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Quantification of the abundance of Vibrio parahaemolyticus in water and oysters from Rhode Island showed the presence of
environmental strains and low levels of potentially pathogenic strains when water temperatures were >18°C, with peak levels in
late July to early August. A higher abundance of the trh gene than of the tdh gene was observed.

Vibrio parahaemolyticus is a Gram-negative, halophilic bacte-
rium occurring naturally in estuarine and coastal marine wa-

ters that is able to cause illness in humans (12, 14, 18, 19). Filter
feeders, such as oysters, are capable of acquiring V. parahaemolyti-
cus from the water column and concentrating it in their tissues
(10). Because of the potential for human illness through con-
sumption of raw or undercooked shellfish with V. parahaemolyti-
cus, these bacteria pose a threat to shellfish aquaculture and fish-
eries through loss of revenue due to concerns about seafood safety
and negative publicity in cases of outbreaks. Illnesses due to V.
parahaemolyticus from consuming shellfish in Rhode Island and
the Northeast United States are rare (3). Because of a strong asso-
ciation between V. parahaemolyticus levels and temperature (5, 7,
18, 19), there is an increased awareness of the danger posed by V.
parahaemolyticus due to a rise in marine and estuarine water tem-
peratures. In Narragansett Bay (Rhode Island), spring-summer
sea surface temperatures have warmed by 1.6°C from 1959 to 2005

and are generally over 15.0°C from late May through mid-October
(1). Warmer water temperatures could potentially extend the sea-
son in which V. parahaemolyticus could be a concern.

The total and relative abundances of environmental and poten-
tially pathogenic V. parahaemolyticus bacteria in Rhode Island coastal
waters have not been determined. A 1985 study showed the presence
of V. parahaemolyticus in Narragansett Bay, but no pathogenic strains

Received 10 November 2011 Accepted 23 January 2012

Published ahead of print 3 February 2012

Address correspondence to Marta Gomez-Chiarri, gomezchi@uri.edu.

* Present address: Southwest Fisheries Science Center, La Jolla, California, USA.

Copyright © 2012, American Society for Microbiology. All Rights Reserved.

doi:10.1128/AEM.07519-11

FIG 1 Partial map of Rhode Island showing the locations of the sampling sites in Narragansett Bay (NB1, NB2, and Fox Island) and coastal salt ponds (CP1 and
CP2). (Map courtesy of Christopher Damon, adapted from the Rhode Island Geographic Information System [RIGIS; copyright 2011].)
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were detected (19). The purpose of this study was to determine the
seasonal abundance of environmental and pathogenic V. parahaemo-
lyticus in Rhode Island. Water (1 liter) and oyster (n � 10 to 15)
samples were collected from two farms (NB1, 41°33.678=N,
71°18.431=W; NB2, 41°32.583=N, 71°25.351=W) in Narragansett Bay
and two farms (CP1, 41°22.883=N, 71°31.954=W; CP2, 41°22.804=N,
71°33.720=W) in coastal salt ponds (Fig. 1). Water samples were also
collected from a site near Fox Island (41°34.2=N, 71°23.4=W) within
Narragansett Bay. A 3-tube most-probable-number (MPN) method
combined with quantitative PCR detection of the tlh, tdh, and trh
genes was used for detection of V. parahaemolyticus (16, 20). After
incubation of the MPN tubes, a 1-ml portion from each enrichment
tube in the serial dilution series was transferred to cryotubes and
stored at �80°C. Bacterial DNA was extracted by boiling, and
quantitative PCR (qPCR) was used to score the tubes as positive or
negative for tlh, trh, and tdh. Vibrio parahaemolyticus densities
(�1 to account for 0 values) were log10 transformed for statistical
analysis using one-way analysis of variance (ANOVA) or Kruskal-
Wallis one-way ANOVA on ranks and the appropriate post hoc
tests (IBM SPSS Statistics 19; IBM, Somers, NY; Sigmastat 3.1;
Systat, Chicago, IL).

Vibrio parahaemolyticus densities in oysters and water. V.
parahaemolyticus was detected in Rhode Island oyster and water
samples for approximately 15 weeks during the summers of 2009

and 2010 (Fig. 2 and 3). For most locations, densities of V. para-
haemolyticus increased rapidly in a period of 2 to 3 weeks after
water temperatures reached approximately 18°C, starting in early
July for 2009 or mid-June for 2010. This study confirmed July to
August as the period of highest risk for V. parahaemolyticus. This is
similar to the case with the Chesapeake Bay, where V. parahaemo-
lyticus first peaked in June and July in the water column after water
temperature rose to 19°C (13, 18). The maximum level of total V.
parahaemolyticus seen in oysters in this study (9 � 103 MPN g�1

oyster tissue) corresponds to a very low risk of gastroenteritis from
oysters (10). Levels of total V. parahaemolyticus bacteria detected
in Rhode Island oysters are comparable to levels observed in shell-
fish from other U.S. and European coastal areas (�104 MPN g�1)
(2, 5, 6, 11, 15, 16, 17, 18, 20).

Densities of V. parahaemolyticus in Narragansett Bay water
samples in 2009 and 2010 (�15 MPN ml�1) are comparable to the
maximum densities found in a 1985 study (4.95 CFU ml�1 [19])
(Fig. 3). Levels of V. parahaemolyticus in water collected from
oyster farms were in general slightly higher than levels at the non-
farm reference site at Fox Island. Maximum densities of tlh in
water were significantly higher in 2009 than in 2010 (Kruskal-
Wallis one-way ANOVA; P � 0.049). The summer of 2009 was a
colder summer with more precipitation, possibly explaining some
of the differences between these 2 years.

FIG 2 Temporal variation in temperature (right axis, squares, broken line) and levels of V. parahaemolyticus tlh (circles, solid line), trh (triangles, solid line), and
tdh (diamonds, solid line) (left axis) in oysters collected from four Rhode Island farms during the summers of 2009 and 2010.
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Abundance of pathogenic V. parahaemolyticus relative to to-
tal V. parahaemolyticus. For 21 of 48 (43.8%) oyster samples,
only the trh gene was detected (tdh was nondetectable [Table 1]),
showing a predominance of trh� strains in Rhode Island. The
percentage of pathogenic V. parahaemolyticus relative to total V.
parahaemolyticus, calculated by dividing trh and tdh values by that
for tlh, varied greatly both spatially and temporally for both years,
and changes occurred in a matter of weeks (Table 1 and Fig. 2 and
3). Studies of other U.S. coastal waters (Gulf Coast and Pacific)
typically show that most samples contain either a majority of tdh�

strains lacking trh or of tdh� trh� strains (6, 16, 20). Only one
other study of U.S. waters (Chesapeake Bay) has shown a higher

prevalence of trh� over tdh� (18). However, studies from other
countries, such as Norway, India, and France, have also shown a
higher relative prevalence of trh� (4, 8, 9). The relative percentage
of pathogenic V. parahaemolyticus in oysters in Rhode Island (2.5
to 31.9% on average) (Table 1) is higher than what has been re-
ported for other coastal locations in the United States (0.3 to
3.2%) (10). However, recent studies have shown that the percent-
age of pathogenic V. parahaemolyticus can be high (16).

Conclusions. This study provides a range of V. parahaemolyti-
cus densities found in Rhode Island oysters and water samples. We
detected a higher abundance of the trh gene than of the tdh gene. It
is unknown if the levels of pathogenic V. parahaemolyticus mea-

FIG 3 Temporal variation in temperature (right axis, squares, broken line) and levels of V. parahaemolyticus tlh (circles, solid line), trh (triangles, solid line), and
tdh (diamonds, solid line) (left axis) in water collected from four Rhode Island farms and Fox Island station during the summers of 2009 and 2010.
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sured in this study by qPCR were due to the presence of one or a
few trh� strains lacking tdh in relatively higher abundance or to
the accumulation of low levels of multiple tdh� trh� strains and of
trh� strains lacking tdh. This study provides a baseline for further
studies of the ecology of V. parahaemolyticus in coastal waters in a
temperate estuary in the Northwest Atlantic.
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TABLE 1 Percentages of pathogenic V. parahaemolyticus relative to total V. parahaemolyticus in water and oyster samples from Fox Island,
Narragansett Bay, and two farms in the coastal ponds for 2009 and 2010 combined

Farma

% trh or tdh prevalence [avg � SD (range)] in:

Oysters Water

trh tdh trh tdh

NB1 2.5 � 5.0 (0–17.8) 0.2 � 0.3 (0–0.8) 6.2 � 11.8 (0–31.8) 0 (0)
NB2 7.2 � 11.2 (0–39.8) 0.4 � 0.8 (0–2.4) 10.5 � 16.7 (0–45.8) 0 (0)
CP1 31.9 � 39.2 (0–100) 0.4 � 1.3 (0–4.6) 15.7 � 29.0 (0–100) 0 (0)
CP2 6.3 � 4.7 (0.1–24.8) 3.5 � 7.6 (0–24.8) 2.4 � 3.0 (0–4.6) 1 � 1.5 (0–3.8)
Fox Island NTb NT 7 � 14.4 (0–38.9) 2.7 � 8.1 (0–24.3)

Total 12.1 � 23.4 (0–100) 1.1 � 3.9 (0–24.8) 8.2 � 17.1 (0–100) 0.7 � 3.4 (0–24.3)
a NB1 and NB2 are farms in Narragansett Bay; CP1 and CP2 are farms in coastal ponds.
b NT, not tested.
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