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Confidence judgements, self-assessments about the quality of a subject’s knowledge, are considered
a central example of metacognition. Prima facie, introspection and self-report appear the only way
to access the subjective sense of confidence or uncertainty. Contrary to this notion, overt behaviour-
al measures can be used to study confidence judgements by animals trained in decision-making
tasks with perceptual or mnemonic uncertainty. Here, we suggest that a computational approach
can clarify the issues involved in interpreting these tasks and provide a much needed springboard
for advancing the scientific understanding of confidence. We first review relevant theories of prob-
abilistic inference and decision-making. We then critically discuss behavioural tasks employed to
measure confidence in animals and show how quantitative models can help to constrain the com-
putational strategies underlying confidence-reporting behaviours. In our view, post-decision
wagering tasks with continuous measures of confidence appear to offer the best available metrics
of confidence. Since behavioural reports alone provide a limited window into mechanism, we
argue that progress calls for measuring the neural representations and identifying the computations
underlying confidence reports. We present a case study using such a computational approach to
study the neural correlates of decision confidence in rats. This work shows that confidence assess-
ments may be considered higher order, but can be generated using elementary neural computations
that are available to a wide range of species. Finally, we discuss the relationship of confidence
judgements to the wider behavioural uses of confidence and uncertainty.

Keywords: metacognition; uncertainty; Bayesian; psychophysics; model-based;
post-decision wagering

1. INTRODUCTION
Uncertainty is ubiquitous. Both natural events in the
world and the consequences of our actions are fraught
with unpredictability, and the neural processes gene-
rating our percepts and memories may be unreliable
and introduce additional variability. In face of this per-
vasive uncertainty, the evaluation of confidence in
one’s beliefs is a critical component of cognition. As
humans, we intuitively assess our confidence in our per-
cepts, memories and decisions all the time, seemingly
automatically. Nevertheless, confidence judgements
also seem to be part of a reflective process that is
deeply personal and subjective. Therefore, a natural
question arises: does assessing confidence—knowledge
about subjective beliefs—constitute an example of
the human brain’s capacity for self-awareness? Or is
there a simpler explanation that might suggest a more
fundamental role for confidence in brain function
across species?

One approach to the study of confidence is rooted in
metacognition, traditionally defined as the knowledge
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and experiences we have about our own cognitive pro-
cesses [1-3]. Confidence judgements have been long
studied as a central example of metacognition. In this
light, confidence judgements are viewed as a monitoring
process reporting on the quality of internal represen-
tations of perception, memory or decisions. Because
self-reports appear prima facie the only way to access
and study confidence, confidence judgements have
been taken to be a prime example of a uniquely
human cognitive capacity [1—3] and supposed to require
the advanced neural architecture available only in the
brains of higher primates [1,4,5]. Moreover, as subjec-
tive reports about our beliefs, confidence judgements
have even been used as indices of conscious awareness.
Against this backdrop of studies emphasizing the appar-
ent association of confidence with the highest levels of
cognition, a recent line of research has attempted to
show that non-human animals are also capable of confi-
dence judgements, with mixed and sometimes
contentious results [5,6]. How could animals possibly
think about their thoughts and report their confidence?
And even if they did, how could one even attempt to
establish this without an explicit self-report?

While such philosophically charged debates persist,
an alternative approach, rooted in computational
theory, is taking hold. According to this view,
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assessment of the certainty of beliefs can be considered
to be at the heart of statistical inference. Formulated in
this way, assigning a confidence value to a belief can
often be accomplished using relatively simple algorithms
that summarize the consistency and reliability of the sup-
porting evidence [7]. Therefore, it should come as no
surprise that in the course of building neurocom-
putational theories to account for psychophysical
phenomena, many researchers came to the view that
probabilistic reasoning is something that nervous
systems do as a matter of their construction [8—12].

In this light, confidence reports might reflect a
readout of neural dynamics that is available to practi-
cally any organism with a nervous system. Hence,
representations of confidence might not be explicit or
anatomically segregated [13]. Although statistical
notions can account for the behavioural observations
used to index metacognition, it remains to be seen
whether there are aspects of metacognition that will
require expanding this framework. For instance, it
may be that while choice and confidence are computed
together, confidence is then relayed to a brain region
serving as a clearinghouse for confidence information
from different sources. Confidence representations
in such a region can be viewed as metacognitive but
nevertheless may still require only simple computations
to generate.

Here, we argue that progress in understanding
confidence judgements requires placing the study
of confidence on a solid computational foundation.
Based on the emerging computational framework, we
discuss a range of confidence-reporting behaviours,
some suitable for animals, and consider what con-
straints these data provide about the underlying
computational processes. Our review also comes from
the vantage point of two neuroscientists: we advocate
opening up the brain’s ‘black box’ and searching for
neural representations mediating metacognition. We
conclude by presenting a case study for an approach
to understand the neurobiological basis of decision
confidence in rats.

2. BEHAVIOURAL REPORTS OF CONFIDENCE IN
HUMANS AND OTHER ANIMALS

The topic of behavioural studies of confidence is broad
and therefore we will largely limit our discussion to
confidence about simple psychophysical decisions
and focus mostly on animal behaviour. Behavioural
reports of confidence in humans can be explicit,
usually verbal or numerical self-reports, and these
are usually taken at face value. In contrast, in non-
human animals, only implicit behavioural reports are
available. This has led to interpretational difficulties,
a topic we address next.

(a) Explicit reports of confidence in humans

The most straightforward behavioural paradigm for test-
ing confidence is to ask subjects to assign a numerical
rating to how sure they are in their answer [14—18].
Indeed, humans performing psychophysical discrimi-
nation tasks can readily assign appropriate confidence
ratings to their answers [19]. By appropriate rating, we
mean that performance accuracy in humans is well
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Figure 1. Behavioural tasks for studying confidence in ani-
mals. (@) In uncertain option tasks, there are three choices,
the two categories, A and B, and the uncertain option. (b)
In decline option or opt-out tasks, there is first a choice
between taking the test or declining it, then taking the test
and answering A or B. In a fraction of trials, the option to
decline is omitted. (¢) In post-decision wagering, for every
trial there is first a two-category discrimination, A or B,
and then a confidence report, such as low or high options.
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correlated with the self-reported confidence measures.
Self-reported confidence also correlates with choice
reaction times [14,15]. It should be noted that confi-
dence reports are not always perfectly calibrated; there
are systematic deviations found such as overconfidence
when decisions are difficult and underconfidence when
they are easy [19-21]. Clearly, it is not possible to ask
animals to provide explicit confidence reports, therefore
animal studies need to employ more sophisticated tasks
designed to elicit implicit reports of confidence.

(b) ‘Uncertain option’ task

A widely used class of tasks extends the two-choice
categorization paradigm by adding a third choice, the
‘uncertain option’, to the available responses. Interest-
ingly, the scientific study of this paradigm originated in
experimental psychology along with quantitative
studies of perception [22-25]; however, these early
attempts were found to be too subjective [23,24,26]
and were soon abandoned in favour of ‘forced
choice’ tasks to quantify percepts based on binary
choices. After nearly a century of neglect, a series of
studies by Smith and co-workers [5] reinvigorated
the field of confidence judgements using these para-
digms in both human and non-human subjects with
the goal of placing the notion of subjective confidence
on a scientific footing.

In the first of the modern studies using this
paradigm, Smith ez al. [27] used a perceptual categor-
ization paradigm (figure la). A sensory stimulus is
presented along a continuum (e.g. frequency of an
auditory tone) that needs to be categorized into two
classes based on an arbitrarily chosen boundary
(above or below 2.1 kHz). Subjects are then given
three response options: left category, right category
or uncertain response. As might be expected, subjects
tend to choose the uncertain option most frequen-
tly near the category boundary. Post-experimental
questionnaires indicate that humans choose the
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uncertain option when they report having low
confidence in the answer.

Importantly, the design of the task allowed Smith
and colleagues to ask the same questions to non-
human animals and hence to reignite an age-old debate
about the cognitive sophistication of different animal
species. In order to test animals in this task, the
different options were linked with different reward
contingencies: correct choices were rewarded with
one unit of food reward, uncertain responses were
rewarded with a smaller amount of food while
incorrect choices lead to omission of reward and a
time-out punishment. Smith and colleagues studied
monkeys, dolphins and rats and compared their
performance with humans [27-31]. Under these con-
ditions, monkeys and dolphins showed a qualitative
similarity in response strategies as well as a quantitat-
ive agreement in the response distributions of animals
and humans. The striking similarities of dolphin and
monkey behaviour to that of humans suggested that
these animals possess more sophisticated cognitive
architectures than previously appreciated. Inte-
restingly, their studies also failed to show that
evolutionarily ‘simpler’ animals such as rats could
perform confidence judgements [5]. The authors
concluded that this might reflect a failure to find a
suitable task for accessing the appropriate abilities in
these species. Indeed, pigeons can respond similarly
to primates in such tasks [32], although they fail to
exhibit other uncertainty-monitoring behaviours
(see below).

A weakness in the design of the confidence-reporting
tasks used by the early studies by Smith and colleagues
is the possibility that uncertain responses could be
simply associated with those stimuli intermediate to
the extreme category exemplars. In other words, the
two-alternative plus uncertain option task can be
alternatively viewed as a three-choice decision task
(left/right/uncertain, figure 1a), which can be solved
simply by learning appropriate stimulus-response
categories without necessitating confidence estimates.
This criticism was first addressed with task variants
that require same-different discrimination [28]. In
this version of the task, there are no external stimuli
that can be associated with the uncertain option.
Nevertheless, from a computational perspective, if
the difference between the two stimuli is represented
in the brain, then again the uncertain response can
simply be associated with a class of such difference
representations. To argue against such associative
mechanisms, Smith er al. [33] also reported on a
task version in which monkeys were only rewarded
at the end of a block of trials, so that individual
responses were not reinforced. However, while this
manipulation does rule out the simplest forms of
reward learning, it is still compatible with more
sophisticated forms [34].

(¢) ‘Decline option’ tasks

Hampton introduced a memory test that included
a ‘decline’ option rather than three choices [35]
(figure 1b). In this test, monkeys performed a
delayed-matching-to-sample task using visual stimuli.
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At the end of the delay, subjects were presented with
the option of accepting or declining the discrimination
test. Once a subject accepted the test, it received
either a food reward for correct choices or a timeout
punishment for error choices. After declining the
test, the subject received a non-preferred food reward
without a timeout. Therefore, the optimal strategy
was to decline when less certain, and indeed, monkeys
tended to decline the discrimination more often for
longer delays. However, since the difficulty was deter-
mined solely by the delay, the decline option could be
learned simply by associating it with longer delays for
which performance was poorer. To circumvent this
problem, Hampton introduced forced-choice trials in
which the subject had no choice but to perform the
discrimination test. If longer delays were simply associ-
ated with the choice to decline the test, then decline
responses would be equally likely regardless of per-
formance. However, he found a systematic increase
in performance in freely chosen trials compared with
forced-choice trials, consistent with the idea that mon-
keys are monitoring the likelihood of being correct,
rather than associating delays with decline responses.

A similar decline option test was used by Kiani &
Shadlen [36] in macaque monkeys, who made binary
decisions about the direction of visual motion. On
some trials, after stimulus presentation, a third ‘opt
out’ choice was presented for which monkeys received
a smaller but guaranteed reward. They found that the
frequency of choosing the ‘uncertain’ option increa-
sed with increasing stimulus difficulty and with
shorter stimulus sampling. Moreover, as observed by
Hampton, monkeys’ performance on trials in which
they declined to opt out was better than when they
were forced to perform the discrimination.

Inman & Shettleworth [37] and Teller [38] tested
pigeons using similarly designed ‘decline’ tests with a
delayed-matching-to-sample task. They observed that
the rates of choosing the decline option slightly
increased with delay duration. Because performance
decreased with delay, decline choices also increased
as performance decreased. However, there was no
difference in the performance on forced-choice versus
free-choice (i.e. non-declined) trials. These results
were interpreted as arguing against the metacognitive
abilities of pigeons [39].

After these negative results with pigeons and rats in
uncertain and decline option tasks, it came as a sur-
prise that Foote & Crystal [40] reported that rats
have metacognitive capacity. Similar to the design of
Hampton, they used a task with freely chosen choice
trials with a decline option interleaved with forced-
choice trials. But unlike Hampton, Inman and Teller
they used an auditory discrimination task without an
explicit memory component. They found that decline
option choices increased in frequency with decision
difficulty and that free-choice performance was better
than forced-choice performance on the most diffi-
cult stimuli, arguing against associative learning of
decline choices.

The argument that this class of task tests confidence-
reporting abilities chiefly rests on the decrease in
performance on forced-choice trials compared with
freely chosen choice trials. The results for rats showed
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a small change in performance (less than 10%) and only
for the most difficult discrimination type. An alternative
explanation is that attention or motivation waxes and
wanes, and animals’ choices and performance are
impacted by their general ‘vigilance’ state. When their
vigilance is high, animals would be expected to choose
to take the test and perform well compared with a low
vigilance state when animals would tend to decline
and accept the safer, low-value option. Although being
aware of one’s vigilance state may be considered as a
form of metacognition, it is distinct from mechanisms
of confidence judgements.

(d) Post-decision wagering

The ‘uncertain option’ and ‘decline option’ tasks have
the weakness that either a choice report or a confi-
dence report is collected in each trial but not both.
The ‘post-decision wager’ paradigms improve on this
by obtaining both choice and confidence on every
trial [41,42]. The central feature of this class of para-
digms is that after the choice is made, confidence is
assessed by asking a subject to place a bet on her
reward (figure 1¢). The probability of betting high
(or the amount wagered) on a particular decision
serves as the index for confidence. Persaud and col-
leagues used this paradigm to test a subject with
blindsight, who had lost nearly his entire left visual
cortex yet could make visual discriminations in his
blind field despite having no awareness. Using a post-
decision wagering paradigm, they found that wagers
were better correlated with the subjects’ explicit self-
reported visibility of the stimulus than with actual task
performance [41]. Hence, the authors argued that
post-decision wagers not only provided an index of con-
fidence, but also served as an objective assessment of
‘awareness’, independent of perceptual performance.

Leaving aside the thorny issue of whether post-
decision wagers can be used to study awareness
[43,44], for the purposes of studying confidence jud-
gements, the wagering paradigm has many attractive
features. Wagers provide a means to make confidence
reports valuable and hence by providing appropriate
reward incentives animals could be trained to perform
post-decision wagering.

One caveat with post-decision wagering paradigms
is that because the pay-off matrix interacts with the
level of confidence to determine the final payoff, care
must be taken with the design of the matrix. It has
been observed that in the study of Persaud ez al.
[41], the optimal strategy for the pay-off matrix was
to always bet high regardless of the degree of confi-
dence [45,46]. Although subjects were in fact found
to vary their wager with uncertainty, it would be diffi-
cult to disambiguate a suboptimal wagering strategy
from the lack of appropriate estimations of confidence
[45,47]. Therefore, the design of the pay-off matrix as
well as an independent evaluation of the wagering
strategy are important considerations. Using a conti-
nuum of wagers instead of a binary bet (certain/
uncertain) somewhat mitigates the difficulty of finding
an optimal pay-off matrix. A second concern about the
post-decision wager task is that bets might be placed
by associating the optimal wager with each stimulus
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using reinforcement learning. In particular, each
two-choice plus wager test could be transformed into
a four-choice test where distinct stimuli could be
associated with distinct responses. For instance, in a
motion-direction categorization, weak versus strong
motion to one direction could be associated with low
versus high wagers. Importantly, however, this concern
can be alleviated by appropriate analysis of behavioural
data, as we will discuss below. Moreover, regardless of
concerns over the optimality of wagering, animals
could in principle be trained to perform this kind
of task [48], providing a rich class of confidence-
reporting behaviours.

(e) Decision restart and leaving decision tasks
Recently, Kepecs er al. [49] introduced a behavioural
task similar to post-decision wagering that can be used
in animals. They trained rats to perform a two-alternative
forced-choice (2AFC) olfactory discrimination task. In
this task, subjects initiated a trial by entering a central
odour port. This triggered the delivery of a stimulus
comprising a binary odour mixture. The subject was
rewarded for responding to the left or to the right
depending on the dominant mixture component. In
order to vary the decision difficultly, the ratio of the
two odours was systematically varied. Rats performed
at near chance level for 50/50 odour mixtures and
nearly perfectly for pure odours. To assess confidence,
reward was delayed by several seconds while subjects
were given the option to ‘restart’ trials by leaving the
reward port and re-entering the odour sampling port.
In other words, after the original decision about the
stimulus, rats were given a new decision of whether to
stay and risk no reward with timeout punishment, or
leave and start a new, potentially easier trial. An impor-
tant feature of this task, similar to the post-decision
wagering and confidence-rating tasks, is that the choice
and confidence reports are collected in the same trial,
an issue we will further discuss below.

It was observed that the probability of aborting and
restarting trials increased with stimulus difficulty and
that discrimination performance was better on trials
in which the subjects waited for the reward compared
with trials in which they reinitiated. Moreover, as we
will describe in more detail below, the probability to
reinitiate choices matched the pattern expected for
confidence judgements. In particular, even for trials
of the same stimulus, Kepecs et al. [49], observed
that restarts were systematically less frequent for
correct than for error trials. This correct/error analysis
permitted the authors to circumvent the criticism that
reinforcement learning on stimuli could explain the
pattern of behaviour (see below).

One difficulty with this task is that its parameters (e.g.
reward delay) need to be carefully tuned in order to have
a reasonable balance between restarted and non-
restarted trials. This difficulty, in part, can be traced to
the issue of choosing an appropriate pay-off matrix in
post-decision wagering paradigms. The cost of waiting
and the value of restarts must be chosen just right and
are difficult to infer a priori. For instance, in some par-
ameter regimes rats never restarted trials, while in
others they always restarted until an easier stimulus was
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Figure 2. Leaving decision tasks for studying confidence in animals. (@) Schematic of the behavioural paradigm. To start a trial,
the rat enters the central odour port and after a pseudorandom delay of 0.2—0.5 s an unequal mixture of two odours is deliv-
ered. Rats respond by moving to the A or B choice port, where a drop of water is delivered after a 0.5—-8 s (exponentially
distributed) waiting period for correct decisions. In catch trials (approx. 10% of correct choices), the rat is not rewarded
and no feedback is provided. Therefore, the waiting time can be measured (from entry into choice ports until withdrawal)
for all error and a subset of correct choices. (b) Psychometric function for an example rat. (¢) Choice accuracy as a function
of waiting time. For this plot, we assumed that the distribution of waiting times for correct catch trials is a representative
sample for the entire correct waiting time distribution. (d) Mean waiting time as a function of odour mixture contrast and

trial outcome (correct/error) for an example rat.

provided (A. Kepecs, H. Zariwala & Z. F. Mainen 2008,
unpublished observations). A related issue with binary
wagers is that in each trial only a single bit of information
is gained about decision confidence.

Both of these issues can be mitigated using task ver-
sions that provide graded reports of decision
confidence (figure 2a). Rats were trained in a task var-
iant we call a ‘leaving decision’ task. In this version, we
delay reward delivery using an exponential distribution
of delays (to keep reward expectancy relatively con-
stant) and measure the time an animal is willing to
wait at the choice ports (figure 2a). Incorrect choices
are not explicitly signalled and hence rats eventually
leave the choice ports to initiate a new trial. In order
to measure confidence for correct choices, we intro-
duce a small fraction (approx. 10—-15%) of catch
trials for which rewards are omitted. The waiting
time at the reward port before the leaving decision
(obtained for all incorrect and a fraction of correct
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trials) provides a graded measure reflecting decision
confidence (figure 2¢). Waiting time, naturally, also
depends on when the animal is expecting the reward
delivery. However, we found that the relative patterns
of waiting times were systematically related to decision
parameters (figure 2c¢,d, see below) for a range of
reward-delay distributions providing a behaviourally
robust proxy for decision confidence. Indeed, an
accurate estimate of decision confidence modulating
the waiting time will help to maximize reward rate,
while also minimizing effort and opportunity costs
incurrent by waiting. Because the animals’ cost func-
tions are difficult to infer, we cannot make quantitative
predictions about the optimal waiting time. Neverthe-
less, based on reasonable assumptions, we expect
accuracy to be monotonically related to waiting time,
in agreement with our observations (figure 2¢). Note
that although waiting time can also be measured in the
‘decision restart’ task variant, for all restarted trials,
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we did not always observe a simple relationship between
waiting time and confidence.

(f) Looking tests

In addition to tests based on psychophysical method-
ologies, the metacognitive abilities of animals have
also been addressed using more ethologically minded
behaviours. So-called ‘looking’ paradigms take advan-
tage of the fact that during foraging animals may
naturally seek information about where foods might
be located [50,51]. Such information-seeking can be
considered an assessment of the animal’s state of
knowledge: the less certain they are about their given
state of knowledge the more likely they will seek new
information [52]. Indeed, chimpanzees, orangutans,
macaques, capuchins and human children all show a
tendency to seek new information when specifically
faced with uncertainty [51,53-55]. By looking more
frequently in the appropriate situations, these species
can demonstrate knowledge about their own belief
states. In contrast, dogs have so far failed to show
such information-seeking behaviour [56,57]. How-
ever, in the case of such a failure, it remains possible
that the set-up was not ecologically relevant for the
species in question.

It may be useful to consider looking tests as an
instance of a more general class of behaviours in
which confidence assessment can be useful to direct
information seeking or exploration. Given the limit-
ations of experimental control possible in ethological
settings, it would be profitable to transform the look-
ing tests into psychophysical paradigms where the
confidence can be read out by choices to seek out
more information [58].

(g) Criticisms of confidence-reporting behaviours
Many of these studies discussed above triggered
controversies; some of the criticisms have been
highlighted above. To summarize, critics have system-
atically attempted to come up with alternative
explanations for the performance of non-humans ani-
mals that do not require uncertainty monitoring. The
primary thrust of these critiques has been that some
confidence-reporting tasks can be solved by learning
appropriate stimulus-response categories without the
need for true uncertainty monitoring [59]. A second
important criticism is that a behavioural report can
in some cases arise from reporting the level cognitive
variable, such as ‘motivation’, ‘attention’ or ‘vigilance’
that impacts performance, rather than confidence
per se [35]. Thus, a simpler mechanism might be
sufficient to account for the observed behaviour
without invoking confidence or metacognition. How-
ever, we have seen that these alternative classes of
explanation, while very important to address, are
being tackled through increasingly sophisticated task
designs [49,60,61].

A third, somewhat different, line of criticism has
questioned the similarity of various confidence tests to
confidence-reporting tests that can be performed by
humans [4,62,63]. We find this line of criticism much
less compelling. For instance, it has been suggested
that if long-term memory is not required then a task
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cannot be considered metacognitive. Yet, from a neuros-
cientific (mechanistic) perspective, it is hard to see the
relevant difference between a memory representation
and a perceptual representation. A second argument
has been that generalization across tasks is an important
requirement [61,64,65]. This argument is akin to the
claim that a speaker of a single language, such as
English, does not demonstrate linguistic competence
until she is also shown to generalize to another language,
such as Hungarian. Clearly, cognitive flexibility and
knowledge of Hungarian are advantageous skill,
but not necessary to demonstrate linguistic competence.
Likewise, it may be expected that confidence report-
ing, like other sophisticated cognitive capabilities, may
not be solved in a fully general form by most animals
or even humans. Finally, some studies have been
criticized on the basis of the number of subjects (e.g.
‘two monkeys alive have metacognition’) [66]. We find
this criticism somewhat out of line, especially consider-
ing that it has long been routine in monkey
psychophysical and neurophysiological studies to use
only two subjects. The legitimacy of extrapolating from
few subjects is based in part on the argument that indi-
viduals of a species share a common neural, and hence
cognitive, architecture.

We conclude this section by noting with some puzzle-
ment that it has rarely, if ever, been suggested that
human behavioural reports of confidence themselves
might be suspect. Why should it be taken for granted
that self-reported confidence judgements in humans
require an instance of metacognition and uncertainty-
monitoring processes? Ultimately, whether applied to
human or to other animals, we are stuck with observable
behaviour. That human behavioural reports can have a
linguistic component while animal reports cannot does
not justify two entirely distinct sets of rules for human
versus animal experiments. Regardless of the species
of the subject, we ought to determine whether a particu-
lar behavioural report can be implemented through
a simpler mechanism, such as associative learning.
In order to best make this case, it is critical to be very
careful about how confidence behaviour is defined. To
do so, we will argue that semantic definitions need to
be dropped in favour of formal (mathematical) ones.
It is to this topic that we turn next.

3. COMPUTATIONAL PERSPECTIVE ON
CONFIDENCE JUDGEMENTS
The study of decision-making provides important
insights and useful departure points for a computational
approach to uncertainty monitoring and confidence jud-
gements. Smith and colleagues in their groundbreaking
review advocated and initiated a formal approach to
study confidence judgements [5]. We argue that this
approach can be taken further to provide a mathemat-
ically formal and quantitative foundation. That is
because formal definitions can yield concrete, testable
predictions without resorting to semantic arguments
about abstract terms [67,68]. To seek a formal basis for
confidence judgements, we will first consider compu-
tational models of simpler forms of decision-making [69].
From a statistical perspective, a two-choice decision
process can be viewed as a hypothesis test. In statistics,
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each hypothesis test can be paired with an interval esti-
mation problem to compute the degree of confidence in
the hypothesis [7]. Perhaps, the most familiar quan-
titative measure of confidence is the p-value that can
be computed for a hypothesis test. Indeed, the notion
of confidence is truly at the heart of statistics, and
similarly it should be at the centre of attention for
decision-making as well. Moreover, statistical analysis
provides a solid departure point for any attempt to
seek psychophysical or neural evidence for confidence.

We begin with the core idea that confidence in a
decision can be mechanistically computed and formal-
ized in appropriate extensions of decision models.
First, we will define confidence and then discuss how
to derive (compute) it.

(a) Defining confidence

Confidence can be generally defined as the degree of
belief in the truth of a proposition or the reliability
of a piece of information (memory, observation and
prediction). Confidence is also a form uncertainty,
and, previously, several classifications of uncertainty
have been discussed. In psychology, external and
internal uncertainties have been referred to as
“Thurstonian’ and ‘Brunswikian’ uncertainty, respect-
ively [70,71]. In economics, there are somewhat
parallel notions of ‘risk’® and ‘ambiguity’ [72-76].
Risk refers to probabilistic outcomes with fully known
probabilities, while in the case of ambiguity, the
probabilities are not known.

Here, we focus on decision confidence, an impor-
tant instance of uncertainty, which summarizes the
confidence associated with a decision. Decision confi-
dence can be defined, from a theoretical perspective,
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as an estimate by the decision-maker of the probability
that a decision taken is correct. Note that we also use
‘decision uncertainty’ interchangeably, after a sign
change, with ‘decision confidence’.

(b) Bayestian and signal detection models for
decision confidence

Signal detection theory (SDT) and Bayesian decision
theory [7] provide quantitative tools to compare the
quality of stimulus representation in neurons with
variability in behavioural performance [77]. These
quantitative approaches have provided a strong basis
for probing the neural mechanisms that underlie per-
ception [78].

We begin with a model for a two-alternative
decision, such as the olfactory mixture discrimination
paradigm discussed above [7]. For the purposes of
our argument, we will consider a simplified case of dis-
criminating two stimuli, 4 and B, in Gaussian noise
(figure 3a). Stimulus A is distributed as P;(s|4) ~
N(s4,04), with a mean of s, and a variance of afq,
and similarly, stimulus B is drawn from P,(s|B) ~
N(sp,op). For simplicity, we assume that their var-
iances are equal. Bayesian decision theory proposes
that subjects should maximize their expected reward
based on both prior information and current evidence.
This can be achieved by choosing the larger posterior

choice = (4if P(Als) > P(B|s), otherwise B),
where

P(A)P(s|4
P(d)s) = DAL 1)>(s()S| )
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is computed using Bayes’ rule. From this, we can
compute confidence as

P(correct|s) = max (P(Als), P(B]s)).

An alternative is to compute an intermediate
decision variable

P(s|4)
P(s|B)

P(A)
P(B)’

d(s) =log + log
the log posterior ratio, which, assuming a uniform
prior distribution over the stimuli, simplifies to the
log-likelihood ratio, log P(s|4)/P(s|B). In this
formulation, the decision rule is to choose A if
d(s)>0 and |d(s)|, the decision distance, is a measure
of confidence.

This model yields specific predictions about how the
representation of confidence relates to other variables.
First, by definition confidence predicts the probability
of a choice being correct, in keeping with the intuitive
notion of ‘confidence’. Second, when computed as a
function of the stimulus difficulty and choice outcome
(the observables in a 2AFC task), the model predicts
a distinctive and somewhat counterintuitive ‘X’ pat-
tern (figure 3c¢), in which confidence increases with
signal-to-noise for correct choices while decreasing for
error choices.

Note that these patterns are not only robust to
different stimulus distributions, but can also be
derived from other choice model frameworks based
on integration of evidence [49,79,80], attractor
models [81,82] and even support vector machine
(SVM) classifiers [83] as we discuss next.

(¢) Other models of decision confidence:
integrators, attractors and classifiers

We have seen how natural it is to introduce a notion
of confidence in SDT. Integrator or drift-diffusion
models of decision-making can be seen as adding a tem-
poral dimension to SDT [84,85], and we can extend
these models in similar ways. This is most natural to
examine for the ‘race’ variant of the integrator model
where evidence for and against a proposition accumu-
lates in separate decision variables (figure 3d). Vickers
proposed that confidence in a decision may be computed
as the ‘balance of evidence’, the difference between the
two decision variables at decision time [86]. This dis-
tance can be transformed into a veridical estimate of
confidence with qualitatively the same properties as the
estimate from SDT models (figure 3e,f).

Another class of models where similar notions of
confidence can be applied is classifier models from
machine learning theory. For instance, SVMs are a
class of algorithms that learn by example to assign
labels to objects. In a probabilistic interpretation of
SVM classifiers [83], the size of the margin for a
sample (distance of the separating hyperplane to
the sample) is proportional to the probability of that
point belonging to a class given the classifier (separ-
ating hyperplane). This vyields what is known
technically as a measure of the ‘posterior variance of
the belief state given the current model’, and, in
other words, an estimate of confidence about the
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category [83,87]. Beyond providing a good prediction
of classification accuracy, this confidence measure also
yields the same qualitative ‘X’ patterns when plotted as
function of stimulus and outcome [88].

These normative models can account for how con-
fidence may be computed algorithmically but not for
how confidence is used to make choices, such as the
confidence-guided restart decisions discussed above.
Insabato and colleagues introduced a two-layer attrac-
tor network based on integrate-and-fire neurons that
can accomplish this [82,89]. The first network is a
competitive decision-making module whose dynamics
compute a categorical choice based on a noisy (uncer-
tain) stimulus. This decision network then feeds into a
second attractor network in which a ‘low confidence’
and a ‘high confidence’ neuron pool compete with
the winning population representing the decision to
stay or restart, respectively. The attractor networks
are not handcrafted and tuned for this purpose but
rather based on generic decision networks [90,91]
that have been used to account for other decision pro-
cesses. Interestingly, the design of this model suggests
a generic architecture in which one network monitors
the confidence of another, similar to cognitive ideas
about uncertainty monitoring [92].

Some of the specific models presented above can be
interpreted as normative models, prescribing how the
computation of confidence ought to be done based on
some assumptions. In this sense, they are useful for
describing what a representation of confidence or its be-
havioural report should look like. Some of these models
are also generative and can be taken literally as an algor-
ithm that neural circuits might use to compute
confidence. These models may also be useful in consid-
ering criticisms, such as the argument that some
metacognitive judgements can be performed simply by
stimulus-response learning based on internal stimulus
representations. At least for certain behavioural tasks,
as we have shown, this is not the case since mapping
confidence requires a specific, highly nonlinear form
of the subjective stimulus beyond simple forms of
associative learning. Although more sophisticated algor-
ithms might compute confidence in different ways,
ultimately what characterizes confidence is that it con-
cerns a judgement about the quality of a subjective
internal variable, notwithstanding how that response is
learned. In this sense, the models presented here can
serve as normative guideposts.

Taken together these computational modelling results
establish, first, that computing confidence is not difficult
and can be done using simple operations, second, that
the results are nearly independent of the specific model
used to derive it, and finally that it requires computations
that are distinct from the computation of other decision
variables such as value or evidence.

(d) Veridical confidence estimates and

calibration by reinforcement learning

Thus far, we have discussed how simple models can be
used to compute decision confidence on a trial-by-trial
basis. However, we dodged the question of how to find
the appropriate transform function that will result in a
veridical confidence estimate. First, what do we mean
by an estimate being veridical? A veridical estimate is
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the one that correctly predicts the probability of its
object. For instance, in Bayesian statistics, the posterior
probability of an event is a veridical estimate of confi-
dence. In our examples above, we call estimates
veridical if they are linearly related to accuracy. Of
course, most confidence judgements are not entirely
veridical; in fact, people tend to systematically overesti-
mate or underestimate their confidence. While such
systematic deviations have been extensively studied,
they are likely to involve a host of emotional and social
factors that we wish to leave aside for now. Rather we
focus on the basic computational question of how can
naive confidence estimates be tuned at all so they
roughly correspond to reality [93]?

To obtain veridical confidence estimates, it is necess-
ary to calibrate the transfer function (e.g. figure 3¢). We
can assume that the calibration transform changes on a
much slower timescale compared with variations in con-
fidence, and hence this computation boils down to a
function-learning problem. Therefore, a subject can
use reinforcement learning, based on the difference
between the received and predicted outcome (derived
from confidence), to learn the appropriate calibration
function. Interestingly, consistent with this proposal,
experiments show that confidence ratings in humans
become more veridical with appropriate feedback [16].
Note that this use of reinforcement learning to calibrate
confidence still relies on a trial-to-trial computation of a
confidence estimate.

(e) Applying predictions of confidence models to
confidence-reporting tasks

These computational foundations for confidence
emphasize the separation between kow a particular rep-
resentation is computed and whar function it ultimately
serves. But in order to study confidence, nearly all be-
havioural tasks exploit the fact that animals try to
maximize their reward and therefore incentives are set
up so that maximizing reward requires the use of confi-
dence information. There is a multitude of possible
approaches, for instance, using the idea that confidence
can also be used to drive information-seeking behaviour
[58,94,95], which is exploited in the more ethologi-
cally configured ‘looking’ paradigms discussed above.
Clearly, confidence signals can have many functions,
and correspondingly many psychological labels. There-
fore, our first goal is not to study how confidence is
functionally used (‘reward maximization’ or ‘infor-
mation seeking’) but rather its algorithmic origin: how
it was computed. To accomplish this, we can use the
computational models introduced above to formally
link the unobservable internal variable, confidence, to
observable variables, such as stimuli and outcomes.
This general strategy is beginning to be used to infer
various decision variables such as subjective value
representations [94,96—102].

In order to argue that rats reported their confidence
by restarting, we showed that the probability of restart-
ing was not only dependent on stimulus difficulty but
also the correctness of the choice. Figure 2d shows the
observed (folded) ‘X’ pattern for the ‘leaving decision’
task variant. This pattern of data is critical in that it
can rule out the two main criticisms discussed above
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with reference to confidence tests. First, this pattern
cannot be explained by assuming that reinforcement
learning assigned a particular degree of confidence to
each stimulus. That is because correct and error
choices for the same stimulus are associated with
different confidence measures. Note that we do not
exclude the possibility that reinforcement learning pro-
cesses may be used to calibrate confidence on a slower
timescale as discussed above. In this respect, fitting
confidence reports to reinforcement learning models
is useful to rule out the contribution of such process
to correct/error differences in confidence reports.
Second, since this pattern is ‘non-factorizable’, it
cannot be reproduced by independently combining
stimulus difficulty effects, manipulated by the exper-
imenter, with a waxing and waning internal factor,
such as vigilance or attention. This rules out the
alternative explanation used for the ‘decline option’
tests [35,36] according to which decline choices
follow a stimulus-difficulty factor times an attention
or memory-dependent factor. The leaving decision
version of this task enables even stronger inferences,
because waiting time is a graded variable. Indeed, as
expected for a proxy for confidence, waiting time pre-
dicts decision accuracy (figure 2¢). Moreover, these
trial-to-trial confidence reports can be directly fitted to
alternative models, such as those based on reinforcement
learning in an attempt to exclude them [49].

It is interesting to note that the same method of separ-
ating correct and error choices could be applied to the
‘post-decision wagering’ test [41]. While appropriate
data from these tasks, i.e. sorted by both correct and
error as well as by difficulty, may already be available,
to our knowledge they have not been reported in this way.

Also note that some other tasks, such as the ‘decline
option’ test or ‘uncertain option’ task, do not admit
this possibility because one obtains either an answer
or a confidence judgement, but not both, in any
given trial. If the animal declines to take the test,
there is no choice report, hence no error trials to
look at. As a result, only weak inferences are possible
leaving us with a plethora of alternative explanations
for the observed data [3,4,42,62,63].

To summarize the past two sections, the lesson we
take from these studies and the related debates is three-
fold. First, confidence-reporting tasks should collect
data about the choice and the confidence associated
with it in the same trial and for as large a fraction of
trials as possible. Lacking this, it is difficult if not imposs-
ible to rule out alternative mechanisms. Second, the
confidence readout should ideally be a graded variable.
Finally, we believe that to call a particular behaviour a
‘confidence report’ we need to drop semantic definitions
and focus on formal accounts of confidence by fitting
appropriate models to the behavioural data.

4. A CASE STUDY OF DECISION CONFIDENCE IN
RAT ORBITOFRONTAL CORTEX

Although computational models can be used to rule
out and to some degree infer certain computational
strategies, behavioural reports alone provide funda-
mentally limited evidence about the mechanisms
generating that report. Therefore, ultimately we need
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Figure 4. Neural correlates of decision confidence in rat orbitofrontal cortex. (a—d) Analyses of firing rate for a single neuron
rat in OFC after the animal made its choice and before it received feedback. (a) Tuning curve as a function of stimulus and
outcome (red, error; green, correct). (b) Firing rate conditional accuracy function. (¢) Psychometric function conditioned of
firing rate (blue, low rates; orange, high rates). (d) Regression analysis of firing rate based on reward history. Coefficient «; is
an offset term, «, is stimulus difficulty and B coefficients represent outcomes (correct/error) divided by left/right choice side
and a function of recent trial history (current trial = 0). Note that the largest coefficients are for the current trial and beyond
the past trial the coefficients are not significantly different from zero (unfilled circles).

to look into the brain and attempt to identify the
necessary neural representations and processes
underlying the assumed computations.

(a) Representation of decision confidence in
orbitofrontal cortex

We wondered if orbitofrontal cortex (OFC), an area
involved in representing and predicting decision out-
comes, carries neural signals related to confidence
[103—105]. Our principal strategy was to look for
neural correlates of confidence and try to understand
their origin in a mechanistic framework [49]. We
recorded neural firing in OFC while rats performed
the olfactory mixture categorization task described ear-
lier. We focused our analysis on the reward-anticipation
period, after the choice was made and while rats were
waiting at the reward port, but before they received
any feedback about their answer. Figure 4 shows
an example neuron whose firing rate during this
anticipation period signals decision uncertainty.

How did we establish that this is confidence and not
some other variable? Similar to our approach to analys-
ing the confidence-reporting behaviour, we first plotted
firing rates as a function of the stimulus and outcome
(two observables). We noticed the same non-factorizable
‘X’ pattern as a function of stimulus and outcome that is
a key prediction of confidence models (figure 4a). This is
also the pattern of behavioural responses we observed
during leaving decisions. Second, the firing rates predict
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accuracy, being highest on average for trials associated
with chance performance and lowest on average for
trials with near perfect performance (figure 45). This is
essentially a definition of confidence (or rather its inverse
in this case, decision uncertainty). Third, to show that
these neurons predict accuracy beyond what is knowable
from the stimulus, we plotted behavioural accuracy as a
function of stimuli conditioned on low and high firing
rates (figure 4c¢). This shows that the correlation between
firing rates and performance is not solely owing to stimu-
lus information, because knowing even a single bit about
firing rates (high or low) can significantly improve behav-
ioural predictions. Fourth, the firing rates could not be
explained by recent reward history as determined by a
regression analysis, showing that reinforcement learning
based on past experiences with outcomes did not
produce this pattern. Note that some forms of perform-
ance fluctuations coupled to reinforcement learning
could result in different firing rates for correct and
error choices. Therefore, while the ‘X’ pattern is sugges-
tive, it is crucial to explicitly rule out these history-based
mechanisms. Although, in principle, this analysis could
be applied to binary choices as well, it is more powerful
for continuous variables like firing rate. This result
implies that firing rates were produced by a process
that uses information mostly from the current trial.
Taken together, the most parsimonious explanation of
these data is that neurons have access to a measure of
decision confidence.
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We found over 20 per cent of neurons in OFC
had correlates like the neuron described earlier that can
be called ‘decision uncertainty’, while about 10 per
cent carried a signal of the opposite sign called ‘decision
confidence’. This confidence signal is a scalar quantity,
which is why it is surprising that so many OFC neurons
encoded this one variable. OFC supports a broad range
of functions and we expect that it will encode other vari-
ables as well. The current understanding of OFC
suggests that it is mainly involved in outcome prediction
[103,104,106]. Predicting outcomes is difficult and
different situations call for different computational
mechanisms. In a psychophysical decision task like the
one we used, the only source of stochasticity is the
decision of the animal. Therefore, an estimate of confi-
dence provides the appropriate prediction of trial
outcome. At the same time, we expect that OFC neurons
will incorporate different signals as needed to make out-
come predictions, as we discuss elsewhere [107].

At this point, it is important to return to semantics.
First, we use the word confidence to refer to the formal
notion of decision confidence, which happens to over-
lap to a large degree with our intuitive notion of
confidence. Second, we wish to emphasize strongly
that we are not labelling these neurons as representing
‘confidence’ or anything else; the claim being made is
that they must have had access to mechanisms that
computed an estimate of confidence. In this sense,
what we established is not a neural correlate of a be-
haviour but rather a computational basis for a neural
signal. This is both a strength and a shortcoming of
our previous study. We did not show that the neurons’
firing correlates with the confidence behaviour on a
trial-by-trial basis, and in this sense, we did not estab-
lish a neural correlate of an observed behaviour. On
the other hand, there is a long and troubled history
of labelling neurophysiological signals with psychologi-
cal concepts based on a behavioural correlate alone
[108]. Indeed, our neurons may also be correlated
with ‘anxiety’, ‘arousal’ or ‘exploration’. And in fact,
these concepts can be related to different uses of uncer-
tainty, and may all turn out to be neural correlates in
some behavioural conditions. Rather our interpretation
hinges on the only class of computational mechanisms
that we found could successfully explain the observed
firing patterns. This also implies that our claims can
be disproved, either by showing that alternative
models, without computing confidence, can also
account for our data, or make predictions based on
these models that are inconsistent with our data.

Although we use decision confidence in the for-
mally defined sense, as the probability that a choice
was correct based on the available evidence, this defi-
nition overlaps to some extent with our intuitive notion
about confidence. Nevertheless, it will be important to
directly assess how formal definitions of confidence
and implicit confidence reports by animals correspond
to the human notion of subjective confidence [109].

5. BEHAVIOURAL USES OF CONFIDENCE
ESTIMATES

Until now, we discussed confidence in a limited con-
text focusing on explicit or implicit reports, and
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argued that formalized notions based on statistics pro-
vide a useful way forward. Placing this topic in a
broader context, there is a vast literature in neuro-
science, psychology, economics and related fields
showing that uncertainty and confidence are critical
factors in understanding behaviour [74,76,110—115].
Most of these fields use formal notions of confidence,
and while impacting behaviour in lawful ways this need
not always correlate with a conscious sense of confi-
dence. To highlight this dissociation, we briefly point
to a set of examples where confidence signals are
used to guide behaviour in the apparent absence of
awareness. Interestingly, in these cases, humans and
non-human animals seem to be on par in the uses of
uncertainty. Note, however, that in several of the
examples although the requisite monitoring processes
might use uncertainty, an explicit report may not be
available. It will be valuable to examine how the uses
of uncertainty and confidence in these behavioural
situations are related to the metacognitive notion of
confidence [116].

(a) Foraging and leaving decisions

As animals search for food they must continually
assess the quality of their current location and the
uncertainty about future possibilities to find new
food items [117]. In other words, they must continu-
ally decide whether to stay or to go, depending on
their level of confidence in the current location or
‘patch’. Behavioural observations suggest that the
time an animal spends at a particular patch depends
not only the mean amount of food but also the variabil-
ity [118,119]. Optimal foraging theory can account
for these features by incorporating information about
variability and other costs [117,120]. The patch allo-
cation, i.e. the time animals spend at a particular
location, should depend on the uncertainty of the esti-
mate of its value [117]. Similarly, our ‘decision restart’
and ‘leaving decision’ tasks provide a psychophysical
instantiation of a foraging decision: whether to stay at
the reward port or leave and to start a new trial. The
optimal solution here also depends on uncertainty con-
cerning the immediately preceding perceptual decision,
which determines the outcome. Therefore, foraging
decisions are an example where uncertainty estimates
are directly turned into actions, an online use of
uncertainty as a decision variable.

(b) Active learning and driving

knowledge acquisition

When you are not confident about something, it is a
good time to learn. A subfield of metacognition refers
to this as ‘judgements of learning’ [121,122]. The
notion is that in order to figure out how much and
what to learn, one needs to have meta-representations
[123,124]. Interestingly, the field of machine learning
in computer science uses a very similar but quantitative
version of this insight. Statistical learning theory
proposes that ‘active learners’ use not only reinforce-
ments but also their current estimates of uncertainty
to set the size of updates, i.e. learn more when uncertain
and less when certain [125]. For instance, the Kalman-
filter captures the insight that learning rate ought to
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vary with uncertainty [126]. Simplified versions of the
Kalman-filter have been used to account for a range of
findings in animal learning theory about how stimulus
salience enhances learning [127-130].

One of the key uses of estimating uncertainty or
knowing your confidence is to drive information seek-
ing behaviour so as to reduce the level of uncertainty.
This is related both to foraging decisions as well as
the active-learning examples given immediately
above. The basic idea here is that the value of infor-
mation is related to the uncertainty of the agent
[95]. When the agent is very confident about the
state of the world, then the value of information is
low [131-134]. When the agent is less confident,
then the value of information is high. Thus, when
faced with a decision of how much time to allocate
to information gathering or a decision between exploit-
ing current information versus acquiring a new piece
of information, we would expect that a representation
of uncertainty might be particularly useful [135,136].
In other words, we expect the value of exploration to
decrease proportionately with the current confidence
in that piece of information.

(c) Statistical inference and multi-sensory
integration

Perhaps the most ubiquitous and important use of
uncertainty is in the process of statistical inference:
using pieces of partly unreliable evidence to infer
things about the world [7]. In principle, probability
theory, or more specifically Bayesian inference tells us
how one ought to reason in the face of uncertainty
[9]. What this theory says in a nutshell is that evidence
must be weighted according to its confidence (or inver-
sely according to its uncertainty). There are a growing
number of examples of statistically optimal behavioural
performance (in the sense of correctly combined evi-
dence), mainly in humans [137-139]. Since these
examples involve primarily ‘low-level’ sensorimotor
tasks to which humans often have no explicit access, it
is not clear whether explicit (‘metacognitive’) access
to confidence estimates are relevant. For example, a
tennis player is unlikely to be able to report his relative
confidence in the prior, his expectation about where the
ball tends to fall, compared to his confidence in the pre-
sent likelihood, the perceptual evidence about the ball’s
current trajectory. Nevertheless, his swing is accurate.
It has been suggested that such problems reflect a prob-
abilistic style of neural computation, one that would
implicitly rather than explicitly represent confidence
[10-12,140,141].

6. SUMMARY
Confidence judgements appear to us as personal,
subjective reports about beliefs, generated by a process
of apparent self-reflection. If so, then could animals
also experience a similar sense of certainty? And is it
even possible to ask this question as a pragmatic
neuroscientist with the hope of finding an answer?
Undeniably, the concepts of ‘confidence’ and ‘uncer-
tainty’ have established meanings in the context of
human subjective experience. The importance of these
concepts greatly motivates our research and therefore
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it is important to assess the relationship between for-
mally defined measures and the subjective entity in
humans. Of course, it is impossible for us to know
whether animals, in any of the tasks discussed above,
ever feel the same sense of uncertainty that we
humans do. In fact, some philosophers argue that it is
impossible for us to know whether anyone else experi-
ences the same sense of uncertainty—the problem of
other minds. But in practice, it appears that verbal shar-
ing of confidence information in humans can achieve
the same goal of metacognitive alignment [142].

Before we can approach these vexing questions from
a scientific perspective, it is important to establish that
there is no justification in having distinct rules for
interpreting human and animal experiments. Behav-
ioural experiments, both in humans and in animals,
need to be interpreted based on observables and not
subjective experiences only accessible via introspec-
tion. This demands a behaviourist perspective but
also new tools to go beyond old-fashioned, denialist
behaviourism so that we are able to study a variable
that is not directly accessible to measurement. This
is possible using model-based approaches that enable
one to link hidden, internal variables driving behaviour
to external, observable variables in a quantitative
manner. Such formal approaches not only enable us
to drop semantic definitions, but also to go beyond
fruitless debates. Models are concrete: they can be
tested, disproved and iteratively improved, moving
the scientific debate forward.

Here, we outlined an approach to studying confi-
dence predicated on two pillars: an appropriately
designed behavioural task to elicit implicit reports of
confidence, and a computational framework to interpret
the behavioural and neuronal data. Establishing a confi-
dence-reporting behaviour requires us to incentivize
animals to use confidence, for instance, by enabling ani-
mals to collect more reward or seek out valuable
information based on confidence. We saw that in order
to interpret behaviour and rule out alternative expla-
nations, it is crucial to use tasks where data about the
choice and the confidence associated with it are col-
lected simultaneously in the same trial. Moreover, it is
advantageous, although not required, that the confi-
dence report is a graded variable and the task provides
a large number of trials for quantitative analysis. To
begin to infer behavioural algorithms for how confi-
dence may have been computed (or whether it was),
we presented a normative theoretical framework and
several computational models.

In so doing, we have tried to lift the veil of this
murky, semantically thorny subject. By showing that
confidence judgements need not involve mysterious
acts of self-awareness but something more humble
like computing the distance between two neural rep-
resentations, we hope to have taken a step towards
reducing the act of measuring the quality of knowledge
to something amenable to neuroscience, just as
the notion of subjective value and its ilk have been
[143—146]. Indeed, recent studies on the neural
basis of confidence have brought a neurobiological
dawn to this old subject [17,18,36,49,89]. We also
believe that as a consequence of this demystification,
animals may be put on a more even footing with
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humans, at least with respect to the confidence-reporting
variety of metacognition. Yet, this may reflect as much
a humbling of our human abilities as a glorification of
the animal kingdom.

We are grateful to our collaborators and members of our
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supported by the Klingenstein, Sloan, Swartz and
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