. As
Karmiloff-Smith [1] put it: knowledge in the system
has to become knowledge for the system. First-order
systems—those that merely transform, however appro-
priately, inputs into outputs—can never know that they
know: they simply lack the appropriate machinery
[17]. This points to a fundamental difference between
sensitivity and awareness. Sensitivity merely entails the
ability to respond in specific ways to certain states of
affairs. Sensitivity does not require consciousness in
any sense. A thermostat can appropriately be charac-
terized as being sensitive to temperature, just as the
carnivorous plant Dionaea muscipula (Venus flytrap)
may appropriately be described as being sensitive to
movement on the surface of its leaves. But our intuitions
tell us that such sensitive systems (thermostats, photo-
diodes, transistors, cameras, carnivorous plants) are
not conscious. They do not have ‘elementary experi-
ences’, they simply have no experiences whatsoever.
Sensitivity can involve highly sophisticated knowledge,
and even learned knowledge, but such knowledge is
always first-order knowledge, it is always knowledge
that is necessarily embedded in the very same causal
chain through which processing occurs.

Awareness, on the other hand, always seems to mini-
mally entail the ability of knowing that one knows.
This ability, after all, forms the basis for the verbal
reports we take to be the most direct indication of aware-
ness. And when we observe the absence of such ability to
report on the knowledge involved in our decisions, we
conclude that the decision was based on unconscious
knowledge. Thus, it is when an agent exhibits knowledge
of the fact that he is sensitive to some state of affairs that
we take this agent to be a conscious agent. This second-
order knowledge, we argue, critically depends on learned
systems of meta-representations, and forms the basis for
conscious experience of the first-order knowledge that is
the target of such meta-representations. Despite
remaining heavily debated, this higher-order approach
to consciousness has received substantial support
recently [10,18–22] (see also [8] for a recent overview)
and is currently enjoying renewed interest.

Irrespective of whether one sees metacognition as a
consequence of or as a prerequisite to awareness, there
remains the question of what mechanisms subtend it.
In this respect, Lau [23] has defended the idea that
metacognition involves the brain performing signal
detection on its own representations. For instance, in
a typical visual detection or discrimination task
aimed at investigating task performance and aware-
ness, participants have an ‘objective’ discrimination
performance and a ‘subjective’ awareness rating.
SDT approaches to awareness [9,24–28] model this
relationship by assuming that, for each of these judge-
ments, the participant’s (and the brain’s) task comes
down to representing the outside world in terms of
stimulus and noise, and looking for decision criteria
to set both apart in objective (type I) and subjective
(type II) terms. In general terms, this comes down to
calculating two sensitivities and criteria. Type I sensi-
tivity d01 is, as usual, based on the proportion of hits
with respect to the proportion of false alarms in the
context of the actual task, and criterion c1 represents
the bias with which the participant tends to be
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conservative versus risk-taking (in detection tasks; or
selects one response option over the other in discrimi-
nation tasks). Type II sensitivity d02, however, which is
the degree to which one can tell apart one’s correct
from one’s false responses, is thus the number of ‘aware-
ness hits’ with respect to ‘awareness false alarms’. Thus,
if awareness is measured by rating one’s confidence in
one’s response, d02 reflects the proportion of high confi-
dence ratings for my correct responses with respect to
the proportion of high confidence ratings for wrong
responses, whereas c2 reflects my bias in terms of how
prone I am to rate my confidence as high or low. The
relationship between type I and type II SDT analysis
has been described in depth elsewhere [29].

However, within this general framework, important
differences exist between how ‘fame-in-the-brain’ or
higher-order approaches characterize this relationship.
Recent modelling work [27] has laid out the different
classes of possible models that follow from the above
distinction within a SDT framework. The study dis-
tinguishes three types of models: first-order models,
which assume that one stream of information accounts
for both behavioural output and awareness of this
output; dual-channel models, which assume that infor-
mation that informs behaviour is essentially processed
along a different channel from that which informs
awareness of this information; and hierarchical models,
which assume that information is first processed on a
first-order level (which determines behaviour), and
that a second-order level is necessary to make the infor-
mation available to awareness. The modelling results
[27] show that hierarchical SDT models outperform
first-order or dual-channel models.

SDT, however, offers essentially a descriptive
account of the relationships between type I and type
II performance. Here, building on earlier work, we
would like to propose a computational account [2,3]
of these relationships. This proposal is motivated by
different reasons.

First, as mentioned before, both ‘fame in the brain’
and higher-order approaches as operationalized in
SDT somehow assume that metacognition, whether
a consequence or a prerequisite, is necessarily tied to
consciousness. Here, we argue that metacognition
may be an instance of a larger class of learning-related
representational re-description processes [1] that, we
assume, occur unconsciously and automatically.

Second, we believe that, although SDT might pro-
vide a conceptual description of what occurs in any
given visual detection or discrimination task (as men-
tioned above: the brain performing signal detection on
itself ), it offers no explanation as to how such signal
detection might come about and therefore remains
largely descriptive: it is not because people behave as
if performing a signal detection task that this is how
the brain produces this behaviour. This is not an argu-
ment about biological plausibility (which has also been
criticized for neural network models), but about expla-
natory power. In our opinion, SDT models lack an
account of how the brain develops criteria, how it devel-
ops a representation of the world, and how it develops
awareness. In our view, it is crucial to incorporate
an organism’s interaction with the world in order to
understand how metacognition develops.
Phil. Trans. R. Soc. B (2012)
Third, conceptually, type II SDT in the context of
awareness is somewhat ambiguous. In a type I task,
there is, objectively, a stimulus present or not, and
we can say there is one, or not—there is no a priori
relationship (d01) between the two. Thus, my ratings
can correspond to or diverge from the actual prob-
ability of a stimulus being present in the experiment.
A type II task (e.g. confidence ratings) is completely
different. There is a probability of correct decisions
(which is a match between the world and the type I
decision), but I do not simply provide subjective rat-
ings that correspond or diverge from this probability.
This is because a guess is just that, a guess. Confidence
in a response A (instead of B) indeed means that I
thought it was A, but when I claim to guess, I do
not say ‘A is wrong’, and that it should be B—rather,
it means that for all I care it could be either of them.
Overall, there are usually no (or very few) trials in
which I know I was wrong, I am just not sure whether
I was right. Indeed, if I consistently say ‘guess’ only for
trials where I make an error, I am in fact fully aware
(see zero correlation criterion [30]). So in principle,
irrespective of the relative proportion of guesses on
correct versus incorrect trials (the ‘misses’ versus the
‘correct rejections’), those ‘guess’ trials should con-
tribute in equal proportions, or not at all, to how I
represent my decisions to myself, since when I guess,
I do not state that my type I decision was wrong.
Thus, at least in our opinion, type II tasks cannot be
seen simply as a higher-level equivalent of type I
tasks. There are many ways in which one can define
the relationship between type I and type II decision
axes, but those described by Maniscalco & Lau [27]
do not include a mechanism that accounts for the
accrual over time on both decision axes and how
their relationship comes to be established.

Fourth, on a more general note, in our view, SDT,
irrespective of whether it is implemented as a first-
order, dual-channel, or hierarchical model, assumes
(i) that a noisy but rich signal enters the sensory chan-
nels and (ii) that the brain represents one or two
sensitivities (d0) and sets at least two criteria (c) that
allow for the selection of the adequate type I and
type II outputs. Apart from the fact that these criteria
have to be arbitrarily chosen and hence that there is no
explanation of how they come about, this approach is
reminiscent of traditional filter models and of specta-
torial accounts of cognition in general, whereby the
senses receive massive (though noisy) amounts of
information, and where the passive observer’s brain
is merely tasked to extract the signal. In this respect,
one of the important variables manipulated by
Maniscalco & Lau’s [27] hierarchical models is a
decay factor, which determines how much of the
first-order information remains for the second-order
classification. This suggests, first, that somehow at
one point there is an enormous amount of information
(rich phenomenal consciousness) that dissipates over
time, leaving only limited access to whatever remains
[31,32], and second, that consciousness is essentially
a passive endeavour. Indeed, using a decay, one has
to subscribe to the fact that consciousness ‘slips
through our fingers’—whereas in fact, there have
been recent findings suggesting that consciousness
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takes time [33], and that over this time, many mis-
construals can happen [34,35]. In fact, it has been
argued that conscious content is but an ‘illusion’ cre-
ated by the brain based on piecemeal sensory input
in combination with priors (partial awareness hypoth-
esis [36]; see also [37]), a notion that, to some extent,
is also in line with an enactive view on consciousness
[38,39], whereby the agent, embedded in an environ-
ment, is not a spectator but plays an active role in
constructing his awareness of that environment and
of himself (see below for an elaboration of this idea).
Thus, even if one accepts that SDT criteria can be
influenced by priors, there is no account of how this
might happen. Taken together with the second point,
SDTaccounts are very useful at a descriptive level, but
lack a developmental perspective, both in terms of
how they come about through interaction of an organ-
ism with the world and in terms of how conscious
content is generated based on priors acquired through
such interactions. The simulation work we carried out
in Pasquali et al. [2] is an attempt to offer an alternative,
computationally oriented, account. We revisit this
work in §3.
first-order network

the brain learning about the world (objective measures)

h
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p

Figure 1. General architecture of a metacognitive network. A
first-order network, consisting, for instance, of a simple
three-layer backpropagation network, is trained to perform a

simple classification task and thus contains knowledge that
links inputs to outputs in such a way that the network can pro-
duce type I responses. This entire first-order network then
constitutes the input to a second-order network, the task of
which consists of re-describing the activity of the first-order

network in some way. Here, the task that this second-order net-
work is trained to perform is to issue type II responses, that
is, judgements about the extent to which the first-order net-
work has performed its task correctly. One can think of the

first-order network as instantiating cases where the brain
learns about the world and of the second-order network as
instantiating cases where the brain learns about itself.
3. A HYBRID NEURAL NETWORK APPROACH
We recently proposed a neural network approach to
metacognition [2,3]. The core idea of our approach,
which bears some resemblance to the actor-critic
models introduced by Sutton & Barto [40], is that two
independent networks (a ‘first-order’ network and a
‘second-order’ network) are connected to each other
in such a way that the entire first-order network is
input to the second-order network (figure 1). This
means that all the units of the first-order network are
used as input for a second network, which can then
in principle learn to discriminate the different ways in
which the first-order network’s internal representations
match the outside world.

Both networks are, for instance, simple feedforward
back-propagation networks. The first-order network
is trained to perform a simple discrimination task,
that is, to produce type I responses, whereas the
second is trained to judge the accuracy of the first-
order network’s responses, that is, to perform type II
judgements. In its more general form, as depicted in
figure 1, such an architecture would also be sufficient
for the second-order network to also perform other
kinds of judgements, such as distinguishing between
an hallucination and a veridical perception, developing
knowledge about the overall geography of the internal
representations held by the first-order network, or
forming propositional attitudes.

The fundamental difference between this type of
model (a ‘metacognitive network’) and SDT models is
that the former learns and develops both first- and
second-order representations over time. Pasquali et al.
[2] instantiated the general architecture depicted in
figure 1 in different ways. One instantiation was a strictly
hierarchical model (figure 2a), whereas the other is best
described as implementing a hybrid between dual-route
models and hierarchical models (figure 2b).

The hierarchical instantiation, which we will here
dub ‘hidden unit-readers’ (figure 2a; [3]; and [2],
Phil. Trans. R. Soc. B (2012)
simulation 3), directly reads out the first-order net-
work’s internal representations from its hidden units
(containing the relationships between input and
output patterns) [41]. The model is hierarchical
because the sensory input needs to be fully processed
by the first-order network before it becomes available
to the second-order network. The information con-
tained in the second-order network is directly
dependent on the information contained in the first-
order network where the hidden unit patterns predict
both the first-order and the second-order responses.

Re-representing knowledge through meta-represen-
tations (i.e. ‘content-explicit representations’) is not
sufficient, however: one must also represent oneself as
being in possession of that content (‘attitude-explicit
representations’ [42]). Such attitude-explicit represen-
tations require access to the relevant first-order
knowledge in a manner that is independent from the



first-order
network

first-order network(b)

(a)

second-order network

second-order
network

output high/low wager

hidden units hidden units

output units high/low wager

comparator units

input units
updated weights
fixed weights

hidden units

input

Figure 2. (a) Network architecture for the Iowa Gambling Task simulation (see [2], simulation 3). The network consists of a first-
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which the input and output units are connected through fixed weights to a second-order comparator, which in turn feeds forward
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causal chain in which it is embedded, such that not only
the content but also the accuracy of the knowledge is
represented. Indeed, it has been suggested that meta-
cognition hinges upon encoding the precision of a
representation, because this would allow organisms
not only to evaluate what they know, but to engage in
prospective error monitoring and optimization of
decision-making, for instance, by smoothing the accrual
of evidence for the ‘right’ decision over time [43].

We also explored the characteristics of a second
instantiation (figure 2b; ‘comparator units’, [2]:
simulations 1 and 2), which indirectly reads out the
first-order network’s internal representations by com-
paring first-order input with first-order output (the
latter of which is, in fact, the computational consequence
of the hidden unit patterns). In these networks, the
second-order network lies outside of the first-order
causal chain, because the information used by the first-
order network to execute its task is not the information
used by the second-order network to place a high or a
low wager. Thus, they are, in principle, dual-channel
models. Still, as both networks ‘plug into’ the same
basic knowledge (first-order performance; albeit in a
different way, see below), this type of model is effectively
a hybrid between hierarchical and dual-route models.

Our hybrid models thus depend on two core
assumptions: first, evaluating one’s own performance
requires that the first-order representations that are
responsible for performance be accessed in a manner
that is independent from their expression in behaviour.
Second, one must possess attitude-explicit represen-
tations that require access to the relevant first-order
knowledge in a manner that is independent from the
causal chain in which it is embedded, such that not
only the content but also the accuracy of the knowl-
edge is represented. The first of these assumptions
refers to the hierarchical component of the models,
whereas the second refers to their dual-channel
Phil. Trans. R. Soc. B (2012)
aspect. Obviously, the notion of independence of the
first-order causal chain is also present in dual-channel
SDT models. One of the consequences of using non-
dual channel SDT to model type I and type II
decisions is that when there is no type I sensitivity,
then there is no type II sensitivity: when there is no
signal to discriminate between the presence or absence
of a stimulus, or between two stimuli, there should in
principle be no signal to base one’s subjective rating
on—something which, in the context of sensory meta-
cognition, is at least plausible. However, Scott et al.
[44] recently demonstrated why a model of metacogni-
tion should exhibit such independence. Specifically,
they showed, in an artificial grammar learning (AGL)
task, that participants could perform better than
chance in expressing judgements about their own per-
formance (type II decisions) in spite of the fact that
their performance (type I discrimination) was actually
at chance! Such findings have two implications. First,
strictly first-order and hierarchical models cannot
account for such dissociations, which is suggestive
that only dual-channel models have enough generality.
Second, such findings support the idea that the infor-
mation contained in the first-order network can be
used in different, perhaps orthogonal decision criteria.
Our hybrid–hierarchical comparator models do pre-
cisely that, where they use the prediction error of the
first-order network in a different way for first- and
second-order decisions. In particular, while the first-
order network takes its decisions based on the per-
formance error (the standard SSE), the second-order
network’s decisions are based on a more detailed
pattern representation of the first-order error. Thus,
the second-order network learns to re-describe the
error committed by the first-order network explicitly,
as a pattern of activation rather than as a scalar
signal. This is what enables it to leverage information
that may not be captured by the first-order error. In
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principle, this might reflect the fact that, even if a
first-order decision is predominantly subject to bias
without any discriminative sensitivity, there is still
enough information in the first-order performance
signal in order to detect when one is wrong and
when right in a discrimination task. In other words,
the second-order network has a finer-grained access
to the first-order error, precisely because it can ‘look
at’ the error by representing it as a (potentially manip-
ulative) pattern of activation, rather than just use it to
guide output, as the first-order network does. In light
of Scott et al.’s [44] data, this would mean that, even
though the overall first-order error with respect to
string grammaticality cannot be used to distinguish
between strings in a type I task, the way in which
those strings elicit errors is detectable by the second-
order system, and hence reflected in above-chance
type II judgements.
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Figure 3. SDT analyses of the model’s performance. The

chart in (a) (type I and type II scores) reflects both objective
and subjective measures in the AGL simulation; the chart in
(b) (type I and type II scores) reflects both objective and sub-
jective measures in the blindsight simulation. (Data points
for blindsight test type I d0 and type II c overlap.) Solid

black line, type I d0; dashed black line, type II d0; solid
grey line, type I c; dashed grey line, type II c.
4. A SIGNAL DETECTION THEORY ANALYSIS
OF THE HYBRID METACOGNITIVE MODEL
Our simulations were able to successfully account for
the pattern of associations and dissociations between
performance and confidence (or wagering) observed
in the Iowa Gambling task, in an AGL task and in
blindsight. Here, we sought to analyse the hybrid
model’s performance in terms of SDT. Thus, we per-
formed SDT analyses on the performance of the
network in the AGL task and in blindsight ([2];
electronic supplementary material).

In the AGL task simulation, the first-order network
was trained, as in Persaud et al. [45], to discriminate
grammatical from non-grammatical strings of letters,
while the second-order network was trained to produce
wagers on the first-order network’s decisions. We
showed [2] how the model was able to capture the
patterns of associations and dissociations between classi-
fication performance and wagering in the two conditions
(implicit and explicit) tested by Persaud et al. [45].

Here, to analyse the model’s performance using
SDT, we replicated our original simulations, inserting
a test block—instances of new grammatical strings and
of non-grammatical strings—after every block of the
learning phase and not only after the third (implicit con-
dition) and the twelfth (explicit condition) block, as
was the case in the original study. This small modifi-
cation of the simulation setup allowed us to capture
the networks’ performance at every step during the
learning phase (figure 3a). As expected, type I sensitivity
d01 steadily increases from 0 to a maximum value
through learning, reflecting a progressively larger pro-
portion of hits—correct discriminations of the new
grammatical strings—than of false alarms—incorrect
discriminations of the ungrammatical strings. In
addition, networks tend to lose their initial conservative
bias (type I c) as their knowledge develops. At the end of
the learning phase, the neural networks end up with per-
fect knowledge of the grammar, as suggested by a high
type I sensitivity and a null type I criterion. Type II sen-
sitivity and criterion follow roughly the same pattern,
although d02 does not increase as much as d01 and
although c2 here appears to already start from a neutral
value (but higher initial criterion values were sometimes
Phil. Trans. R. Soc. B (2012)
obtained in other simulations). As a reminder, the
second-order network had already been trained in a
pre-training phase and no more updates of its internal
weights occurred afterwards, that is, during the actual
learning phase. Thus, the second-order network
behaves as a simple observer of the first-order network’s
knowledge and yet, its type II performance improves just
as well through the learning phase, as reflected by a
greater sensitivity and a neutral bias at the end of the
task. Finally, by comparing type I and type II measures
on the figures, one may notice that objective perform-
ance seems to have shaped subjective performance in
this simulation, just as one would have predicted from
a purely hierarchical architecture.

Our second implementation of the hybrid model
was dedicated to capturing blindsight. In their blindsight
experiment, Persaud et al. [45] showed that blind-
sight subject GY (i.e. a patient who, under specific
circumstances, makes visual discriminations in the
absence of visual awareness), when presented with
sub-threshold stimuli in his blind field, displayed
above-chance localization performance but failed to
maximize his earnings through wagering, suggesting
that he was not always aware of the knowledge involved
in his decisions for stimulus localization. However, for
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supra-threshold stimuli (both in normal and blind
fields), GY maximized performance as well as earnings.
We successfully simulated these results [2] by pre-training
the networks to discriminate among arbitrary positions
of a stimulus and to simultaneously place wagers
on their own performance. The distinction between
supra-threshold and sub-threshold blindsight vision was
introduced during a subsequent testing phase, in
which the networks classified the patterns they had
previously been presented with (supra-threshold), as
well as degraded versions of these patterns in which
stimulus-to-noise ratio was manipulated by increasing
the noise level (sub-threshold). Here, we look at how the
model’s performance develops over time, and at how the
model accounts for blindsight in light of Persaud’s data.

To track the model’s performance over time, we used
the same procedure as for the AGL simulation, inserting
test blocks after each block of the pre-training phase. We
thus captured the networks’ objective and subjective
performance through the pre-training phase—results
at the 150th block reflecting one’s normal performance
in a standard subliminal detection task—as well as in a
post-test blindsight condition for which the level of
background noise in input was raised (figure 3b). Only
after a short time of adaptation—the required time for
the networks to learn to see anything, which may end
around block 30 in the pre-training phase—type I per-
formance seems to evolve perfectly normally. With
training, d01 starts to increase, as the networks progress-
ively become able to discriminate between noise and
signals. However, c1 never reaches the null value, indi-
cating the maintenance of a conservative policy. This,
of course, is because of the fact that a few of the stimuli
are displayed below the noise threshold and hence
cannot be discriminated properly by the networks.
Keeping a conservative bias thus prevents the networks
from exhibiting too high a rate of false alarms. By con-
trast, type II scores seem rather peculiar. By the time
the networks ‘learn to see’, type II d0 has reached its
maximum value, and type II c is at its lowest, that is,
second-order networks have acquired a very high sensi-
tivity but also a very liberal bias. One might think that
they are somehow fully ‘open-minded’, which pays off
since subjective performance over-rides the lack of
objective knowledge in this case. Following this phase,
type II sensitivity returns to a more moderate value
while the criterion’s slope tends towards a conservative
value, as if bounded again by type I knowledge. Finally,
type II scores in the post-test blindsight situation con-
firm our earlier findings [2], that is, a preserved
sensitivity but a highly conservative bias. Although our
overall results match the general findings by Persaud
et al. [45], this criterion-setting account of blindsight
diverges from the data of Persaud et al., which suggest
that a decreased sensitivity, and not a criterion-setting
problem was underlying the failure to optimize wager-
ing. However, Overgaard et al. [46,47] showed that
this decreased-sensitivity account is linked to the use
of dichotomous measures such as the high versus low
wagers used by Persaud et al., whereas use of more
graded measures reveals that in fact sensitivity is pre-
served but that patients use a very conservative
criterion, which is what our current analysis suggests
as well, and what others propose in this issue [11].
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Our analyses thus highlight the hybrid character of
the model. Indeed, in the AGL simulation, type II per-
formance directly depends upon type I performance,
whereas in the blindsight simulation, the second-order
network is able to build relevant meta-knowledge
despite the first-order network’s poor performance.

In closing, we should stress that the models we have
presented have substantial limitations. Two such limit-
ations are worth highlighting. The first is that the
models fail to be dynamical. Responses are computed
in a single time step, whereas we envision the relevant
type I and type II processes as unfolding over time.
The second is that the models fail to be recurrent:
The meta-representations developed in the second-
order network cannot influence the representations
developed in the first-order network. Going beyond
these two limitations is important for the following
reason: when responses take time to be computed by
a first-order network that contains multiple levels
(e.g. six or seven layers of hidden units), the second-
order network may actually, were it able to influence
the states of the first-order network, compute or at
least bias the appropriate type I response even before
the first-order network has completed its own proces-
sing. In other words, the second-order network would
then be able to predict future states of the output layer
of the first-order network. This would capture a cen-
tral idea in our framework, namely that the brain
continuously learns to predict the consequences of
activity in one region for activity on other regions
(what we call the ‘inner loop’, see below). Augmenting
our models with the necessary computational mechan-
isms will require using different, fully recurrent,
dynamical learning algorithms.
5. LEARNING TO BE CONSCIOUS:
METACOGNITION AS RADICAL PLASTICITY
What are the implications of this approach to metacog-
nition as a dynamic representational re-description
process? First, this approach suggests that metacogni-
tion (and hence, consciousness) takes time, at
different time scales, that is, over a single trial, over
learning and over development. Second, this approach
suggests that metacognition, far from being mere filter-
ing as perhaps suggested by SDT, is an active, trained
construction process. Recent work supports the idea
that one can train people to gain conscious access to
their own representations. For instance, participants
can be trained to improve their performance in sublim-
inal perception tasks [48], aversive learning can teach
people to make novel olfactory distinctions [49] and
imposing a deadline on simultaneous type I and type
II ratings interfered with the degree to which partici-
pants were able to identify their correct responses
[33] (interestingly, type I performance was also
affected, but only on those trials for which people
had claimed to be sure, suggesting that disruption of
this metacognitive signal affects lower-level proces-
sing). It has been suggested [43] that gradual
learning of (type II) precision estimates over a certain
amount of time is particularly useful ‘in situations
where the causes of perceptual evidence may change
unpredictably over time, and as such may provide a



Figure 4. Three tangled loops (see text for details).
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better account of the sort of fluid, ongoing sen-
sorimotor integration that characterizes everyday
activities such as riding a bicycle’. Indeed, the creation
of a conscious experience of the world may protect
us and our brain from piecemeal and unpredictable
sensory input.

Second, we would instead like to suggest that meta-
cognition is but an instance of a larger class of
representational re-description processes that, as
stated before, occur unconsciously and automatically.
From this perspective, the brain is continuously and
unconsciously learning to anticipate the consequences
of action or activity on itself, on the world and on other
people (see below for elaborations on the latter two).
There is considerable evidence for such hierarchical
predictive mechanisms in the human brain [50],
through which the brain continuously attempts to
minimize ‘surprise’ or conflict by anticipating its own
future activity based on learned priors. Through
these predictive mechanisms, the brain develops sys-
tems of meta-representations that characterize and
qualify the target first-order representations. Such
learned re-descriptions, enriched by the emotional
value associated with them, form the basis of con-
scious experience. Learning and plasticity are, thus,
central to metacognition and consciousness, to the
extent that experiences occur only in experiencers
who have learned to know that they possess certain
first-order states and who have learned to care more
about certain states than about others. Cleeremans
[19,51] has termed this view the ‘Radical Plasticity
Thesis’. While this paper is concerned primarily with
meta-representation as a prerequisite for conscious-
ness, this ‘caring about’ aspect is equally crucial to
our model of consciousness, in that the knowledge
that resides in those meta-representations (i.e. the
knowledge about the first-order representations) has
to have relevance for the organism. It has to matter
to an organism whether the first-order state is A or
B. Such relevance may be related to prospective error
monitoring [43], or may be related to motivational
and emotional components.

The idea that predictive re-description processes
take place unconsciously can in fact be argued to
form the core of the higher-order thought (HOT)
theory of consciousness [21], according to which a
representation is a conscious representation when
one is conscious of it. In other words, by HOT, it is
in virtue of the occurrence of (unconscious) higher-
order thoughts ‘that we are now conscious of some
content’, that the content becomes phenomenally con-
scious. This, we surmise, requires the ability for the
agent to re-describe its own states to itself as suggested
above. We further suggest that a system’s ability to re-
describe its own knowledge to itself minimally requires
(i) the existence of recurrent structures that enable the
system to access its own states and (ii) the existence
of predictive models (meta-representations) that
make it possible for the system to characterize and
anticipate the occurrence of first-order states. Impor-
tantly however, here, and in contrast to HOT, such
meta-representational models (i) may be local and
hence occur anywhere in the brain, (ii) can be sub-
personal, and (iii) are subject, just like first-order
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representations, to learning and plasticity mechanisms
and, hence, can themselves become automatic.

Note that the proposed metacognitive architecture
instantiates the minimal requirements necessary to
enable a cognitive system to distinguish between veri-
dical perceptions and hallucinations (something a
pure first-order system would be unable to do) and,
more generally, to develop the metacognitive knowl-
edge necessary to represent the manner in which its
own first-order knowledge is held, that is, prop-
ositional attitudes (is this a belief? a hope? a regret?).
6. BEYOND CONSCIOUSNESS: THREE
PREDICTIVE LOOPS
As discussed above, the core idea of our proposal is
that the brain is continuously and unconsciously learn-
ing to anticipate the consequences of action or activity
on itself, on the world and on other people. Thus, we
have three closely interwoven loops that link the brain
with itself, with the world and with other agents, all
driven by the same prediction-based mechanisms
(figure 4). A first, internal or ‘inner loop’, involves
the brain re-describing its own representations to
itself as a result of its continuous and unconscious
attempts to predict how activity in one region influ-
ences activity in other regions. In other words, the
brain does not know in and of itself that there is a
causal link between, say, activity in supplementary
motor area and activity in primary motor cortex, or
between any other cerebral regions that are so causally
linked. The knowledge contained in such feedforward
links is thus implicit to the extent that there is no
mechanism to access it directly. Our proposal, largely
based on Friston’s own analysis [52], is that the
brain learns to render this implicit knowledge explicit
by re-describing it through unconscious prediction-
driven mechanisms. This is essentially the mechanism
that our simulations attempt to capture.

The second loop is the familiar ‘perception–action
loop’. It results from the agent as a whole continuously
predicting the consequences of its actions on the world.

The third loop is the ‘self–other loop’, and links the
agent with other agents, again using the exact same set
of prediction-based mechanisms as involved in the
other two loops. The existence of this third loop is



Figure 5. Comparison of studies of Fleming et al. [6] and Schilbach et al. [66]. Neuroanatomical overlap between areas related
to individual differences in metacognitive abilities as reported earlier [6], and significant results of a triple conjunction analysis
of ALE meta-analyses targeting functional neuroimaging studies of social cognition, emotional processing and unconstrained
cognition [66]. Statistical convergence of functional neuroimaging results in dorso-medial prefrontal cortex and the precuneus

being displayed on the surface view of the MNI single subject template. Taken from Schilbach et al. [66].
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constitutive of conscious experience, we argue, for it is
in virtue of the fact that as an agent I am constantly
attempting to model other minds that I am able to
develop an understanding of myself. The processing
carried out by the inner loop is thus causally dependent
on the existence of both the perception–action loop and
the self–other loop, with the entire system forming a
‘tangled hierarchy’ (e.g. Hofstadter’s concept of ‘a
strange loop’ [53]) of predictive internal models.

This third predictive loop thus extends beyond the
agent into the social world. Consistent with the
recent proposal by Carruthers [10], we surmise that
understanding ourselves depends on the ability to
anticipate the consequences of our actions on other
agents. Roughly, successfully anticipating how other
agents will react to the actions we direct towards
them requires that we have built internal models of
how such agents will react to our actions. We assumed
that such model building is enabled by automatic pre-
diction of the other’s actions in ongoing dynamic
interaction [37,54].

Recently, Schilbach et al. [55,56] have suggested
that, ontogenetically, becoming an expert in social
cognition may crucially depend on social interaction,
while later competencies of more detached, reflective
social cognition (mirroring, mentalizing) could be a
result of reactivating the neural networks forged
during social interactions (neural ‘re-use’ [57]) and
representationally re-describing these interaction-
based capacities [1,19]. Crucial to this third loop,
rather than seeing such a re-description as an intern-
ally generated, qualitatively different representation
of discrete knowledge about the world, the ‘social’
re-description is an ongoing learning process driven
by increasingly complex interactive contexts, for
instance, when moving from dyadic to triadic inter-
action, which creates the possibility and need to
communicate with respect to an external, third
object or person [58]. In this light, language, for
example, might not only be shaped by social inter-
action, but also the other way around, with the
gradual development of language providing a scaffold-
ing that allows implicit social know-how to develop in
explicit social knowledge. Social context as a driving
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force for learning has, indeed, been recognized in
language learning [59], child development [60] and
social cognition [61]. Recently, it has also been
suggested that mirror neurons might be the result of
reinforcement learning [62–64]. Thus, the third loop
conceptualizes metacognition as resulting from predic-
tive learning mechanisms that allow for agents to
simultaneously learn about the environment as well as
about their own internal representations. The ongoing
re-descriptions that this entails make for a potential
explanation of how implicit precursors to mentalizing
(such as gaze following) later develop into explicit
Theory of Mind and our capacity to consciously
reason about others and ourselves [65].

Finally, the idea that all three loops may be subtended
by the same mechanisms is supported by recent findings
that metacognition, social interactions and the pro-
cessing of self-relevance all involve the recruitment
of a common set of brain areas. Using an activation-
likelihood estimation (ALE) approach, Schilbach et al.
[66] recently investigated the statistical convergence of
results from functional neuroimaging studies that
had, respectively, targeted social cognition, emotional
processing and unconstrained cognition, based on the
assumption that a ‘common denominator’ could exist
in cognitive terms, consisting in a reliance on introspec-
tive processes, in particular, prospective metacognition.
By exploring the commonalities of the results from these
three individual meta-analyses by means of a conjunc-
tion analysis, the authors were, indeed, able to provide
empirical evidence for a shared neural network localized
in dorso-medial prefrontal cortex and in the precuneus.
These two regions are known to be critical hubs in
the neurofunctional architecture of the human brain
[67–73] and have been shown to be closely related to
introspective ability [6]. Crucially, comparing the
results of our conjunction analysis with the recent find-
ings by Fleming et al. [6] demonstrates anatomical
overlap both in the PFC and the precuneus (figure 5).

Interestingly, the two brain regions that appear to
be involved both in social cognition and introspective
or meta-cognitive processes are part of what has
become known as the ‘default mode of brain function’
[67]. We have recently argued that this convergence
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might be taken to suggest that the physiological base-
line of the human brain, i.e. the default mode
network (DMN), is related to a psychological baseline
of social cognition [55]. Here, we extend this argu-
ment by suggesting that social interactions might
enable introspective processes and conscious experi-
ence while relying on changes in the activity of the
DMN. Congruently, Carhart-Harris & Friston [74]
have recently argued that the DMN might realize the
Freudian secondary process, i.e. the ‘mode of cogni-
tion of the ego’, or in other words, normal waking
consciousness. Strikingly, this analysis is rooted in a
Bayesian perspective on the brain, which assumes
that the brain uses internal hierarchical models to pre-
dict its sensory inputs and suggests that neural activity
tries to minimize the ensuing prediction error or
(Helmholtzian) free energy [52,74]. Consistent with
the proposal of key regions of the DMN subserving
introspective processes and social cognition, and our
claim that these abilities take time to develop, it has
been found that connectivity within the DMN develops
through ontogeny [75,76]. Importantly, such develop-
ments hinge upon interactions with the environment
and might be necessary to establish a balance between
internally oriented cognition and engagement with the
external world. Apart from the empirical evidence for
an anatomical overlap of the brain regions relevant for
introspection and social interaction, Carhart-Harris &
Friston’s account [74] can also be taken to suggest
that all of the three loops, which we assume are relevant
for metacognition, rely on similar neural mechanisms,
namely internal models that are used to predict net-
work changes based either on sensory input or on
endogenously generated activation.
7. CONCLUSION
Overall, our perspective is thus akin to the sensorimotor or
enactive perspective [77] and to the general conceptual
framework provided by forward modelling [54], in the
sense that awareness is linked with knowledge of the con-
sequences of our actions. Crucially, however, we extend
the argument inwards (the inner loop) and further out-
wards (the self–other loop), and specifically towards
social cognition (see also [78]). Our representations of
ourselves are shaped by our history of interactions with
other agents. Learning about the consequences of the
actions that we direct towards other agents uniquely
requires more sophisticated models of such other agents
than when interacting with objects, for agents, unlike
objects, can react to actions directed towards them in
many different ways as a function of their own internal
state. A further important point here is that caretakers
act as external selves during development, interpreting
what happens to developing children for them, and so
providing meta-representations where they lack. In
this light, theory of mind can thus be understood as
rooted in the very same mechanisms of predictive re-
descriptions as involved when interacting with the
world or with oneself (see also [37]).

Thus, we end with the following idea, which we call the
‘Radical Plasticity Thesis’: the brain continuously and
unconsciously learns not only about the external world
and about other agents, but also about its own
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representations of both. The result of this unconscious
learning is conscious experience, in virtue of the fact
that each representational state is now accompanied by
(unconscious learnt) meta-representations that convey
the mental attitude with which the first-order represen-
tations are held. From this perspective, there is nothing
intrinsic to neural activity, or to information per se, that
makes it conscious. Conscious experience involves
specific mechanisms through which particular (i.e.
stable, strong and distinctive) unconscious neural states
become the target of further processing, which we surmise
involves some form of representational re-description in
the sense described by Karmiloff-Smith [1].
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